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7th International Conference 
on Artificial Immune Systems

10th–13th August, 2008 in Phuket, Thailand  

There are many desirable features of natural systems: adaptability, robustness, homeo-
stasis, memory, immunity. Biological immune systems seem to exhibit all of these 
features and more. Thus it is not so surprising that a vigorous research field has 
emerged, which focuses on understanding biological immune systems and creating 
new models, algorithms, technologies and theoretical understandings. The field is 
known collectively as artificial immune systems (AIS), and comprises a remarkably 
diverse range of researchers. Biologists join forces with mathematicians to create new 
models. Engineers and computer scientists produce new autonomous intelligent soft-
ware. Roboticists and specialists in unconventional computation create new control 
systems or new ways to compute. 

The International Conference on Artificial Immune Systems is proud to be the pre-
miere conference in this exciting area. For the first time ICARIS moved to East Asia, 
not only being held in Thailand with Thai local chairs, but also with conference chairs 
from South Korea. As its organizers, we were honored to have had such a variety of 
innovative and original scientific papers presented this year, especially from those new 
to the conference. 

ICARIS 2008 was the seventh international conference dedicated entirely to the field 
of AIS. We had more submissions than ever before this year, and because our acceptance 
rate is based purely on quality, we accepted 60% of papers. These acceptances were 
based on advice from stream leaders – experts in the field who agreed to help monitor 
submissions and make decisions on subject and quality. Thus, in these proceedings you 
will find 40 papers written by the leading scientists in the field, from 25 different coun-
tries in 4 continents, describing an impressive array of ideas, technologies and applica-
tions for AIS. We could not have organized this conference without these researchers, so 
we thank them all for coming. We also could not have organized ICARIS without the 
excellent work of all of the Programme Committee, our Publicity Chair Sungwon Jung, 
our Local Chairs Supiya Charoensiriwath and Boonserm Kaewkamnerdpong, and our 
conference administrator, J.J. Giwa. 

Whether you are new to the field, or are one of its established researchers, we hope 
you enjoy the proceedings of ICARIS 2008. 

 
 

June 2008 Doheon Lee 
Peter J. Bentley 
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A Stochastic Model of the Interleukin (IL)-1β

Network

Johnny Kelsey1, Brian Henderson2, Rob Seymour3, and Andy Hone4

1 CoMPLEX, University College London
2 Division of Microbial Diseases, University College London

3 CoMPLEX/Department of Mathematics, University College London
4 IMSAS, University of Kent

Abstract. The interleukin-1β network is a primary mediator of the in-
flammatory response and plays an important role in many immunological
processes. A Markov chain model of the network is presented, along with
results from iteration over the stochastic matrix. The stationary distrib-
ution of the model is analysed.

Keywords: IL-1β; interleukin-1β; Markov process; cytokine network;
stochastic matrix.

1 Introduction

Interleukin-1β (IL-1β) is a cytokine, a polypeptide mediator used by the immune
system to communicate between cells. IL-1 has been described as the most potent
and multifunctional cell activator in immunology and cell biology [8]; it plays
many essential roles in the immune system. The complexity of the IL-1 network
has been noted by many researchers [3], [10]. IL-1 has two forms, IL-1α and
IL-1β. There are two receptors which bind IL-1. A receptor accessory protein is
necessary to form a signalling complex; many inhibitory factors are part of the
network. We shall examine a subset of the IL-1β network using stochastic tech-
niques to find out whether or not a stationary distribution exists over signalling
and nonsignalling states.

2 The IL-1β Network

We shall focus on the IL-1β form of IL-1. IL-1β binds to two receptors on the
cell membrane, the type-I and type-II receptor: the type-I receptor can cause a
signal transduction event; the type-II receptor is a decoy receptor, lacking the
transmembrane apparatus to initiate a signalling event [8].

When IL-1β binds to the type-I receptor, a signalling binary complex is formed.
Signal transduction does not occur, however, until a receptor accessory protein
binds to the signalling binary complex, forming a signalling ternary complex.

The type-II receptor can also bind to IL-1β to form a nonsignalling binary
complex. The nonsignalling binary complex can also bind the receptor accessory

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 1–11, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 J. Kelsey et al.

protein to form a nonsignalling ternary complex. Thus, the type-II receptor com-
petes both for IL-1β and the receptor accessory protein; it is a key inhibitory
component in the network.

The type-I receptor is not abundant, but evokes a powerful response without
a high level of receptor occupancy [2], as the receptor activates many pathways
which operate in parallel. Unlike most other cytokines, it is thought that as few
as ten occupied receptors are sufficient to evoke a strong response [20]. Since IL-
1β typically acts at very low concentrations, the population sizes of signalling
and nonsignalling complexes will be small, and random fluctuations will have
a disproportionate effect. The use of stochastic methods is indicated to model
such a system.

The interactions we model in this paper are as follows:

– IL-1β + type-I receptor: IL-1β associates with the signalling receptor to form
a signalling binary complex

– signalling binary complex + receptor accessory protein: promotion of the
receptor accessory forms a signalling ternary complex, and signalling occurs

– IL-1β + type-II receptor: IL-1β associates with the nonsignalling receptor
to form a nonsignalling binary complex

– nonsignalling binary complex + receptor accessory protein: promotion of the
receptor accessory forms a nonsignalling ternary complex

As in any reaction, the binding event is reversible; the complexes can both
associate and dissociate. The association and dissociation rates for the binary
and ternary signalling and nonsignalling complexes are given in Table (1).

We use the following notation: L is the free (unbound) IL-1β, R1 is the type-I
signalling receptor, R2 is the type-II nonsignalling receptor, S is the signalling
binary complex, NS is the nonsignalling binary complex, R is the receptor ac-
cessory protein, T is the signalling ternary complex, NT is the nonsignalling
ternary complex. Association rates are given as k+

u for a arbitrary component
u, and dissociation rates are k−

u . In the notation of chemical reactions, the
interactions are:

L + R1
k+

S
��������������

k−
S

S (1)

L + R2
k+

NS
������������������

k−
NS

NS (2)

S + R
k+

T
��������������

k−
T

T (3)

NS + R
k+

NT
������������������

k−
NT

NT (4)
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Units for dissociation rates k−
u are s−1, and these rates can be construed as

probabilities per unit time (= 1s). However, the units for association rates, k+
u ,

are M−1s−1, and these cannot be interpreted as probabilities without a trans-
formation, k+

u = ck̂+
u , where c is a suitable conversion factor having dimension

M (concentration).
We choose c to be a concentration based on one international unit of specific

activity of IL-1β. A standard international unit (IU) of IL-1β activity is defined
as a preparation (NISBC code: 86/632) which contains 0.75mg per ampoule with
assigned potency of 75000 units per ampoule [18]. This can be expressed as a
standardised concentration:

Unit
ml

= 5.9 × 10−11 M

We use this as our conversion factor c to express association rates as probabilities.
The derived probabilities are given in Table (2).

Table 1. Association/dissociation rates: the association and dissociation rates of the
signalling and nonsignalling complexes of the IL-1β network, where S is the signalling
binary and NS the nonsignalling binary

Agent Binds Assoc. (M−1s−1) Dissoc. (s−1)

IL-1RI1 IL-1β 4.67 × 107 1.6 × 10−11

S 1 IL-1RAcP 4.67 × 107 0.32 × 10−11

IL-1RII 2IL-1β 8.85 × 104 6.92 × 10−10

NS 2 IL-1RAcP 9.5 × 104 6.82 × 10−10

1 Source: [15] 2 Source: [21]

3 Markov Chain Model

The theory of discrete-time Markov chains provides powerful techniques for mod-
elling random processes which are generally straightforward to implement com-
putationally [13].

A Markov chain can be described by a diagram showing the transitions be-
tween the various states of a system. Figure (1) shows the transition graph for
the subset of the IL-1β network directly associated with receptor binding, both
signalling and nonsignalling.

The vertices of the diagram represent possible states which a unit of IL-1β
can occupy. The arrows represent directed state transitions, with their associated
(non-zero) probabilities. A self-loop at a vertex represents the probability that
the current state does not change in a given time step.

Notice that the diagram has excluded both the receptors and the receptor
accessory protein; we will assume that sufficient resources of these components
exist to form signalling and nonsignalling complexes, since the components we
wish to model are the unbound IL-1β and the complexes themselves. Estimates
of the number of type-I and type-II receptors and accessory proteins R on human
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Table 2. Probabilities P(X) such that k̂±
u ∈ [0, 1] derived from association and disso-

ciation rates k±
u

Association probabilities

Complex Symbol P(X)

Signalling binary k̂+
S 2.75 × 10−3

Nonsignalling binary k̂+
NS 5.22 × 10−8

Signalling ternary k̂+
T 2.75 × 10−3

Nonsignalling ternary k̂+
NT 6.5 × 10−8

Dissociation probabilities

Complex Symbol P(X)

Signalling binary k̂−
S 1.6 × 10−11

Nonsignalling binary k̂−
NS 6.92 × 10−10

Signalling ternary k̂−
T 0.32 × 10−11

Nonsignalling ternary k̂−
NT 6.82 × 10−10

k̄Lk̄S

k̄T

k̄NS

k̄NT

k̂+
S

k̂+
T

k̂+
NS

k̂+
NT

k̂−
S k̂−

NS

k̂−
T

k̂−
NT

LS NS

T NT

Fig. 1. State transition diagram for IL-1β network, where L is IL-1β, S is the signalling
binary complex, NS is the nonsignalling binary complex, T is the signalling ternary
complex, and NT the nonsignalling ternary complex. Probabilities are derived from the
association and dissociation rates k̂±

u .;probabilities for self-interaction loops are given
by k̄i = 1 −

�
j pij , j �= i.

and murine cells yield a range of 200 ≤ R ≤ 2000 [16], [4], [5], [6], [19]. Since, as
already noted, the number of signalling ternary complexes required to initiate
signal transduction is relatively low in comparison to the number of receptors
expressed on the membrane, the exclusion of receptors and accessory proteins
from the model would appear to be justified.

The matrix of transition probabilities defining the Markov process illustrated
in Figure (1) is given in equation (5).

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IL−1β S NS T NT

IL−1β k̄L k̂+
S k̂+

NS 0 0
S k̂−

S k̄S 0 k̂+
T 0

NS k̂−
NS 0 k̄NS 0 k̂+

NT

T 0 k̂−
T 0 k̄T 0

NT 0 0 k̂−
NT 0 k̄NT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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Table 3. The results of iterating over the stochastic matrix P . The labels are: L,
unbound ligand; S, signalling binary; NS, nonsignalling binary; T , signalling ternary;
NT , nonsignalling ternary. The experiments consisted of n iterations as given in the
rightmost column, and each experiment ran N = 500 trials. The number of times the
systems is in a state S is recorded for each experiment and then averaged by the number
of iterations n and repetitions of the experiment N . As can be seen, the amount of time
the system spent in the signalling ternary state increases with the number of iterations.

L S NS T NT Iterations

0.18756 0.18788 0.20154 0.23902 0.18400 100

0.13538 0.20607 0.20800 0.26855 0.18200 200

0.11487 0.17557 0.18178 0.32176 0.20600 500

0.07669 0.11322 0.20676 0.39731 0.20600 1000

0.03934 0.08522 0.17392 0.52157 0.17993 2000

0.01902 0.03195 0.15765 0.58935 0.20200 5000

0.00954 0.01809 0.14662 0.63773 0.18800 10000

0.00608 0.01085 0.10482 0.66330 0.21493 20000

0.00258 0.00464 0.05216 0.73181 0.20878 50000

0.00168 0.00215 0.02924 0.75901 0.20790 100000

0.00069 0.00111 0.01497 0.77371 0.20949 200000

0.00033 0.00047 0.00775 0.80312 0.18831 500000

0.00018 0.00028 0.00432 0.87185 0.12335 1000000

0.00008 0.00014 0.00276 0.89592 0.10108 2000000

0.00003 0.00005 0.00116 0.95572 0.04301 5000000

0.00002 0.00003 0.00061 0.96736 0.03196 1 × 107

0.00001 0.00001 0.00031 0.98529 0.01437 2 × 107

4.08 × 10−6 6.10 × 10−6 0.00012 0.99430 0.00555 5 × 107

2.65 × 10−6 2.99 × 10−6 0.00006 0.99757 0.00236 1 × 108

1.13 × 10−6 1.59 × 10−6 0.00002 0.99824 0.00172 2 × 108

4.37 × 10−7 6.67 × 10−7 9.94 × 10−6 0.99942 0.00056 5 × 108

We experimented computationally to investigate the amount of time the sto-
chastic matrix P spends in each state, and to find any stationary distributions to
which the Markov process is attracted in the long run. Since the process is stochas-
tic, it will not always take the same amount of time to reach an equilibrium state
(if any such state exists), which necessitated a large number of experimental trials.

Table (3) shows the results of repeating the experiment and averaging it over
the number of iterations n and the number of trials N . Each trial iterates over
the stochastic matrix for n iterations, where 100 ≤ n ≤ 5×108; each experiment
was repeated N = 500 times. The initial state is set randomly, and then evolves
according to the probabilities based on association and dissociation rates. After
the experiments have run, we calculate the average of how long the system spent
in any particular state.

As can be seen from the table, with a low number of iterations the Markov
chain is evenly distributed between its states. However, as the number of it-
erations increases, the stochastic matrix is rapidly attracted to the signalling
ternary state, and spends an increasing number of iterations in this state. It
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would seem that the signalling ternary state is, in dynamical systems terms, a
robust attractor for the stochastic matrix.

4 Effect of Inhibitory Receptor

We would like to know how long it takes before the matrix approaches equilib-
rium. To find the time taken to reach equilibrium we iterated over the stochastic
matrix until it reached the signalling ternary state, and recorded the number of
iterations it took; that is, recorded the length of the Markov chain.

The protocol for the experiment consisted of creating a random initial state,
and then iterating over the stochastic matrix P , creating a list of the states for
each iteration until it reaches the signalling ternary state. Each experimental
trial is a sample path of the Markov chain. The number of iterations is recorded
as the result of the trial. The experiment was run for a large number of trials to
show the dynamics of the system.

We can observe the behaviour of the system when there is no inhibitory, type-
II nonsignalling receptor. Repeating the experiment without the nonsignalling
binary (NS) and ternary (NT) states shows what would happen if the network
consisted only of the type-I signalling receptor. Thus we can directly compare
the behaviour of the sample paths in the presence or absence of the inhibitory
receptor, in order to illustrate its effect.

The results from both experiments are given in Figure (2). The experiment con-
sisted of N = 5000000 trials. The maximum possible number of iterations over the
matrix was set to n = 50000; if the matrix arrived at the signalling ternary com-
plex before n, the program terminated and the number of iterations recorded. The

Effect of Type-II receptor

n

No Type-II

ST

Type-II

50 100 150 200

10000

20000

30000

40000

Fig. 2. Sample paths: n are the number of iterations taken for the stochastic matrix
to reach the signalling ternary state, ST the number of signalling ternary complexes
formed. Each experiment consisted of N = 5 × 106 trials. The type-II receptor slows
the formation of signalling ternary complexes.
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Table 4. Mean path length and standard deviation from experiments: effect of type-II
receptor

Experiment Mean Standard deviation

Type-II receptor present 3713.96 8154.79

Type-II receptor absent 363.96 468.49

effect of type-II receptors is to slow the formation of signalling ternary complexes;
without the type-II receptor, the complexes form much more quickly.

The means and standard deviations for both experiments are given in
Table (4). Notice that the mean Markov chain length of the experiment with
type-II receptors is an order of magnitude higher than the mean of the experi-
ment without type-II receptors. The sample paths take on average an order of
magnitude longer to reach the signalling ternary complex state with the type-
II receptor present. From these experiments, we can observe that the type-II
nonsignalling receptor slows the formation of signalling ternary complexes, thus
indirectly slowing the response of the cell to IL-1β.

5 Long-Term Behaviour of the System

The transition matrix P given in equation (5) depends on only eight parameters,
namely k̂±

S , k̂±
NS , k̂±

T , k̂±
NT , because the diagonal entries are determined in terms

of these parameters by the requirement that the sum of the entries in each row
must be 1 (since P is a stochastic matrix). From Figure (1), we see that it
is possible to move from any state to any other along a path having positive
probability. That is, the process defined by P is ergodic.

Standard theorems [13] tell us that, for an ergodic process, a stationary dis-
tribution π exists and also satisfies πj > 0.

Let

ψ = k̂+
NS k̂+

NT k̂−
S k̂−

T + k̂+
S k̂+

T k̂−
NS k̂−

NT + k̂+
NS k̂−

S k̂−
T k̂−

NT

+k̂+
S k̂−

NS k̂−
T k̂−

NT + k̂−
S k̂−

NS k̂−
T k̂−

NT

(6)

Solving the equation πP = π algebraically, we find:

π1 =
k̂−

S k̂−
NS k̂−

T k̂−
NT

ψ

π2 =
k̂+

S k̂−
NS k̂−

T k̂−
NT

ψ

π3 =
k̂+

NS k̂−
S k̂−

T k̂−
NT

ψ
(7)

π4 =
k̂+

S k̂+
T k̂−

NS k̂−
NT

ψ

π5 =
k̂+

NS k̂+
NT k̂−

S k̂−
T

ψ
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Substituting numerical values from Table (2) gives:

π1 ≈ 6.77 × 10−14

π2 ≈ 1.16 × 10−7

π3 ≈ 5.11 × 10−17 (8)
π4 ≈ 1
π5 ≈ 4.86 × 10−18

Clearly, the values of π1, π2, π3 and π5 are many orders of magnitude smaller
than π4, which is extremely close to 1. Hence, to all intents and purposes, the
system ends up in the signalling ternary state (with probability 1), irrespective
of the initial distribution (π0).

Given that the probabilities which represent the dissociation of the complexes,
namely k̂−

S , k̂−
NS , k̂−

T , k̂−
NT , are so small, it may be instructive to consider the

limiting case when all of these parameters are set to zero. In that case, the
transition diagram for the Markov chain can be represented schematically by

T ←− S ←− L −→ NS −→ NT, (9)

from which it is clear that the chain is reducible in this special case. Indeed, if
the system leaves any state other than one of the ternary complexes (T or NT )
then it can never return there. The transition matrix for this special case has
the upper triangular form

P =

⎛
⎜⎜⎜⎜⎝

1 − k̂+
S − k̂+

NS k̂+
S k̂+

NS 0 0
0 1 − k̂+

T 0 k̂+
T 0

0 0 1 − k̂+
NT 0 k̂+

NT

0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

. (10)

We can again solve the vector equation πP = π for the reduced matrix (10),
which results in a family of stationary distributions

π1 = 0
π2 = 0
π3 = 0 (11)
π4 = q

π5 = 1 − q

Compare this with the stationary distribution we found where the dissociation
probabilities are non-zero, given in (8); there, all states would tend toward the
signalling ternary complex state T with a probability π4 ≈ 1. In this case, with
the dissociation probabilities set to zero, we have a one-parameter family of
stationary distributions, with the parameter q such that 0 ≤ q ≤ 1. There are
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therefore two possible outcomes for the system, the signalling and nonsignalling
ternary states. The non-uniqueness of the stationary distribution means that
that the limiting state of the chain is highly dependent on the initial distribution.

What are the probabilities of reaching either state? Firstly, we can see that
if the system has the initial state X0 = S, then it can only remain in state S
and then (after a finite number of steps, m say) transit to state T , where it will
then remain, and so P (X∞ = T | X0 = S) =

∑∞
m=0 k̂+

T (1 − k̂+
T )m = 1. Similarly

P (X∞ = NT | X0 = NS) = 1.
On the other hand, for the initial state X0 = L, at each step the system can

stay in that state with probability (1−k̂+
S −k̂+

NS), or transit to S with probability
k̂+

S (in which case it will ultimately reach T with probability 1), or transit to
NS with probability k̂+

NS (in which case it will ultimately reach NT ).
Summing over transitions to S after m steps, for each m, gives P (X∞ =

T | X0 = L) =
∑∞

m=0 k̂+
S (1 − k̂+

S − k̂+
NS)m, and an analogous formula holds for

P (X∞ = NT | X0 = L). Hence we see that if the system starts off with an
unbound ligand, so X0 = L, then it can end up in either of the ternary states,
with the limiting probabilities being

P (X∞ = T | X0 = L) =
k̂+

S

(k̂+
S + k̂+

NS)
= q, (12)

P (X∞ = NT | X0 = L) =
k̂+

NS

(k̂+
S + k̂+

NS)
= 1 − q. (13)

What observations can we make from this analysis? It seems that the dissociation
probabilities, despite their insignificant size relative to the association probabil-
ities, play an essential role in the dynamics of the IL-1β network. Without the
dissociation probabilities, we have two possible final outcomes for the system,
the signalling and nonsignalling ternary complexes T and NT ; however, with
the dissociation probabilities greater than zero, the probability of the Markov
process arriving at the signalling ternary complex T is π4 ≈ 1.

6 Conclusion

A stochastic model of the IL-1β network has been presented. The behaviour of
the Markov process has been described both computationally and analytically.
IL-1β is a very active cytokine, requiring only tens of receptors to invoke a cel-
lular response. Many inhibitory control mechanisms have evolved alongside the
IL-1β network, possibly due to its potency [11]. One inhibitory control mecha-
nism, the type-II nonsignalling receptor, has been modelled in the Markov chain
analysed above.

It was found that this model has a unique stationary distribution in which
the system occupies the ternary signalling complex with probability close to one.
Given the relative size of the association and dissociation rates of the type-I and
type-II receptors, this is perhaps unsurprising, since IL-1β is a fundamentally
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important cytokine. This has implications for the biology of the network. The po-
tency of IL-1β is such that, without some form of inhibition, it could potentially
cause considerable damage.

It has been argued that the type-II receptor acts as a decoy, or sink, for
IL-1β [8], by absorbing any of it that has not yet bound to type-I receptors.
However, the Markov chain model has shown that the type-II receptor is not, in
the long run, an effective competitor for IL-1β, or for receptor accessory protein.
Rather, its presence acts more to delay the network going to the signalling
ternary complex state.

The modelled network exhibited a stationary distribution, but could a biolog-
ical system be said to have an equilibrium? This is a complex question, which
requires more analysis than we can really provide here; however, Jit, Henderson,
Stevens and Seymour have examined this question in relation to the cytokine
TNF-α. They found that rheumatoid arthritis has an equilibrium which is sus-
tained by a low, but persistent, level of TNF-α, whereas systemic inflammatory
response syndrome (SIRS) is fundamentally a nonequilibrium condition [14].

The dissociation rates of the system are extremely small, relative to the as-
sociation rates. When the dissociation rates were set to zero, an exploration of
the Markov chain behaviour revealed that, without the possibility of dissocia-
tion, the system no longer has a unique stationary distribution. It appears that
the dissociation rates, despite their apparent numerical insignificance, have a
significant role to play in the dynamics of the IL-1β network.

Acknowledgements. Many thanks to are due to Thurston Park for his con-
stant encouragement and inspiration.

References

1. Auron, P.E., et al.: Nucleotide sequence of human monocyte interleukin 1 precursor
cDNA. PNAS 81, 7907–7911 (1984)

2. Auron, P.E.: The interleukin 1 receptor: ligand interactions and signal transduc-
tion. Cytokine Growth Factor 9, 221–237 (1998)

3. Bandman, O., et al.: Complexity of inflammatory responses in endothelial cells and
vascular smooth muscle cells determined by microarray analysis. Ann. N.Y. Acad.
Sci. 975, 77–90 (2002)

4. Bensimon, C., et al.: A monoclonal antibody recognizing 68- to 75-kilodalton pro-
tein(s) associated with the human IL-1 receptor. J. Immunol. 142, 2290–2298 (1989)

5. Bensimon, C., et al.: Two distinct affinity binding sites for IL-1 on human cell lines.
J. Immunol. 143, 1168–1174 (1989)

6. Horuk, R., et al.: A biochemical and kinetic analysis of the interleukin-1 recep-
tor. Evidence for differences in molecular properties of IL-1 receptors. J. Biol.
Chem. 262, 16275–16278 (1987)

7. Boraschi, D., et al.: Mapping of receptor binding sites on IL-1 beta by reconstruc-
tion of IL-1ra-like domains. J. Immunol. 155, 4719–4725 (1995)

8. Colotta, F., et al.: The type II decoy receptor: a novel regulatory pathway for
interleukin 1. Immunol. Today 15, 562–566 (1994)

9. Dinarello, C.A.: Biology of interleukin-1. J. FASEB, 108–115 (1988)



A Stochastic Model of the Interleukin (IL)-1β Network 11

10. Dinarello, C.A.: Interleukin-1, interleukin-1 receptors and interleukin-1 receptor
antagonist. Int. Rev. Immunol. 16, 457–499 (1998)

11. Eisenberg, S.P., et al.: Interleukin 1 receptor antagonist is a member of the inter-
leukin 1 gene family: evolution of a cytokine control mechanism. Proc. Natl. Acad.
Sci. U.S.A. 88, 5232–5236 (1991)

12. Greenfeder, S.A., et al.: Molecular cloning and characterization of a second subunit
of the interleukin 1 receptor complex. J. Biol. Chem. 270, 13757–13765 (1995)

13. Grimmett, G., Stirzaker, D.: Probability and random processes. Oxford University
Press, Oxford (2001)

14. Jit, M., Henderson, B., Stevens, M., Seymour, R.: TNF-α neutralization in
cytokine-driven diseases: a mathematical model to account for therapeutic success
in rheumatoid arthritis but therapeutic failure in systemic inflammatory response
syndrome. Rheumatology 44, 323–331 (2005)
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Abstract. The Tunable Activation Threshold hypothesis of T Cells is
investigated through computational modelling of T cell signalling path-
ways. Modelling techniques involving the π-calculus and the PRISM
model checker are presented, and are applied to produce a stochastic
model of T cell signalling. Initial results which demonstrate tuning of T
cells are presented.

1 Introduction

The T lymphocyte has a major role in the response of the adaptive immune
system. Through the T cell receptor (TCR) the T Cell responds to populations
of antigenic peptide presented by the major histocompatibility complex molecule
(pMHC) on nucleated cells [12]. The ability of a T cell to correctly discriminate
and respond is remarkable given that the TCR is essentially randomly generated
through sommatic mutations [12], and that foreign pMHCs will often only be
0.01% to 0.1% of the total expressed by a cell [4], the other 99.9% – 99.99%
being self.

A number of discrepancies between observable immunology and classical clonal
selection theory suggest that the classical theory does not give a complete picture.
For example, there is clear evidence of self-reactive T Cells in the periphery and
that T cells require interaction with self for survival in the periphery [4]. In light of
this, a number of theories have arisen to explain the successful operation of T Cells.

One theory of particular interest is the tunable activation threshold hypothe-
sis (TAT) presented by Grossman and his colleagues [1], [2]. The theory proposes
that lymphocytes adapt their activation thresholds based upon recent interac-
tions with their environment. As such, the T cells tune to local interactions and
react to a change in the environment rather than any one specific interaction.
Such a mechanism would allow auto-reactive T Cells to exist in the periphery
with high activation thresholds.

Altan-Bonnet and Germain (ABG) [5] model a particular pathway which has
been shown to be involved in T Cell sensitivity [14], and has been implicated for
tuning [4], [2]. The ABG model provides a starting point here, we investigate the
pathway directly for tunability properties. The ABG model is re-implemented
in a stochastic formulation using the stochastic π-calculus, simulated using the
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Stochastic Pi Machine (SPiM) [11] and converted for analysis in the PRISM
probabilistic model checker [19].

This work also contributes to the design of new artificial immune systems [6],
we intend to use to the model to build new immune inspired algorithms. This
should clarify our choice of modelling methods: the model is in a computational
language for a more ameanable transition toward algorithms. As no further steps
are taken in this direction in this work we give it no further mention.

Our paper is structured as follows: section 2 biolgical background; section 3
contains a description of modelling methods; section 4 gives a modelling patterns
that may be used to convert reaction based description of a biological model to
a π-calculus model; section 5 outlines the model; finally section 6 provides some
prelimary results.

2 Biological Background and Model

Peptide MHC TCR interactions can be classified by the response they illicit in
a cell. We take the definitions of [4]:

– Agonist. Will induce all possible activation signals within a cell.
– Partial agonist. Will induce a subset of all possible activation signals within

a cell.
– Antagonist. Will actively inhibit activation signals within the cell.
– Null. Will not have any affect, activatory or inhibitory.

A range of signal strengths exists for each of the first three classes, it is not
the case that the signals induced by a weak agonist are necessarily stronger than
those induced by a partial agonist. Self-peptides fall into either partial agonist
and antagonist classes [4].

2.1 Signalling Components

Phosphorylation is a primary signalling mechanism in biological pathways, it
involves the addition of a phosphate group to a molecule which changes its
conformation and so its ability to bind to other molecules.

We now give an overview of the signalling components pertenant to this paper,
for a full description see [12].

– T Cell receptor ζ-Chains are internal components of the TCR, typically there
are two such chains. Each ζ-chain contains 3 Immunoreceptor tyrosine-based
activation motifs (ITAMs). Each ITAM may be twice phosphorylated.

– Leukocyte-specific protein tyrosine kinase (Lck), may be soluble in the cy-
tosol or associated with TCR co-receptor CD4/8. Lck phosphorylates ITAMS,
SHP-1.

– CD4/8 TCR Co-receptor. Populations of TCR co-receptors are expressed on
the surface of the T Cell. The co-receptor binds to TCR-pMHC complexes
with a stabilising effect. The internally the co-receptor is associated with
Lck which may phosphorylate internal TCR components upon co-receptor
binding to TCR-pMHC complex.
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– Cytosolic soluble ζ-chain associated protein kinase 70 (ZAP70) binds to a
twice phosphorylated ITAM, protecting the phosphorylation. Processivity
occurs with ZAP70 binding [4], there is a particular order in which it may
bind to phosphorylated ITAMs. Fully ZAP70 laden ITAMs instigate further
signalling pathways.

– SH2 domain containing tyrosine phosphatase (SHP-1) binds to internal TCR
complex. It is phosphorylated by Lck to become pSHP-1 and dissociates.
Soluble pSHP-1 may rebind TCR internal complex and upon further Lck
phosphorylation will dephosphorylate non-ZAP70 protected ITAMs.

– Extracellular signal-regulated kinase (ERK) is part of mitogen-activated pro-
tein kinase (MAPK) cascade and involved in T Cell effector signalling. It
provides an indicator of the activation of the cell. A twice phosphorlated
form of ERK may bind Lck in TCR complex modifying the SH2 domain [14]
protecting the TCR internal chains from dephosphorylation by SHP-1.

– Mitogen-activated protein kinase (MAPK) cascade is a commonly found bi-
ological component [8]. In T cells the RAF-MEK-ERK MAPK cascade plays
a role in T Cell activation [4]. The instigation of the MAPK cascade results
in the twice phosphorylation of ERK.

There are three concepts central to the T Cell signalling described in this
paper: kinetic proofreading, noise reducing negative feedback, and amplifying
positive feedback, which are now discussed.

2.2 Kinetic Proofreading

Kinetic proofreading arose to describe the remarkable accuracy of DNA repli-
cation and protein synthesis [22]. McKeithan [7] applied kinetic proofreading
to T cell signalling, and it is now a widely accepted model to account for lig-
and discrimination [14]. There are three key concepts to Kinetic proofreading.
First, upon binding of pMHC to TCR there are a number of energy consum-
ing signalling steps (they take physical amounts of time to overcome) instigated
internally in the T Cell. All these steps must occur before T Cell activation
signalling can start. Second, upon dissociation of pMHC from TCR these steps
are rapidly reversed. Third, the greater the specificity between TCR and pMHC
the longer the bind. The length of bind is regarded as one of the best measures
of TCR-pMHC bind quality [13]. The kinetic proofreading steps measure the
length of the bind and so the quality of the bind.

The T Cell signalling described in this paper contains two proofreading mech-
anisms, the phosphorylation of TCR internal chains and the association the TCR
co-receptor.

– Phosphorylation of ITAMs and ZAP70. Activation signalling requires
a fully ZAP70 laden ζ-chain, the bind between TCR-pMHC must be long
enough to allow full phosphorylation of the ITAMs and the processivity of
ZAP70 binding mentioned in section 2.1

– Association of Co-receptor. This is not a necessary proofreading mech-
anism, as it is possible for an activation signal to propagate from a TCR
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without a co-receptor bound. However, the co-receptor will stabilise the
TCR-pMHC complex [15] and co-receptor associated Lck will phosphory-
late TCR internal chains far more efficiently than soluable Lck [14]. Thus a
TCR-pMHC complex that exists for long enough to allow co-receptor associ-
ation will be far more likely to overcome ITAM phosphorylation proofreading
and so is more likely successfully produce an activation signal.

2.3 Noise Reducing Negative Feedback

Kinetic proofreading alone is not sufficient to explain antagonism [13]. A negative
feedback effect, investigated experimentally in [14] may augment proofreading
to compensate for its shortfallings. After TCR engagement SHP-1 may bind to
TCR internal complex and be phosphorylated by Lck. Phosphorylated SHP-
1 (pSHP-1) dissociates and may re-associate to a potentially different TCR,
allowing the pSHP-1 signal to spread. This reassociated pSHP-1 may be further
phosphorylated, which activates pSHP-1 causing it to desphosphorylate any non
ZAP70-protected ITAMs. This creates a negative feedback which dampens any
activatory signal.

2.4 Amplifying Positive Feedback

The combination of proofreading and negative feedback alone would mean that
the level of negative feedback should increase as the quality of the TCR-pMHC
bind increases. This is not the case: there is a point as ligand quality increases
where the pSHP-1 negative signal disappears [14]. An explanation exists through
the protecting effect of double phosphorylated ERK (ppERK). A TCR complex
which sucessfully overcomes proofreading and negative feedback will instigate the
MAPK cascade 1. The result of the MAPK cascade is ppERK which protects
the TCR complex from the dephosphorylating effect of pSHP-1 and so breaking
the negative feedback loop. In a similar manner to pSHP-1, ppErk will spread
allowing TCR to protect the signalling of other surrounding TCRs.

These three mechanisms provide a mapping between TCR-pMHC bind time
and cell signalling such that there is a natural discrimination between pMHC
ligands, in order of decreasing bind quality:

1. Agonist – Binds TCR long enough such that there is a high probability of
induce MAPK cascade in the face of a pSHP-1 dampening. It will receive
protection from ppERK.

2. Antagonist – Binds long enough to induce high levels of pSHP-1 but not to
induce MAPK cascade.

3. Partial Agonist/Endogenous Ligand – Does not bind long enough to induce
high levels of pSHP-1, but may induce some partial phosphorylation of TCR
internal chains. This is where self should lie [13].

1 The MAPK cascade is a robust signalling pathway found in many cells throughout
biology, it has been shown to have an all-or-none amplification effect [8].
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The spreading of the pSHP-1 and ppERK signals is of interest here. An an-
tagonist that induces high levels of pSHP-1 will dampen the activation signal
propagating from the surrounding TCR. An agonist may protect the surround-
ing TCR allowing the agonist to synergise with non-agonist ligands and spread
the protection signal. This mechanism provides an explanation of how a signal
agonist in a sea of non-agonist ligands is able to induce the T Cell into activation.

The interplay between SHP-1 and ERK as a candidate for tunability has been
suggested in [4], [2], [5], [13]. In this context the level of pSHP-1 indicates the size
of negative feedback and defines a functional threshold that must be overcome
for signalling. It is these ideas that are investigated in the remains of the paper.

There is related work in T Cell, particularly TAT modelling, the pathways de-
scribed above are modelled in [5], [15], examples of TAT models include [1], [3].

3 Modelling Methods

There is perhaps growing similarity between computational and biological sys-
tems in terms of concurrency, distributively, connectivity and particularly the
discrete rather than continuous nature of both systems. As a consequence con-
current computational analysis techniques have been applied to biology by a
number of authors, e.g. [11], [18], [19]. This is the approach here, a description
of the biological model is developed in the stochastic π-calculus which is then
analysed through simulation and conversion into a model checker.

A simulation tool provides a single instantiation of the system, the stochastic
fluctuations inherent in the simulation method will mean that the system will
behave differently on subsequent runs. For example a system with an unknown
bistablilty will arrive in either of its stable states at the end a simulation, at
least two runs are necessary to simply determine that the system is bistable.
A probabilistic model checker overcomes the need for multiple simulations by
allowing analysis of the probability distributions of the system. Here we perform
such analysis by employing the PRISM model checker [19].

3.1 The Stochastic π-Calculus

The π-calculus developed by Milner and colleagues [9] is a process algebra used
to describe concurrent computational systems with the property of mobility. The
Stochastic π-calculus first described by Priami [10] applies stochastic extensions
to the π-calculus replacing non-determinism with race conditions defined by
exponential distributions. As such the stochastic π-calculus allows quantitative
analysis of π-calculus systems through a mapping to an underlying continuous
time markov chain [10].

The stochastic π-calculus was originally applied to biology in [18]. There are
now a range of tools for analysis of biological models described with stochastic
π. Particularly there are two simulators BioSpi [18] and SPiM [11], both employ
the Gillespie algorithm to guarantee correct chemical kinetics. SPiM is used here
to simulate our model.
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In a process algebra, such as the π-calculus, processes communicate concurrent
over shared channels. Applying this paradigm to biology a process P is a molecule,
a channel c describes the existence of a reaction between two processes. For the
π-calculus the reaction rules specify which reactions may proceed, the stochastic
race conditions in conjunction with mass-action kinetics, see section 3.2, dictate
the timings of the reactions.

A variant of the stochastic π-calculus presented in [11] is given, this is the
stochastic π-calculus used at the core of SPiM.

Definition 1. The syntax π-calculus definition2.

P ::= 0 | π.P | P + Q | (P | Q) | νxP | � P (1)

Left to right: null | action prefix | choice | parallel3 | restriction | replication.
Action Prefixes:

?xr(ỹ) input | !xr(ỹ) output | τr silent/delay (2)

r denotes the rate of the prefix. ỹ denotes a tuple may be sent of received along
a channel.

Definition 2. Structural Congruence on π-calculus. Alpha-conversion (change
of bound names); identity P | 0 ≡ P ; commutativity of parallel and choice
P | Q ≡ Q | P , P +Q ≡ Q+P ; associativity of parallel P | (Q | R) ≡ (P | Q)|R;
Identity of restriction νx0 ≡ 0; commutativity of restriction νxνyP ≡ νyνxP ;
scope extrusion νx(P | Q) ≡ P | νxQ if x /∈ fn(P ), the free names in P;
�P ≡ P | � P defintion of replication.

Definition 3. Reduction rules:

τr .P + M
r−→ P (3)

!xr(ñ).P + M | ?xr(m̃).Q + N
r−→ P | Q{ñ/m̃} (4)

P
r−→ P ′ ⇒ νxP

r−→ νxP ′ (5)

P
r−→ P ′ ⇒ P | Q

r−→ P ′ | Q (6)

P ≡ Q, P ′ ≡ Q′, P r−→ P ′ ⇒ Q
r−→ Q′ (7)

3.2 Gillespie Algorithm

The Gillespie algorithm [16] is rigorously derived from a stochastic formulation
of chemical kinetics, it performs a Monte-Carlo simulation of a chemical system.
Given a chemical system of molecules, a set of reactions, and a state (i.e. the

2 This differs slightly from the syntax given in [11], this is for the sake of brevity, all
essential components are given here.

3 The parenthesis are not syntactically necessary for parallel composition, it is just to
aid clarity of the use of | within the BNF definition.
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populations sizes of reactants), the Gillespie algorithm will determine which
reaction occurs next and when it occurs. The law of mass-action states that
a reaction proceeds proportional to a deterministic rate d and the number of
reactants. For a molecule type X, the number of molecules in a reaction system
is denoted |X|. There are three reactions that are of concern here:

Type Reaction Equation Rate Example

1st Order X d−−→ Y d|X| Degradation
2nd Order X1 + X2

d−−→ X3 d|X1||X2| Complexation
2nd Order Symmetric X1 + X1

d−−→ X3
d
2 (|X1| − 1) |X1| Homodimerisation

The rate of second order reactions are defined by the number of possible pairs
of reactants. For SPiM’s implementation of the Gillespie algorithm [11] the rates
of first order and second order reactions are implemented directly, however for
symmetric reactions the modeller must compensate and divide rates by two.

It is necessary to convert a deterministic rate d of second order reaction to a
stochastic rate c for use with the Gillespie algorithm. The rates must be scaled
by the volume, V , of the reaction system and should one want to simulate exact
numbers of molecules then the rate is also be scaled by the Avogadro Number
NA = 6.022 × 1023.

c =
r

NAV
(8)

For computational complexity purposes it may be necessary to simulate a frac-
tion ε ∈ [0, 1] of a volume V , for a concentration C of a molecule the rate now be-
comes c = r/NAV ε and the number of molecules in the simulation N = CNAV ε.

3.3 PRISM Probabilistic Model Checker

Probabilistic Model Checking is a formal analysis technique used to assert the
quantitative correctness of models of systems, it requires a formal description of
the system and a specification of a system in a temporal logic. In PRISM [19]
this is done with a description of the system as a continuous time markov chain
(CTMC) and an extension of temporal logic CSL. States of the markov chain are
augmented with rewards and the CSL can be used to calculate expected rewards
both transiently and in the steady state. The only CSL queries described here
are of the form that are used later in the model: R=?[I = t] – Describes what is
the expected reward at time instant t.

4 Modelling Patterns

Modelling abstractions for first order reactions, second order complexations and
enzymatic reactions are described, such that if these are applied to a system of
reactions one should achieve the correct stochastic π-calculus formalism of the
reaction system.
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4.1 First and Second Order Reactions: Degradation, Complexation,
Enzymatic Reactions

In general a first and second order reactions can be described by the following
programs:

Reaction Program Instantiation

X r−−→ Y X = τr.Y X

X1 + X2
r−−→ X3 X1 =?cr.X3, X2 =!cr νcr(X1|X2)

X1 + X1
r−−→ X3 X1 =?cr.X3+!cr νcrX1

Complexation has been modelled in π-calculus by the communication over a
shared channel [11], for example in the reaction X + Y r−−→ XY:

X = νp(!cr(p).Xb) Y =?cr(p).Yb (9)

Xb and Yb are the bound states and X and Y respectively. If X and Y are
initiated in parallel they will react to privately share channel p which Xb and Yb

may communicate on.
Enzymatic reactions occur between an enzyme E acting on a substrate S to

form a product P, they compromise two stages:

E + S
ka−−⇀↽−−
kd

ES kc−→ E + P (10)

The enzyme will bind to the substrate at association rate ka, they may dissociate
at rate kd or the enzyme will convert the substrate into the product at rate kc.
This is often modelled [11] as:

E = νdkd
νckc !aka(dkd

, ckc).(?dkd
.E+?ckc .E) (11)

S =?aka(dkd
, ckc).(!dkd

.S+!ckc .P ) (12)

Where E and S share private channels with differing rates, the race condition in
the choice dictates whether the enzyme is successful in producing the product.
However a different formulation of enzymatic reactions is more appropriate here:

E = ?aka . (τkd
.(E|S) + τkc .(E|P )) S = !aka (13)

This formulation sacrifices the ability to exchange information on a private
channel between enzyme and substrate, but it reduces the number of required
processes from 4 to 3 and the number of required channels from 3 to 1. The two
formulations are behaviourly equivalent by bisimulation, this can be straightfor-
wardly proved using the approaches given in [20]. Under simulation and analysis
the formulations will behave identically in terms of visible populations of enzyme,
substrate and product. The reason for the change in formulation is twofold, first,
SPiM contains optimisations based on assumptions that simulations will contain
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large numbers of identical of process [11]. For 100 simulation runs of the MAPK
cascade, model outlined in section 5, the optimisations translate to the formula-
tion of equation 13 running in ∼ 3 minutes and the formulation of equation 11
running in ∼ 6 minutes. Second, the formulation is more similar to the process
calculi used [17] (allowing automata translation into PRISM) and in [20] (allow-
ing reduction of state space for analysis). Such automated translation and state
space reduction are not used in this work but will be a major part of future
analysis work.

5 The Model

The model is in essence a stochastic formulation of the ABG model [5], with
minor changes. The CD8 co-receptor is only allowed to bind to the TCR-pMHC
complex and pMHC. In the ABG model the following complexes are allowed
CD8-TCR, CD8-pMHC, CD8-TCR-pMHC. The change clarifies the proofread-
ing behaviour of CD8 and is in line with the model of Wylie [15].

The model proceeds as the biology is described in section 2. There is a fur-
ther simplification in line with ABG, only a single ζ-chain with three ITAMs
are included. Each ITAM may be twice phosphorylated allowing and requiring
binding of 3 ZAP70 molecules to signal the MAPK cascade. The reactions used
can be found online at [21], which for the majority are identical to the reactions
found in the ABG model.

The π-calculus model is generated mechanistically from the reactions in [21]
using the patterns defined in section 3. The volume of simulation is scaled by
a factor 100, this is performed without any qualitative loss to the results, the
ABG model contains 3 × 104 TCRs, 300 are simulated here. The π-calculus
model, runnable in SPiM can be found online [21].

Since PRISM performs analysis on the entire state space of a system it is not
computationally tractable to perform model checking on a population of TCRs
and pMHCs. The model checker is used to investigate the signalling behaviour
of a single TCR-pMHC complex by volume restriction to one TCR, even so it
is still necessary to restrict the model even further to reduce the state space.
The inclusion of the MAPK cascade give rise to a system of 224613312 states
and 3703035840 transitions. If it is removed and ppERK protection replaced
by a boolean parameter we achieve a far more tractable system of 2050 states
and 11312 transitions. The number of pSHP-1 molecules are also supplied as a
parameter, the PRISM model can be found [21].

6 Model Simulation and Analysis

To demonstrate tunability given the hypotheses presented in this paper it first
must be shown that TCR-pMHC interactions result in a higher concentration
of cytosolic pSHP1. Second it must be shown that this higher concentration of
pSHP1 hinders the ability of the TCR to signal. We must allow ensure that the
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Fig. 2. Average number of ppERK (left) and pSHP1 (right) molecules across a 200
second simulation with n = 10, 100, 1000 pMHC complexes

model of the T cell must display the correct speed, selectivity and sensitivity as
outlined by [13].

To demonstrate that higher levels of pSHP-1 hinder the ability of the TCR
to signal we employed the PRISM model. Figure 1 (right) shows the expected
adapter phosphorylation against ligand quality at t = 200s after binding, greater
levels of pSHP-1 massively decrease the expected adapter phosphorylation. It is
important to note that the PRISM model is scaled to a single TCR so a change
of 0 to 4 pSHP-1 molecules in the vaccinity of that TCR represents a massive
change in pSHP-1 concentration in the entire cell. Second, the PRISM model
does not contain the MAPK cascade and so lacks the ability of the TCR to
protect itself, should protection by ppERK occur the expected phosphorylation
of the Adapter will immediately jump to the pSHP-1= 0 line.

The remaining tests are performed using the simulations of the π-calculus
model. Figure 2 shows the average number of ppERK and pSHP1 molecules
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over a 200 second simulation of n = 10, 100, 1000 pMHC molecules across a
range of binding affinities. The jaggedness is facet of taking an average of just 10
simulation runs. The results demonstrate that, as expected, at higher binding
affinities a larger amount of pSHP-1 is produced. However the pSHP-1 levels
flatten off as more ppERK is successfully produced (a higher probability of a
pSHP-1 protected TCR.

A further interesting result is that of synergy, figure 1 (left) shows that the
presenting non-agonist ligands with agonist ligands increases both pSHP-1 and
ppERK levels. The large increase of both suggests that further parameter analy-
sis will reveal antagonism.

7 Conclusions

We have outlined the biological components of a signalling system which exhibits
tuning properties. We present computational modelling methods and patterns
that are generally applicable to any reaction based biological system. We apply
these to the biology presented and gain stochastic π-calculus and PRISM models.
We show some preliminary results, demonstrating tuning and synergy. However,
during runs of the model antagonism appears elusive (data not shown), this may
be a facet of the stochastic formulation identified by [15], and a further biological
mechanism may be required. We shall continue with further model analysis and
investigations into new immune inspired algorithms.
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Abstract. Immune phenomena are explained from the reductionist view
of the immune system as a collection of cells, molecules, and their inter-
actions. Although this approach has produced abundant valuable infor-
mation, it has added increased complexity. Artificial Immune Systems
(AIS) have relied on this theoretical framework to emulate the desired
characteristics of immunity. However, the complexity of the theoretical
base has lead to an impasse in AIS research, suggesting that a new the-
oretical framework is needed. A theoretical model is presented here that
explains immune responses as a ”swarm function”. The model proposes
a system based on two stochastic networks: a central recursive network,
wherein the proportion of agents is determined and maintained, and a
peripheral network, wherein the random interactions of these agents de-
termine if an inflammatory response will emerge from the system.

1 Introduction

There is a recognition that a different theoretical framework is needed in the field
of Artificial Immune Systems (AIS) [1,2]. It has been proposed that the failure
to generate practical results in AIS is a result of the high degree of complexity
of the human immune system, and the use of less complex primitive immune
systems has been advocated [3]. While not denying that simpler approaches
may lead to more practical solutions, I will argue here that the problem is of a
more conceptual nature.

1.1 The Problem

AIS construction has been inspired by predominant paradigms in immunology,
consequently it has focused on Self/Non-Self discrimination, clonal selection,
danger signals, etc. However, these theories are insufficient to explain some bi-
ological phenomena [4,5]. As well, the research focus on cellular and molecular
mechanisms has led to constant discoveries of an increasingly complex set of
agents and interactions, and yet there will be always some unknown interaction
and element not considered in our knowledge of the system. For example, the
relatively recent discovery of T regulatory lymphocytes and their importance in
the concept of dominant tolerance [6,7] has changed our previous understand-
ing of autoimmunity and the concept of Self [8]. Adding to this, the cells and

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 24–35, 2008.
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molecules involved in immune responses also participate in a variety of biological
phenomena not always related to immunity and have been subjected to a differ-
ent evolutionary pressures. As a result, we find that immune responses to viruses,
bacteria, parasites, auto-antigens, allo-antigens, xeno-antigens, cancer antigens,
or simple inflammation as result of a minor trauma, cannot be explained by the
same mechanism, even when these phenomena share many cellular and molecular
components and pathways.

To understand the immune phenomena at cellular and molecular level, we will
need an immunological Laplace’s Demon, that is, the ability to know the complete
set of members and interactions of the entire immune system at any given time.
Similarly, to create an AIS upon this knowledge, we will need unlimited computer
power to include all the interactions taking place in real time in this biological
jungle. Only then can we predict why and when an immune response occurs.

Immune Responses and the Immune System. We think of immune re-
sponses as being the function of the immune system. However, as difficult as
it may seem, the immune system is a poorly defined and poorly delimited sys-
tem, which sometimes even includes the skin and the colonic flora. Over the
20th century, the immune system has come to include all the cells and molecules
associated with destroying pathogens, Non-Self antigens, and harmful agents.
As consequence, we tend to consider pathogen-driven responses, autoimmunity,
transplant rejection, cancer responses, allergy, etc., as intrinsic properties of
these cells and molecules. However, immune responses are macroscopic phenom-
ena, not merely cellular or molecular events. In other words, autoimmunity is
not the presence of auto-reactive clones or auto-antibodies, transplant rejection
is not the presence of anti-HLA antibodies or allo-reactive clones, etc. An acute
episode of autoimmunity, the rejection of an organ, the destruction of a tumour,
or the inflammation of a traumatized tissue are inflammatory processes directed
towards an specific antigen or group of antigens. These inflammatory processes
are a colony function, wherein all components participate, including the antigen
and the microenvironment where the reactions take place. Whereas the study
of individual molecules and cells can help explain how the inflammatory pro-
cess propagates, it does not explain why the inflammatory process occurred in
the first place or in one particular location and time rather than another, such
as an acute episode of autoimmunity or an acute rejection episode in a trans-
planted organ, which are discrete events emerging without an apparent direct
cause. In contrast, inflammation can be absent even though reactive clones and
auto-antibodies are present [9], indicating that the presence of these cells and
molecules, although necessary, is insufficient to explain the emergence of the
immune response.

A holistic approach to the immune system dates back to Elie Metchnikoff at
the end of the 19th century and the origins of immunology as a scientific disci-
pline. However the reductionist approach centred on the study of cells, molecules,
and their mechanisms currently prevails [10], with the notorious exception of
Jerne’s Network Theory [11] and further contributions [12,13,14,15,16] but these
have so far failed to produce convincing data to constitute a practical alternative



26 A. Salazar-Bañuelos

[17]. Despite this, there is increased interest in finding a new theoretical frame-
work at the system level that will explain immune responses [18].

Defining the System. Many immunological systems are well understood at
the molecular and cellular levels, such as the generation of antibody repertoires
[19], clonal selection [20], and the HLA system [21,22]. The problem is that these
mechanisms fail to answer a critical question in immune-driven phenomena: why
does it occur in the first place? There are associations, such as the presence of
anti-HLA antibodies with transplant rejection [23] and the presence of auto-
antibodies with autoimmunity; however, presence of these immune agents only
represents an increased probability that the phenomena will occur, whereas the
phenomena itself is unpredictable. For example, we do not know why or how
an acute attack of autoimmunity is triggered or if or when an acute rejection
episode will take place, but we do know that if the patient has been sensitized
to the antigen or has detectable auto-antibodies or autoreactive clones, then it
is more likely that a response will occur. Interestingly, therapeutic interventions
with immunosuppressants, which modify the cellular and molecular components
of the inflammatory response [24], diminish the frequency of acute attacks in
autoimmunity and transplant rejection, but do not abrogate the phenomena.
Here, we consider that the system that needs to be defined is one that can
delimit the occurrence of an immune response as a phenomenal, rather than as
a statistical entity.

2 The Model

Instead of trying to explain the functions of a conceptually ill-defined immune
system, I will focus on a model that tries to explain the phenomena of inflam-
mation as a common pathway of immune responses.

2.1 Immune Phenomena Emerge from Stochastic Events

Any immune-mediated process, irrespective of its evolutionary history or present
risk factors, ends in an identifiable phenomena that we name inflammation. It
is a self-propagating phenomenon taking place at local peripheral (tissue) level
that causes injury to cells, molecules, or other materials bearing a Self (native,
original) or Non-Self (post-natal, de novo) antigen. The system responsible for
this phenomenon consists of cells and molecules from the lymphatic system,
which function as independent agents that interact in a random fashion be-
tween each other, the local environment, and the antigens (Fig. 1), creating a
self-reproducing complex adaptive system. These random interactions consist of
pro-inflammatory and inhibitory events, which neutralize each other in normal
(healthy) conditions, keeping the system in a non-inflammatory mode. In con-
trast, inflammatory responses emerge from this system of stochastic events as an
escalation of positive feedback loops of non-random events, such as the liberation
of mediators, homing of cells, activation of enzymatic systems, proliferation of
specific clones etc. directed towards an antigen.
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Fig. 1. A highly interconnected network of agents of the lymphatic system in their
local microenvironment and their interaction with antigens. The type and intensity of
these interactions constitutes reactivity toward the antigen. Question marks indicate
unknown (undiscovered) agents or interactions.

2.2 Distance from the Phase Transition Defines the Probability of
an Inflammatory Reaction

We can assume then, that the event that determines the inflammatory process
is a change in the behaviour of the system from random self-neutralizing interac-
tions to a nonrandom, escalated, and self-maintained cascade of pro-inflammatory
events. As a consequence, the delimitation between normal auto-reactivity versus
autoimmunity, tolerance versus rejection, etc., is the phase transition that sepa-
rates the two modes of the system. It follows then, that a single pro-inflammatory
event can trigger an inflammatory response if it makes the system reach the thresh-
old separating these two modes. Therefore, the probability of an inflammatory
process depends on the distance between the status of the system at any given
time and a critical point at which the threshold is reached, rather than on the
pro-inflammatory event or agent itself (Fig. 2).

2.3 Agents Can be Simplified as Pro-inflammatory,
Anti-inflammatory, or Neutral

We can simplify the system by defining the agents by their contribution to mak-
ing the system either closer to or farther from the threshold (pro-inflammatory,
anti-inflammatory, or neutral) and ignoring the diverse and complex processes
that created these agents. These assumptions can be abstracted to apply to un-
known agents or interactions, as well as to properties of a cell or molecule, which
can be inhibitory, stimulatory, or neutral according to particular circumstances.
By reducing the system to these three (in practice two) interactions, we can
escape the need to incorporate special functions and properties of each agent
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Fig. 2. Phases in the development of an inflammatory response. (a) At the peripheral
level, the system is composed of two phases, the first characterized by random self-
neutralizing interactions between pro- and anti-inflammatory events and the second
by an escalation of pro-inflammatory events separated by a phase transition. (b) The
distance between the reactivity level and a threshold defining the phase transition
is what determines the probability for an inflammatory response, not the antigen or
independent agent by itself. (c) Inflammatory responses emerge from this system once
the threshold is reached. (d) The only influence in determining the distance between the
reactivity level and the threshold that an agent can have is by increasing, decreasing,
or being indifferent (arrows). The question mark indicates unknown influences that can
be assumed to fall in one of these three categories. (e) Computer simulation showing
the emergence of a new dynamic in the system after reaching a critical value. The
graph represents the average mediator produced by 2 independent agents interacting
randomly in a two-dimensional space. One agent increases, while the other decreases,
the concentration of mediator in its local environment. Both populations increase their
numbers until they reach a critical level, after which the production of the mediator
escalates, indicating the emergence of new dynamics in the system, shown by the arrow.

(antigen-presenting cells, blocking antibodies, HLA molecules, etc.), eluding the
problem of the incompleteness of empirical data.

To summarize thus far, we have a complex adaptive system acting in peripheral
tissue, where inflammatory reactions emerge once a threshold is reached by the
contribution of competing pro-inflammatory and anti-inflammatory (suppressive)
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mechanisms. This threshold divides the system in two phases: a phase character-
ized by random interactions wherein microscopic events are mutually neutralized
and an inflammatory phase wherein the system behaves as a positive feedback
loop of proinflammatory, non-random events.

2.4 Recursion Can Explain Robustness and Diversity

Although this theoretical construction can explain how immune responses emerge
from a stochastic network of interactions between cells and molecules, it does not
explain why immune responses are antigen-specific, why they show broad variabil-
ity in their intensity (not only among individuals but within the same individual
in different circumstances or at different stages of development), or why they tend
to resist modification once they are established, a property known as robustness.
For this construction to explain the specificity, diversity, and robustness of im-
mune responses, several conditions must apply. First, there must be as many levels
of reactivity (specificity) as antigens exposed to the system. Second, the distance
between the level of reactivity of the system to the threshold must be set at dif-
ferent levels among individuals (inter-individual variation) and be susceptible to
variation within the same individual (intra-individual variation). Third, the level
of reactivity must show a strong tendency to return at a fixed point in the status
of the system (robustness).

How can the level of reactivity for each antigen be robust, specific, and show
variation among individuals, yet permit modification in order to explain toler-
ance to previously rejected antigens and autoimmunity to originally accepted
antigens? Vaz and Varela [12] suggested that the answer may be by recursion;
their example is reproduced by computer simulation in Fig. 3. A ball is picked
randomly from a box containing one white and one black ball. The ball is placed
back into the box along with another ball of the same colour. By repeating this
action until there are a large number of balls in the box, we can observe that the
proportion of black and white balls will show an initial fluctuation in the range
between 0 and 1, with a further stabilization relative to the number of balls
in the box. The more balls, the less fluctuations, following a power law where
the stability of the proportions is directly related to the number of events. If
we consider one colour as pro-inflammatory and the other as anti-inflammatory
(suppressor), and by their interaction they neutralize each other, we can simulate
the predominance influence as well as the intensity of that influence or reactiv-
ity level (Fig. 3). We will end with a situation where sometimes one colour will
predominate over the other, pro-inflammatory influences on the reactivity level
will predominate over suppressive ones or vice versa, and this predominance will
also vary in intensity, given the different distances between the reactivity level
and the phase transition or threshold.

Instead of balls, let us now take items of different shapes (representing different
antigens), each shape having a black and a white version (representing pro- and
anti-inflammatory influences). In this scenario, a specific proportion for each
shape and colour will result, and increasing the number of iterations will lead to
stability of the reactive level. If we substitute these items for lymphocyte clones
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specific for an antigen (different shape) with pro-inflammatory and suppressive
(black and white) versions, then we will get a situation where the proportion of
clones will be stable for each antigen.

The lymphatic system consists of billions of cells. The daily turnover of cells
in the bone marrow is in the order of 500 billion; of these, 20 billion are lym-
phocytes directly related to immune responses, with an approximately average
life span of 4.4 years [25]. Because enormous numbers of cells are constantly
regenerated, it offers an ideal situation for a recursive process to take place in
the maintenance of cellular clones at specific and stable proportions. This can
explain the establishment of reactivity levels for several different antigens and
may well explain why, despite the fact that the cells of the lymphatic system are
replaced constantly, the immune responses tend to be stable and reliable. How-
ever, despite the fact that immune responses are robust, they can be modified
by biological manipulation, as is the case in vaccination-induced immunity or in
radiation-induced autoimmunity [26]. In the case of vaccination-induced immu-
nity, a new antigen is introduced where a level of reactivity for this particular
antigen has not been set. According to the present model, a recursive process
will start to take place, and the type of response will be determined in the early
stages of the recursive process. The way the antigen is presented, rather than
the antigen itself, is what will determine further responses, exemplified by some
well known phenomena such as high and low zone tolerance, induction of tol-
erance or sensitization depending the administration route, and the induction
of immunity or disease depending on the type of adjuvant given. In the case of
radiation-induced autoimmunity, the previous reactivity level towards the tol-
erated original (Self) antigen is reset by depleting the lymphocyte populations.
This would be equivalent to randomly remove large numbers of balls from the
box in the previous example, placing the system (depending on the number of
balls left) in a stage where more fluctuations can be expected. As a consequence,
it is possible to achieve different long-term reactivity levels, such as the induc-
tion of a response towards a previously tolerated antigen or the abrogation of a
previously determined response (Fig. 3).

3 The Model and Immunological Processes

3.1 Clonal Selection

Although the clonal selection theory explains how clonal selection takes place, as
somatic hypermutation explains the generation of antibody diversity, it does not
explain the immune response in autoimmunity, cancer, transplant rejection, etc.
The contribution of clonal selection to the immune response is to influence the
level of reactivity for each antigen; in other words, it biases the distance between
the status of the system and the threshold by eliminating auto-reactive clones
in the early ontogeny of the lymphatic system. Viewed in this way, the present
model explains the apparent contradiction between the existence of auto-reactive
clones or auto-antibodies and the absence of an inflammatory process. If clonal
selection works by its relative contribution to the level of reactivity, it can be
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Fig. 3. Computer simulation of 3 recursion experiments. The solid black line represents
the proportion of positive (pro-inflammatory) agents, the solid gray line represents the
proportion of negative (anti-inflammatory) agents, and the dotted line represents the
difference between the two, indicating the intensity of the predominant influence or
reactivity level. (a) Elimination of pro-inflammatory agents at an early stage (arrow)
simulates negative selection of auto-reactive clones. As a consequence, the level of
reactivity is biased to a predominance of negative agents, setting the level distant
from the threshold. This simulates how clonal selection biases the recursive process
towards suppression of auto-reactive clones to define Self. (b, c) Elimination of all
agents after stability had been reached (arrow), except one pro-inflammatory and one
anti-inflammatory agent, which recapitulate the initial step of the recursive process.
This creates the conditions for setting reactivity at a different level. Change can occur
in either direction, increasing or decreasing the distance to the threshold. This models
possible outcomes after an adult individual is subjected to profound lymphatic ablation.
(b) The reactivity level is set farther from the threshold, indicating possible remission
of autoimmune disease. (c) The reactivity level is set closer to the threshold, indicating
possible induction of autoimmune disease.
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(as it is) incomplete. In other words, the complete elimination of auto-reactive
clones is not required to avoid autoimmunity, and the same situation stands for
the generation of auto-antibodies.

3.2 Determination of Self

In the pre-natal and early post-natal period of development, the thymus gener-
ates the conditions for the deletion of auto-reactive clones [27] and the survival of
tissue-specific T regulatory cells [7], biasing the development of lymphatic system
towards predominance of suppressive agents directed to the antigens presented in
the thymus (Fig 3a). Because of the isolation of the thymus to external antigens
[28], by default, these thymic antigens will be the inborn set of the individual.
This will set the level of reactivity at a distance from the threshold compatible
with what we call recognition of Self. In other words, Self will be defined by
setting the reactivity level to a distance that prevents reaching the threshold
spontaneously. The distance to the reactivity level will be maintained by recur-
sion, particularly in the bone marrow, accounting for the consistency displayed
by immune responses. We call this consistency immunological memory.

3.3 Autoimmunity

Autoimmunity occurs more frequently in the post-thymus period of development,
after a period of tolerance to the antigen towards which the autoimmunity de-
velops. Interestingly, depletion of the lymphatic system is associated both with
the generation[26] and the cure [29,30] of autoimmune diseases, as well as the
development of allograft donor-specific unresponsiveness in mixed leukocyte re-
action tests after total lymphoid irradiation [31]. Depletion of lymphatic cells is
the equivalent of randomly removing a large number of balls from the box from
the previously explained recursive experiment to a degree that causes the stabil-
ity level to be set at different proportions of pro- and anti-inflammatory events
(Fig 3). Because this change can produce either a decrease (Fig. 3b) or increase
(Fig. 3c) in the proportions of pro-inflammatory versus anti-inflammatory agents
(lymphocytes), this model can explain the two opposite, seemingly paradoxical,
phenomena of remission or induction of autoimmune diseases by radiation or by
bone marrow transplants [32,33].

Self will become Non-Self producing autoimmunity when the reactivity level
is set closer to the threshold by modification of the systems wherein the recur-
sive mechanisms are taking place (principally in the bone marrow) by influences
such as radiation, viral infections, chemicals, etc. Conversely, Non-Self may be-
come Self when the reactivity level is set to predominantly suppressive influ-
ences (sub-threshold level). For example, the initial rejection and followed by
hyporesponsiveness observed clinically after the introduction of a new antigen,
particularly one not subjected to evolutionary pressure as in the case of allograft
transplants, can be explained by the initial fluctuations in the recursive process.
It is noteworthy that a high degree of immunosuppression, which usually in-
cludes a lymphocyte-ablating agent at the time of the implantation of the organ
(induction), is required to engraft the transplanted organ.
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4 Abstracting the System

The model presented here is composed of two complex adaptive systems, the
first being a network of cells (autonomous agents) interacting and regenerat-
ing constantly (autopoiesis), where recursion is taking place for each antigen
presented to the system and where new antigens in context are presented or rep-
resented (internal image). This system will produce pro- and anti-inflammatory
agents which will migrate to a second network consisting of the independent
agents, the antigens and the microenvironment. This system will receive other
local influences that will determine fluctuations of the reactivity level at the lo-
cal peripheral tissue, and inflammatory responses will emerge once the level of
reactivity reaches the threshold. Although the reactivity level can be influenced
by external factors including trauma, infection, etc., the reactivity level will tend
to return to the level determined by the recursive system, which will work as an
attractor for the second peripheral system (tissue).

5 Implications

Although the present model simplifies the complexity of cellular and molecu-
lar interactions, it does not contradict current theories at cellular and molecular
levels. Rather, they are incorporated as part of the process for setting the thresh-
old level for each antigen. The model also offers an explanation for the elusive
problem of demarcation in immune responses, proposing a mechanism that can
explain the divergent point between auto-reactivity and autoimmunity, tolerance
and rejection, response and no response. The model also explains paradoxes in
real-life phenomena that cannot be satisfactory explained by classical theories,
and at the same time is coherent with the diversity shown by immune responses
both in physiologic as well as pathologic conditions. Here, rather than being the
cause for the immune response, the belonging of an antigen to a Self or Non-Self
category is determined by the immune response after the fact. For AIS, this
model is not based in naive metaphors and is not finalistic. More importantly,
the model can be explored from the network theory point of view, such as a
Hopfield Model.
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Abstract. This paper proposes a novel solution to spam detection in-
spired by a model of the adaptive immune system known as the cross-
regulation model. We report on the testing of a preliminary algorithm on
six e-mail corpora. We also compare our results statically and dynami-
cally with those obtained by the Naive Bayes classifier and another binary
classification method we developed previously for biomedical text-mining
applications. We show that the cross-regulation model is competitive
against those and thus promising as a bio-inspired algorithm for spam
detection in particular, and binary classification in general.

1 Introduction

Spam detection is a binary classification problem in which e-mail is classified
as either ham (legitimate e-mail) or spam (illegitimate or fraudulent e-mail).
Spam is very dynamic in terms of advertising new products and finding new
ways to defeat anti-spam filters. The challenge in spam detection is to find the
appropriate threshold between ham and spam leading to the smallest number
of misclassifications, especially of legitimate e-mail (false negatives). To avoid
confusions, ham and spam will be labeled as negatives and positives respectively.

The vertebrate adaptive immune system, which is one of the most complex
and adaptive biological systems, learns to distinguish harmless from harmful
substances (known as pathogens) such as viruses and bacteria that intrude the
body. These pathogens often evolve new mechanisms to attack the body and its
immune system, which in turn adapts and evolves to deal with changes in the
repertoire of pathogen attacks. A weakly responsive immune system is vulnerable
to attacks while an aggressive one can be harmful to the organism itself, causing
autoimmunity. Given the conceptual similarity between the problems of spam
and immunity, we investigate the applicability of the cross-regulation model of
regulatory T-cell dynamics [5] to spam detection.

Spam detection has recently become an important problem with the ubiquity
of e-mail and the rewards of no-cost advertisement that can reach the largest au-
dience possible. Spam detection can target e-mail headers (e.g. sender, receiver,
relay servers...) or content (e.g. subject, body). Machine learning techniques such
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as support vector machines [13], Naive Bayes classifiers [18, 15] and other clas-
sification rules such as Case-Based Reasoning [9] have been very successful in
detecting spam in the past. However, they generally lack the ability to track
concept drift since they rely on training on fixed corpora, features, and rules.
Concept drift is the (gradual or sudden) change of thematic context (often re-
occurring) over time such as new advertisement themes in spam and Bayesian
poisening, a technique used by spammers to surpass bayesian based spam filters.
Ideally, a system is capable of handling concept drift if it adapts quickly to the
thematic change, distinguishing it from noise [19]. Research in spam detection
is now focusing on detecting concept drifts in spam, with very promising results
[7, 14]. Other areas of intense development in spam-detection are social-based
spam detection models [4, 6] as well as algorithms based on Artificial Immune
System (AIS) [17] (based on clonal selection) [3] (based on ABNET, an Anti-
Body Network) [20] (based on incremental clustering Immune Networks). The
AIS models are inspired by diverse responses and theories of the natural im-
mune system [11] such as negative selection, clonal selection, danger theory and
the immune network theory. Our bio-inspired spam detection algorithm is based
instead on the cross-regulation model [5], which is a novel development in AIS
approaches to spam detection. Since this dynamic model is quite compelling
in the simplicity by which it achieves harmful/nonharmful1 discrimination, we
expect it to be useful in also in spam/ham e-mail classification. Moreover, its
dynamic nature, in principle, makes it a good candidate algorithm to deal with
concept drift in e-mail, which we start testing here.

Section 2 offers a short review of the cross-regulation model [5]. Section 3
presents the Cross-regulation Spam Algorithm—our bio-inspired cross-regula-
tion algorithm—and its application to the spam classification problem. Section 4
discusses the experiments and implementation of the model vis a vis other binary
classification models. Finally, in the last two sections, the discussion of the results
and the conclusion follow.

2 The Cross-Regulation Model

The cross-regulation model, proposed by Carneiro et al. [5], aims to model the
process of discriminating between harmless and harmful antigens2—typically
harmless self/nonself and harmful nonself. The model consists of only three
cell types: Effector T-Cells (E), Regulatory T-Cells (R) and Antigen Presenting
Cells (A) whose populations interact dynamically, ultimately to detect harmful
antigens. E and R are constantly produced, while A are capable of presenting
a collection of antigens to the E and R. T-cell proliferation depends on the
co-localization of E and R as they form conjugates (bind) with the antigens
presented by A cells (this model assumes that A can form conjugates with a
maximum of two E or R). The population dynamics rules of this model are
1 Or less accurately but more commonly used, self/nonself discrimination.
2 Antigens are foreign substances, usually proteins or protein fragments, that trigger

immune responses.
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defined by three differential equations, which can be, for every antigen being
presented by an A, summarized by the following three laws of interaction:

1. If one or two E bind to antigen, they proliferate with a fixed rate.
2. If one or two R bind to the antigen, they remain in the population.
3. if an R binds together with an E to the same antigen, the R proliferates with

a certain rate and the E remains in the population but does not proliferate.

Finally, the E and R die at a fixed death rate. Carneiro et al. [5] showed that
the dynamics of this system leads to a bistable system of two possible stable
population concentration attractors: (i) the co-existence of both E and R types
identifying harmless self antigens, or (ii) the progressive disappearance of R,
identifying harmful antigens.

3 The Cross-Regulation Spam Algorithm

In order to adopt the cross-regulation algorithm for spam detection, which we
named the Immune Cross-Regulation Model (ICRM), one has to think of e-mails
as analogous to the organic substances that upon entering the body are broken
into constituent pieces by lysosome in A. In biology, these pieces are antigens
(typically protein fragments) and in our bio-inspired algorithm they are words or
features extracted from e-mail messages. Thus, in this model, antigens are words
or potentially other features (e.g. bigrams, e-mail titles). For every antigen there
exists a number of virtual E and R that interact with A, each associated with a
specific e-mail message, and whose role is to present, in distinct slots, a sample of
the features of the respective e-mail message. Therefore A, E and R have specific
affinities ρ ∈ Σ, where Eρ1 and Rρ2 can bind to a slot of A, Aρ3, only if ρ1 = ρ3
and ρ2 = ρ3 respectively.

The general ICRM algorithm is designed to be first trained on N e-mails of
“self” (a user’s outbox) and harmless “nonself” (a user’s inbox). However, in
the results described here, it was not possible to directly obtain outbox data.
We are working on collecting outbox data for future work. Similarly, the ICRM
is also trained on “harmful nonself” (spam arriving to a given user). Training
on or exposure to ham e-mails, in analogy with Carneiro’s et al model [5], is
supposed to lead to a “healthy” dynamics denoted by the co-existence of both
E and R with more of the latter. In contrast, training on or exposure to spam
e-mails is supposed to result in much higher numbers of E than R. When e-
mail features occur for the first time, a fixed initial number of E and R, for
every feature, are generated. These initial values of E and R are different in the
training and testing stages; more weight to R for ham features, and more weight
to E for spam features is given in the labeled training stage. While we specify
different values for initializing the proportions of E and R associated with e-mail
features, depending on whether the algorithm is in the training or the testing
stage, the ICRM is based on the exact same algorithm in both stages. The ICRM
algorithm begins when an e-mail is received and cycles through three phases for
every received e-mail:
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In the pre-processing phase, HTML tags are not stripped off and are treated
as other words, as often done in spam-detection [15] . All words constituting
the e-mail subject and body are lowercased and stemmed using Porter’s al-
gorithm after filtering out common English stop words and words of length
less than 3 characters. A maximum of n processed unique features (words,
in this case) are randomly sampled and presented by the virtual A which
corresponds to the e-mail. These virtual antigen presenting cells have nA

binding slots (that E and R can bind to) per feature, i.e. n × nA slots per
e-mail message. The breaking up of the e-mail message into constituent por-
tions (features) is inspired by the natural process in Biology, but is further
enhanced in this model to select the first and last n

2 features in the e-mail.
The assumption is that the most indicative information is in the beginning
(e.g. subject) and the end of the e-mail (e.g. signature), especially concerning
ham e-mails.

In the interaction phase, feature-specific Rg and Ef are allowed to bind to
the corresponding antigens presented by A, which are arbitrarily (uniform
random) located on its array of feature slots. Every adjacent pair of A slots
is dealt with separately: the Ef for a given feature f proliferate only if they
do not find themselves sharing the same adjacent pair of A binding slots with
Rg, in which case only the Rg, associated with feature g, proliferate. The
model assumes that novel ham features k tend to have their Ek suppressed
by Rg of other pre-occurring ham features g because they tend to co-occur in
the same message. As for the algorithm’s parameters, let nA be the number
of A slots per feature. Let (E0ham

, R0ham
) and (E0spam , R0spam) be the initial

values of E and R for features occurring for the first time in the training stage
for ham and spam, respectively. For the testing stage, we have (E0test , R0test).
Moreover, E0ham

<< R0ham
, E0spam > R0spam and E0test > R0test . In the

ICRM implementation hereby presented, a major difference form Carneiro’s
et al model [5] was tried: the elimination of cell death. This is a rough attempt
to provide the system with long term memory. Cell death can lead to the
forgetfulness of spam or ham features if these features do not reoccur in a
certain period of time as shown later section 4.

In the decision phase, the arriving e-mail is assessed based on the relative
proportions of R and E for its n sampled features. Features with more R are
assumed to correspond to ham while features with more E are more likely to
correspond to spam. The proportions are then normalized to avoid decisions
based on a few highly frequent features that could occur in both ham and
spam classes. For every feature f , the feature score is computed as follows:

scoref =
Rf − Ef√
R2

f + E2
f

, (1)

indicating an unhealthy (spam) feature when scoref ≤ 0 and a healthy (ham)
one otherwise. scoref varies between -1 and 1. For every e-mail message e,
the e-mail immunity score is simply:
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scoree =
∑
∀f∈e

scoref . (2)

Note that a spam e-mail with no text such as as the cases of messages
containing exclusively image and pdf files, which surpass many spam filters,
would be classified as spam in this scheme—e-mail e is considered spam if
scoree = 0. Similarly, e-mails with only a few features occurring for the first
time, would share the same destiny, since the initial E is greater than R in
the testing stage E0test > R0test which would result in scoree < 0.

4 Results

E-mail Data. Given the assumption that personal e-mails (i.e. e-mails sent or
received by one specific user) are more representative of a writing style, signa-
ture and themes, it would be preferable to test the ICRM on e-mails from a
personal mailbox. Unfortunately, this is not offered by the most common spam
corpus of spamassasin3 and similarly for ling-spam4. In addition, the ICRM al-
gorithm requires timestamped e-mails, since order of arrival affects final E/R
populations. Timestamped data is also important for analyzing concept drifts
over time, thus we cannot use the PU1 5 data described by Androutsopoulos et
al. [2] . Delany’s spam drift dataset6, introduced by Delany et al. [8], meets the
requirements in terms of timestamped and personal ham and spam however its
features are hashed and therefore it is not easy to make tangible conclusions
based on their semantics. The enron-spam7 preprocessed data perfectly meets
the requirements as it has six personal mailboxes made public after the en-
ron scandal. The ham mailboxes belong to the employees farmer-d, kaminski-v,
kitchen-l, williams-w3, beck-s and lokay-m. Combinations of five spam datasets
were added to the ham data from spamassassin (s), HoneyProject (h), Bruce
Guenter (b) and Georgios Paliousras’ (g) spam corpora and then all six datasets
were tokenized [15]. In practice, some spam e-mails are personalized, which un-
fortunately cannot be captured in this dataset since the spam data comes from
different sources. Only the first 1500 e-mails of every enron are used in this
experiment.

Evaluation. Two forms of evaluation were conducted: The first and more com-
mon in spam detection evaluation is the static or offline evaluation using K-fold
cross validation [10] while the second is the dynamic or real-time evaluation us-
ing a sliding window that is particularly useful to study the model’s capability
of dealing with concept drifts in spam and/or ham over time.

3 http://spamassassin.apache.org/publiccorpus/
4 http://www.aueb.gr/users/ion/publications.html
5 http://www.iit.demokritos.gr/skel/i-config/downloads/enron-spam/
6 http://www.comp.dit.ie/sjdelany/Dataset.htm
7 http://www.iit.demokritos.gr/ ionandr/publications/
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In the first evaluation, for each of the six enron sets, we ran each algorithm
10 times. Each run consisted of 200 training (50% spam) and 200 testing or vali-
dation (50% spam) e-mails that follow in the timestamp order. From the 10 runs
we computed variation statistics for the F-score8, and Accuracy performance.

In the second evaluation, for each of the six enron sets, we trained each
algorithm on the first 200 e-mails (50% spam) and then tested on a sliding
window of 200 testing or validation (50% spam) e-mails that follow in the order
of time the email was received. The sliding shift was 10 e-mails and the range
was between e-mail 201 and e-mail 2800 resulting in 260 slides (from 1500 ham
and 1500 spam only 100 ham and 100 spam are for training and the remaining
2800 are for validation). For every window we computed variation statistics
of the percentage of FP (misclassified ham) and FN (misclassified spam) in
addition to the F-score and Accuracy. We also performed a linear regression of
the proportions of false positives and false negatives, %FP and %FN, using least
squares and computed the slope coefficients, the coefficient of determination R2

for each—for the purpose of evaluating the effect of concept drift if any.

ICRM Settings. In the e-mail pre-processing phase, we used n = 50, nA = 10,
E0ham

= 6, R0ham
= 12, E0spam = 6, R0spam = 5, E0test = 6 and R0test = 5.

These initial E and R populations for features occurring for the first time are
chosen based on the initial ratios chosen by Carneiro et al. [5] and were then
empirically adjusted to achieve the best F-score and Accuracy results for the six
enron datasets. Finally, the randomization seed was fixed in order to compare
results to other algorithms and search for better parameters.

The ICRM was compared with two other algorithms that are explained in the
following two subsections. The ICRM was also tested on shuffled (not in order of
date received) validation sets to study the importance of e-mail reception order.
The results are shown in table 1.

Naive Bayes (NB). We have chosen to compare our results with the multi-
nomial Naive Bayes with boolean attributes [12] which has shown great success
in previous research [15]. In order to fairly compare NB with ICRM, we selected
the first and last unique n = 50 features. The Naive Bayes classifies an e-mail
as spam in the testing phase if it satisfies the following condition:

p(cspam).
∏

f∈e−mail p(f |cspam)
p(cspam).

∑
c∈{cspam,cham}

∏
f∈e−mail p(f |c) > 0.5, (3)

where f is the feature sampled from an e-mail, and p(f |cspam) and p(f |cham)
are the probabilities that this feature f is sampled from a spam and ham e-mail
respectively, while c is the union of spam and ham e-mails. The results are shown
in table 1 and plotted in figure 1.
8 The F1-measure (or F-Score) is defined as F = 2·Precision·Recall

Precision+Recall
, where Precision =

TP
(TP+F P ) and Recall = TP

(TP+F N) and Accuracy = (TP+TN)
(TP+TN+F P+F N) measures of the

classification of each test set, where TP, TN, FP and FN denote true positives, true
negatives, false positive and false negatives respectively [10].
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Variable Trigonometric Threshold (VTT). We previously developed the
VTT as a linear binary classification algorithm and implemented it as a protein-
protein abstract classification tool9 using bioliterature mining [1]. For more de-
tails please refer to [1]. The results are shown in table 1, plotted in figure 1.

Table 1. F-score and Accuracy mean +/- sdev of 10 runs for 50% spam enron data
sets with the first three columns using ICRM (the first one applied on ordered e-mail,
the second one on shuffled timestamps of testing data and the third on on ordered
e-mail but with ICRM having cell death with death rate=0.02), the fourth one using
Naive Bayes and the last one using VTT.

ICRM Other Algorithms

Dataset Ordered Shuffled Cell Death Naive Bayes VTT

Enron1
F-score 0.9 ± 0.03 0.9 ± 0.03 0.89 ± 0.03 0.89 ± 0.04 0.91 ± 0.04
Accuracy 0.9 ± 0.03 0.9 ± 0.03 0.89 ± 0.04 0.87 ± 0.05 0.9 ± 0.04

Enron2
F-score 0.86 ± 0.06 0.85 ± 0.06 0.85 ± 0.05 0.92 ± 0.07 0.82 ± 0.23
Accuracy 0.85 ± 0.06 0.83 ± 0.07 0.84 ± 0.05 0.93 ± 0.05 0.86 ± 0.13

Enron3
F-score 0.88 ± 0.04 0.88 ± 0.04 0.9 ± 0.03 0.93 ± 0.03 0.86 ± 0.08
Accuracy 0.87 ± 0.05 0.87 ± 0.05 0.89 ± 0.04 0.92 ± 0.04 0.85 ± 0.07

Enron4
F-score 0.92 ± 0.05 0.92 ± 0.04 0.91 ± 0.06 0.92 ± 0.05 0.95 ± 0.03
Accuracy 0.92 ± 0.05 0.92 ± 0.05 0.9 ± 0.07 0.91 ± 0.06 0.95 ± 0.03

Enron5
F-score 0.92 ± 0.03 0.87 ± 0.06 0.86 ± 0.04 0.94 ± 0.04 0.84 ± 0.13
Accuracy 0.91 ± 0.03 0.87 ± 0.05 0.86 ± 0.05 0.95 ± 0.03 0.87 ± 0.09

Enron6
F-score 0.89 ± 0.04 0.9 ± 0.04 0.89 ± 0.03 0.91 ± 0.02 0.88 ± 0.05
Accuracy 0.88 ± 0.05 0.89 ± 0.05 0.89 ± 0.04 0.9 ± 0.03 0.87 ± 0.07

Total
F-score 0.9 ± 0.05 0.89 ± 0.05 0.88 ± 0.05 0.92 ± 0.04 0.88 ± 0.12
Accuracy 0.89 ± 0.05 0.88 ± 0.06 0.88 ± 0.05 0.91 ± 0.05 0.88 ± 0.08

Table 2. ICRM vs NB F-score and Accuracy for spam to ham ratio variations for all
enrons

50% spam 30% spam 70% spam

ICRM
F-score 0.9 ± 0.05 0.91 ± 0.03 0.79 ± 0.12
Accuracy 0.89 ± 0.05 0.86 ± 0.05 0.83 ± 0.08

NB
F-score 0.92 ± 0.04 0.86 ± 0.07 0.79 ± 0.07
Accuracy 0.91 ± 0.05 0.84 ± 0.07 0.74 ± 0.01

5 Discussion

Static Evaluation Results. As clearly shown in table 1 and figure 1, ICRM,
NB and VTT are very competitive for most enron datasets, indeed the perfor-
mance of ICRM is statistically indistinguishable from VTT (F-score and Accu-
racy p-values 0.15 and 0.63 for the paired t-test validating the null hypothesis of
9 The Protein Interaction Abstract Relevance Evaluator (PIARE) tool is available at

http://casci.informatics.indiana.edu/PIARE/
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Fig. 1. F-score vs Accuracy mean and standard deviation plot comparison between
ICRM (vertical blue), NB (horizontal red) and VTT (diagonal green) for each of the
six enron datasets. A visualization of table 1

Table 3. ICRM vs NB F-score, accuracy, %FP and %FN slope coefficient (α%F P and
α%F N) and R2, %FP and %FN for all enrons over time

Dataset F-score Accuracy α%FP ,R2 α%FN , R2 %FP %FN

Enron1
ICRM 0.95 ± 0.01 0.95 ± 0.01 0.00,0.01 0.02,0.41 6.7 ± 1.5 4.11 ± 1.66
NB 0.93 ± 0.01 0.93 ± 0.01 0.00,0.27 0.03,0.56 1.55 ± 0.53 12.99 ± 2.7

Enron2
ICRM 0.92 ± 0.01 0.92 ± 0.01 0.00,0.01 -0.01,0.11 6.48 ± 1.17 8.87 ± 1.89
NB 0.95 ± 0.01 0.94 ± 0.01 0.01,0.10 0.00,0.01 9.57 ± 2.05 1.29 ± 0.48

Enron3
ICRM 0.93 ± 0.02 0.94 ± 0.02 0.03,0.95 0.01,0.20 4.7 ± 2.06 8.37 ± 1.77
NB 0.92 ± 0.03 0.92 ± 0.02 0.00,0.43 0.05,0.52 0.51 ± 0.4 16.2 ± 5.2

Enron4
ICRM 0.92 ± 0.03 0.92 ± 0.03 0.04,0.52 0.03,0.37 6.99 ± 4.03 9.99 ± 2.92
NB 0.92 ± 0.01 0.93 ± 0.01 0.00,0.56, 0.04,0.63 0.18 ± 0.27 15 ± 3.06

Enron5
ICRM 0.90 ± 0.02 0.90 ± 0.02 0.03,0.49 0.02,0.49 8.54 ± 2.58 12.08 ± 2.1
NB 0.96 ± 0.03 0.96 ± 0.03 0.02,0.22 0.04,0.77 4.76 ± 3.44 3.06 ± 3.1

Enron6
ICRM 0.93 ± 0.01 0.93 ± 0.02 0.03,0.85 0.01,0.28 8.09 ± 2.23 5.33 ± 1.23
NB 0.95 ± 0.01 0.95 ± 0.01 0.01,0.06 0.00,0.09 3.07 ± 2.17 6.89 ± 1.04
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Fig. 2. ICRM Accuracy over time for enron6 and NB Accuracy over time for enron4,
showing best linear and polynomial fits with R2. The rest of the Accuracy and FN/FP
plots are available as supplementary material.

variation equivalence), though its slightly lower performance against NB is sta-
tistically significant (F-score and Accuracy p-values 0.01 and 0.02 for the paired
t-test, rejecting the null hypothesis of variation equivalence with 0.05 level of
significance).

However, the ICRM can be more resilient to ham ratio variations10 as shown in
table 2. While the performance of both algorithms was comparable for 50% spam
(though significantly better for NB), the performance of NB drops for 30% spam
ratio (5% lower F-score than ICRM) and 70% spam ratio (9% less accurate than
ICRM) while ICRM relatively maintains a good performance. The difference
in performance is statistically significant, except for F-Score of the 70% spam
experiment, as the p-values obtained for our performance measures clearly reject
the null hypothesis of variation equivalence: F-Score and Accuracy p-values are
0 and 0.01 for 30% spam, and Accuracy p-value is 0.01 for 70% spam (p-value for
F-Score is 0.5 for this case). While one could argue that NB’s performance could
well be increased, in the unbalanced spam/ham ratio experiments, by changing
the right hand side of equation 3 to 0.3 or 0.7, this act would imply that, in
real situations, one could know a priori the spam to ham ratio of a given user.
The ICRM model, on the other hand, does not need to adjust any parameter
for different spam ratios—it is automatically more reactive to whatever ratio
it encounters. It has been shown that spam to ham ratios indeed vary widely
[16, 8], hence we conclude that the ICRM’s ability to better handle unknown
spam to ham ratio variations is more preferable for dynamic data classification
in general and spam detection in particular.

10 The 30% and 70% spam results were balanced for the evaluation by randomly sam-
pling from the 70% class, reducing it to 30%.
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We have implemented ICRM with death rate11 = 0.02. and without virtual
cell death but the results showed negligible statistical differences (F-score and
Accuracy p-values 0.02 and 0.04) although slightly in favor of no virtual cell
death, as seen in table 1. The ICRM tested for spam variation and dynamic
evaluation excluded cell death to speed up the algorithm, nonetheless, we are in
the process of experimenting with heterogeneous death rates for the E, R cells
of different features and more “interesting” features (e.g. e-mail title, from, to,
and cc features). Since death rates affect the long-term memory of the system,
this is something we intend to investigate more closely in future work.

In most Enron sets, shuffling the timestamps of received e-mails in the testing
stages also only slightly reduced the ICRM’s performance (F-score and Accuracy
p-values 0.07 and 0.04 for paired t-test), therefore, unlike what was expected, the
timestamps of e-mails seem to be largely irrelevant—which undermines some of
the justification for a dynamic approach to spam detection based on the cross-
regulation model. Nevertheless, we plan to study this further with additional
data sets with much longer date ranges.

Dynamic Evaluation Results. The ICRM was also very competative with
NB, have shown to be very competitive in the dynamic evaluation. The evi-
dence is in the first two columns (F-score and Accuracy) of table 3 and in the
supplementary material section12.

Another notable feature of the ICRM is that it seems to balance %FN and
%FP more efficiently over time. Conversely, NB tends to have high %FN and
low %FP or vice versa. In order to quantify the balance between %FP and %FN,
we compute their means and standard deviations for all enrons in the last two
columns of table 3. While the largest mean in ICRM does not exceed 12.08%
(enron 5), it does reach 12.99% (enron 1) 16.02% (enron 3) and 15% (enron
4) in NB for %FP. However, in spam detection in particular, more importance
is given to %FP (ham misclassification) which favors NB over ICRM in most
enron datasets. In future work, we will explore if enabling heterogeneous death
rates for E and R cells can reduce %FP with the ICRM. On the other hand,
the ICRM’s more balanced %FN and %FP could be valuable for other binary
classification problems where FP and FN are equally important—which is not
the case in spam detection.

We also computed slope coefficients α%FN , α%FP and their corresponding R2

for the least square linear fit of %FN and %FP in order to study the behaviour
of concept drift which would be manifested by high slopes—indicating decay in
performance. However, the slopes are quite minimal as shown in the third and
fourth columns of table 3. Indeed, the performance is essentially flat in time for
both algorithms with slopes close to zero (see plots in supplemental materials).
Therefore, there does not seem to be much concept drift in these datasets.
11 Death rate = 0.02 resulted in the best performance for the death rate range r ∈

[0.01, 0.1], where r is the probability that an Rf or Ef would die for a previously
occurring feature f .

12 All supplementary material is accessible at
http://casci.informatics.indiana.edu/icaris08/
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6 Conclusion

The observations made based on the artificial immune system can help us guide
or further deepen our understanding of the natural immune system. For instance,
ICRM’s resilience to spam to ham ratio and its ability to balance between %FN
and %FP show us how dynamic is our immune system and functional indepen-
dently of the amount of pathogens attacking it. In addition, the three modifica-
tions made to the original model can be very insightful: The improvements made
by training on both spam and ham (rather than only ham or self) reinforce the
theories of both self and nonself antigen recognition by T-cells outside the thy-
mus. The feature selection makes us wonder whether the actual T-cell to antigen
binding is absolutely arbitrary. Finally, the elimination of cell death may reinforce
the theories behind long lived cells as far as long term memory is concerned.

In this paper we have introduced a novel spam detection algorithm inspired by
the cross-regulation model of the adaptive immune system. Our model has proved
itself competitive with both spam binary classifiers and resilient to spam to ham
ratio variations in particular. The overall results, even though not stellar, seem
quite promising especially in the areas of spam to ham ratio variation and also of
tracking concept drifts in spam detection. This original work should be regarded
not only as a promising bio-inspired method that can be further developed and
even integrated with other methods but also as a model that could help us better
understand the behavior of the T-cell cross-regulation systems in particular, and
the vertebrate natural immune system in general.
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Abstract. Significant progress has been made in theory and design of
artificial immune systems (AISs) for solving multi-objective problems ac-
curately. However, an aspect not yet widely addressed by the research
reported in the literature is the lack of ability of the AIS to deal ef-
fectively with building blocks (high-quality partial solutions coded in
the antibody). The available AISs present mechanisms for evolving the
population that do not take into account the relationship among the vari-
ables of the problem, causing the disruption of these high-quality par-
tial solutions. Recently, we proposed a novel immune-inspired approach
for single-objective optimization as an attempt to avoid this drawback.
Our proposal replaces the traditional mutation and cloning operators
with a probabilistic model, more specifically a Bayesian network repre-
senting the joint distribution of promising solutions and, subsequently,
uses this model for sampling new solutions. Now, in this paper we ex-
tend our methodology for solving multi-objective optimization problems.
The proposal, called Multi-Objective Bayesian Artificial Immune System
(MOBAIS), was evaluated in the well-known multi-objective Knapsack
problem and its performance compares favorably with that produced by
contenders such as NSGA-II, MISA, and mBOA.

1 Introduction

A multi-objective optimization problem consists of optimizing a set of conflicting
objectives simultaneously. An approach to solve such problems is to consider all
objective functions and discover a set of solutions which represents an optimal
trade-off between these objectives. This set of solutions is called Pareto optimal
set and forms the Pareto front in the space of objectives.

Over the last decades, a variety of evolutionary algorithms have been pro-
posed for solving multi-objective optimization problems, giving origin to the so
called Multi-Objective Evolutionary Algorithms (MOEAs). Among the appeal-
ing approaches, artificial immune systems (AISs) have received special attention
due to their interesting features: (i) dynamical control of population size, in
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response to the particularities of the problem; (ii) efficient mechanism of explo-
ration/exploitation of the search space, which allows to find and preserve the
local optima as well as to insert and maintain diversity in the population.

A wide range of AISs have been proposed in the literature for solving multi-
objective optimization problems with alternative views of the immune system.
One strongly accepted perspective is the one based on both the clonal selec-
tion theory [1] and the immune network theory [2]. The first attempt to explore
these features of AISs on multi-objective optimization problems was conducted
by Yoo and Hajela [3]. However, their approach is coupled with a genetic al-
gorithm (GA). In this case, the immune algorithm is applied only to maintain
diversity in the population of the GA. The genuine first AIS for multi-objective
optimization, namely Multi-objective Immune System Algorithm (MISA), was
proposed by Coello Coello and Cortez [4] and further extended in [5]. Next, Luh
et al. proposed the Multi-objective Immune Algorithm (MOIA) [6], Freschi and
Repetto proposed the Vector Immune System (VIS) [7], Coelho and Von Zuben
proposed the omni-aiNet algorithm [8], and Chen and Mahfouf proposed the
PAIA algorithm [9].

Despite their high performance as general problem solving, there are some
shortcomings associated with these immune-inspired algorithms. Firstly, as the
complexity and scale of the problem increase, the performance of the algorithms
becomes more and more associated with a proper choice of the design parame-
ters, such as mutation rate. Otherwise, very poor solutions can be generated. In
addition, it is noticeable that, when the solution is represented by a vector of at-
tributes, the population of candidate solutions may contain partial high-quality
solutions to the problem, called building blocks. The existing AIS suffer from
the lack of ability to identify and effectively manipulate building blocks of the
problem. As affinity maturation requires cloning followed by the mutation of the
newly-generated cells, and assuming that the mutation operator cannot discover
by itself crucial relationships among the variables of the problem, building blocks
are not supposed to survive, being disrupted by mutation.

Recently, we proposed an artificial immune system capable of manipulating
building blocks effectively, denoted Bayesian Artificial Immune System (BAIS)
[10]. Like Estimation of Distribution Algorithms [11] [12] [13], our proposal re-
places the traditional mutation operator with a probabilistic model which repre-
sents the probability distribution of the promising solutions found so far. Then
the obtained probabilistic model is used to generate new individuals. A Bayesian
network is adopted here as the probabilistic model, due to its capability of prop-
erly capturing the most relevant interactions among the variables of the problem.
Since we are replacing the mutation operator, we eliminate the necessity of spec-
ifying this parameter value.

Now, we extend the proposal in [10] aiming at investigating its usefulness
in multi-objective optimization problems, guiding to Multi-Objective Bayesian
Artificial Immune System (MOBAIS). The main objective of this study is not
to design an algorithm that produces better results than the state-of-the-art
multi-objective evolutionary algorithms reported in the literature. We intend to
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design a competent algorithm with qualitative advantages over the contenders,
as will be outlined in Section 4. Generally, the quantitative advantages arises
as a natural consequence. Experiments on the multi-objective version of the
Knapsack problem have been carried out to evaluate the effectiveness of the
proposed methodology when compared to other algorithms.

This paper is organized as follows. In Section 2, we provide a background
to multi-objective optimization problems. Section 3 describes the MOBAIS in
details. The experimental results are outlined and analyzed in Section 4. Finally,
in Section 5 we draw some concluding remarks and present the further steps of
the research.

2 Multi-Objective Optimization

A multi-objective optimization problem (MOP) is a simultaneous search process
for optimal or near optimal trade-off solutions, given some conflicting objec-
tive functions. Formally, an MOP consists of minimizing/maximizing the vector
function:

f(x) = [f1(x), f2(x), ..., fm(x)] (1)

subject to J inequality constraints and K equality constraints as follows:

gj(x) ≥ 0, j = 1, 2, ..., J (2)
hk(x) = 0, k = 1, 2, ..., K (3)

where x = [x1, ..., xn] ∈ Ω is the vector of decision variables and Ω is the search
space.

When we have a single-optimization objective f, the optimal solution corre-
sponds to the point (or set of points) that has the smallest values of f, considering
the whole search space (in a minimization problem). However, for several objec-
tive functions, the notion of optimal solution is different, because the aim now
is to find good trade-offs among the objective functions. In this case, the most
commonly adopted notion of optimality is the one associated with the Pareto
optimality, which uses the concept of dominance.

Suppose a problem with m objective functions fi(x), i=1,2,...,m which, with-
out loss of generality, should be minimized. So, we present the following concepts:

1. Pareto dominance: a solution x is said to dominate a solution y (denoted
by x � y) iff ∀i ∈ {1,2,...,m}: fi(x) ≤ fi(y)

∧
∃i ∈ {1,2,...,m}: fi(x) < fi(y).

2. Pareto optimal : a solution x is said to be Pareto optimal iff � ∃y: y � x.
3. Pareto optimal set : is the set PS of all Pareto optimal solutions: PS =

{x | � ∃y : y � x }.
4. Pareto front : is the set PF of objective function values of all Pareto optimal

solutions: PF={F(x ) = [f1(x ),..., fm(x )] | x ∈ PS}.
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Notice that the Pareto front consists of diverse trade-off non-dominated solu-
tions in the objective space. Therefore, there are two goals that a multi-objective
optimization algorithm must try to achieve: (i) guide the search toward the
Pareto front; and (ii) maintain diverse solutions uniformly distributed along the
Pareto front.

3 Multi-Objective Bayesian Artificial Immune System

We propose a novel immune-inspired algorithm which has the mutation and
cloning operators replaced by a probabilistic model in order to generate new
antibodies. We may interpret our proposal as an Estimation of Distribution
Algorithm that adopts an artificial immune system to implement the population-
based search strategy and a Bayesian network to implement the probabilistic
model, due to its capability of properly representing complex interactions among
the variables.

The pseudo-code of the proposed algorithm, called Multi-Objective Bayesian
Artificial Immune System (MOBAIS), is presented in Algorithm 1. Notice that
the cloning and mutation steps were replaced by the building of the Bayesian
network and the subsequent sampling of new individuals according to the gen-
erated probabilistic model.

Algorithm 1. Multi-Objective Bayesian Artificial Immune System

Begin
Initialize the population;
While stopping condition is not met do

Select the best solutions;
Build the Bayesian network;
Sample new individuals;
Suppress antibodies with fitness lower than a threshold;
Eliminate similar antibodies;
Insert new antibodies randomly;

End while
End

In MOBAIS, the initial population is also generated at random. From the
current population, the best solutions are selected using a special selection op-
erator, as described in the next subsection. A Bayesian network that better fits
the selected antibodies is constructed. A number of new antibodies sampled from
the network are inserted into the population. Similar antibodies in the variable
space and antibodies with lower fitness are eliminated. Next, a small percentage
of individuals are generated randomly and inserted into the population in order
to maintain diversity.

Some aspects of MOBAIS should receive special attention. The first one con-
cerns the selection operator. Other aspect is how to suppress similar antibodies.
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Finally, the last two stages are related to a way of building the Bayesian net-
work from the selected individuals and how to use the network to generate new
solutions. In what follows we explain how to perform these tasks.

3.1 Selection

MOBAIS utilizes a selection operator which ranks the solution based on domi-
nance. This operator is inspired by the selection operator of NSGA-II [14]. First,
MOBAIS starts by assign rank 1 to the set of solutions that are not dominated
by any other solution in the population. Next, solutions that are not dominated
by any of the remaining solutions are assigned rank 2. That is, all solutions with
rank 2 are dominated by at least one solution with rank 1, but are not dominated
by others in the population. The ranking process continues until all solutions are
ranked by assigning increasing ranks to those solutions that are not dominated
by any of the remaining.

With respect to Pareto optimality, priority will be given to solutions with
lower ranks. Apart from finding solutions closer to the Pareto front, it is also
essential to achieve good coverage of the Pareto front. So, a mechanism to main-
tain diversity in the objective space is desirable. MOBAIS utilizes a mechanism
based on crowding distance, which depends on the density of solutions in the
neighborhood of each solution. The higher the crowding distance of the solution,
the less dense its neighborhood.

3.2 Suppression

In the suppression phase, the Euclidean distance in the variable space among
every individual in the population is calculated and normalized with respect
to the maximum distance found so far. In this context, the individuals close
enough to each other according to a suppression threshold (defined by the user),
are subject to a binary tournament procedure and the worst one, in terms of
Pareto dominance, is eliminated from the population.

3.3 Bayesian Network - Learning and Sampling

Formally, a Bayesian network for a set of variables X = {x1, x2, ..., xn} is a
directed acyclic graph whose nodes are variables of the problem and the edges
indicate relationships of dependence among the connected variables. Next, we
briefly describe how to build a Bayesian network from data and how to use
this model to sample new data. In MOBAIS, the Bayesian network learning
from a given set of promising solutions corresponds to estimating their joint
distribution. Sampling new instances according to the network guides to new
candidate solutions to the problem.

Bayesian Network Learning. The Bayesian network learning from a dataset
can be stated as follows. Given a collection of observed data, find the network
model that explains these data with maximum likelihood. By finding the net-
work we mean to provide the structure of the graph, as well as the probability
distribution of each variable that best fits the data.
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One usual approach to this task is to adopt a procedure for searching the space
of all possible candidate network structures, given a metric that can provide a
relative score to each point in the space. Thus, the problem of Bayesian network
learning reduces to the problem of searching for a model that yields the highest
score, given the observed data. Usually, a heuristic search algorithm is used.
It begins with an initial network generated at random. Next, the probability
distribution of each variable is estimated using the dataset, and the score of the
network is computed. The search process generally proposes small changes to
the current structure in order to obtain a network with higher score than the
previous one. These small changes can be accomplished by adding or deleting an
edge, or reversing the edge direction. Every time a change is made it is necessary
to compute the probability distribution of the variables for the modified network.
Several algorithms can be used as the search engine [15]. Usually, due to their
effectiveness in this context, simple local search based methods are adopted.

Regarding the scoring metrics, there are several measures proposed in the
literature. Most of them evaluate a structure S taking into account the likelihood.
In this context, a well-known evaluation measure is the so called K2 metric,
proposed by Cooper & Herskovits [16]. Given a Bayesian network structure S,
and assuming that the data set D is complete (there are no missing values) and
that there are no prior knowledge, the likelihood takes the form:

p(D|S) =
n∏

i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk! (4)

where n is the number of instances, qi denotes the number of possible instances of
parents of xi, ri is the number of possible values of xi, Nijk is the number of cases
where xi takes the k -th value with its parents taking their j -th value, and Nij =∑ri

k=1 Nijk. To avoid round errors during the multiplication of probabilities, often
the logarithm is applied to Equation (4).

Sampling in Bayesian Network. Once the Bayesian network is built, we
can generate new instances using the joint probability distribution encoded by
the network, more specifically P (X) =

∏n
i=1 P (xi|πxi). To accomplish this task,

the Probabilistic Logic Sampling algorithm (PLS) [17] is chosen. PLS finds an
ancestral ordering of the nodes in the Bayesian network and instantiates one
variable at a time in a forward manner, that is, a variable is not sampled until
all its parents have already been sampled.

4 Experimental Results

This section describes the experiments carried out to evaluate the proposed al-
gorithm. We have applied MOBAIS to the well-known multi-objective knapsack
problem and compared the performance with other multi-objective optimization
tools reported in the literature.
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4.1 Multi-Objective Knapsack Problem

The multi-objective Knapsack problem was first used to test MOEAs by Zitzler
and Thiele [18]. Consider a set of n items and m knapsacks with a specific
capacity. Each item can have a different weight and profit in every knapsack.
Selecting item i in a solution implies to put it into every knapsack. A solution
cannot exceed the capacity of any knapsack. Formally, the objective is:

maximize f(x ) = [f1(x ), f2(x ), ..., fm(x )]

subject to
n∑

i=1

wi,j ∗ xi ≤ cj , j = 1, ..., m

where x=(x1, x2, ..., xn) ∈ {0, 1}n, such that xi=1 iff item i is packed, wi,j is
the weight of item i in knapsack j, fj(x ) =

∑n
i=1 pi,j ∗ xi, with pi,j being the

profit of item i in knapsack j, and cj is the maximum capacity of knapsack j.
Due to the existence of constraints, a mechanism to deal with them is de-

sired in order to transform infeasible solutions into feasible ones. During the
experiments, if a solution violates a constraint, a repair mechanism iteratively
removes items until all constraints are satisfied. The order in which the items
are checked is determined by the maximum profit/weight ratio. Items with the
lowest profit/weight ratio are removed first.

4.2 Experimental Setup

We have applied MOBAIS to the knapsack problem using 2 objectives, varying
the number of items. In order to compare the performance of our algorithm and
other evolutionary algorithms with known results, we have used two knapsack
benchmarks containing 100 items and 250 items, and published on the web site
http://www.tik.ee.ethz.ch/∼zitzler/testdata.html

We generated random weights and random profits in the interval [10,100].
The capacity of a knapsack was set at half of the total weight of all the items:
cj = 0.5

∑n
i=1 wi,j .

Comparative analysis were carried out taking into account 3 algorithms in
the literature. The first one is the well-known NSGA-II [14], that employs non-
dominated sorting and crowding distance. The other algorithm is the Multi-
objective Immune System Algorithm (MISA), proposed in [4] and which uses a
secondary population to implement elitism. Finally, the Multi-objective Bayesian
Optimization Algorithm (mBOA) [20], is an Estimation of Distribution-based
algorithm that also utilizes a Bayesian network to capture relationships among
the variables.

The population size and the number of iterations for each algorithm varies
according to the problem, as described in what follows. For NSGA-II algorithm,
the crossover and mutation rates were 0.8 and 0.01, respectively, together with
tournament selection. In MISA, a uniform mutation was applied to the good
solutions and a nonuniform mutation to the “not so good solutions”. MOBAIS

http://www.tik.ee.ethz.ch/~zitzler/testdata.html
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and mBOA have utilized the K2 metric to learn the Bayesian network. In order
to penalize the complexity of the model, we have imposed a constraint in the
number of parents a node can have. It corresponds to a maximal order of interac-
tions that can be covered and it influences directly the complexity of the model.
By our previous experience on Bayesian network learning, we know that when
the complexity of the network is too high, it is more likely to detect spurious
correlations on the data. Thus, each variable can have only two parents. Once
the network is built, we apply the PLS algorithm to generate new individuals.
Let N be the size of the current population. So, in MOBAIS the number of
samples generated is N /2 and in mBOA is N.

These parameters were obtained empirically or referring to the literature and
were utilized in all experiments.

4.3 Results

Firstly, we show the obtained results for the Knapsack problem when the number
of items (n) is equal to 100. The initial population of MOBAIS was set to 100 and
for the other algorithms was set to 300. Since MOBAIS can adjust automatically
the population size along the search process, it would not be fair to run all the
algorithms with the same population size. The number of iterations for MOBAIS
and mBOA was 100. Since these algorithms have the ability to discover and
explore the problem regularities, a good Pareto front should be found within a
low number of generations. NSGA-II and MISA had the number of iterations
set to 300. Figure 1(a) shows the comparison of the Pareto fronts produced by
the four algorithms.

Next, in order to verify the scalability of the algorithms, we have applied them
to a larger size problem where the number of items is equal to 250. The number
of generations for MOBAIS is still 100 and to the other algorithms is 600. The
initial population size for MOBAIS remains 100 and for the other methodologies
is 900. For this scenario, the Pareto fronts can be viewed in Figure 1(b).

From Figure 1, we can observe that all algorithms have found a good Pareto
front for both scenarios. MOBAIS presented a very good performance because
it explores more efficiently the search space using its automatic control of popu-
lation size and due to its capability to identify and preserve the building blocks.
Although mBOA is also able to deal with building blocks, its inferior perfor-
mance is due to its ineffective mechanism of exploration/exploitation of the
search space, when compared with MOBAIS.

In addition to the graphical presentation, we also show in Table 1 the per-
centage of individuals of an algorithm dominated by the individuals of another
algorithm using the coverage metric [21]:

C(X ′, X ′′) =
|a′′ ∈ X ′′; ∀a′ ∈ X ′ : a′ � a′′|

|X ′′| (5)

where X ′, X ′′ ⊆ X are two sets of phenotype decision vectors. The output of
this metric is a real value in the interval [0,1]. This means that C=1 when X ′
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(a) (b)

Fig. 1. Pareto fronts produced by MOBAIS, MISA, NSGA-II and mBOA for Knapsack
problem with (a) 100 items and (b) 250 items

Table 1. Average values for coverage over 10 executions (A � B)

Algorithm A Algorithm B n=100 n=250

NSGA-II 17% 29%
MOBAIS MISA 100% 62%

mBOA 100% 100%

MOBAIS 8% 13%
NSGA-II MISA 76% 84%

mBOA 100% 100%

MOBAIS 0% 11%
MISA NSGA-II 12% 5%

mBOA 100% 83%

MOBAIS 0% 0%
mBOA NSGA-II 0% 0%

MISA 0% 8%

Table 2. Average number of solutions in the Pareto front

Algorithm n=100 n=250

MOBAIS 104 209
MISA 72 197
NSGA-II 96 201
mBOA 57 187

dominates or equals X ′′. Note that both C(X ′, X ′′) and C(X ′′, X ′) have to be
considered, since C(X ′, X ′′) is not necessarily equal to 1-C(X ′′, X ′).

From Table 1 we can observe that MOBAIS have achieved a good coverage
rate over the contenders.

Regarding the number of solutions in the Pareto front, we notice that
MOBAIS and NSGA-II have achieved a much broader spread of results than
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the other algorithms. Table 2 shows the average number of solutions in the
Pareto front over 10 runs, for each algorithm in the two experiments.

4.4 Discussions

As stated in Section 1, MOBAIS offers significant and qualitative advantages
over the contenders and they are described below. The first one is related to the
effective maintenance of building blocks. With this capability, MOBAIS avoids
disrupting the partial solutions found so far. Besides, the replacement of muta-
tion and cloning operators with a probabilistic model eliminates the necessity of
defining parameter values for these operators. The same does not occur for the
other algorithms. For example, several preliminary experiments were carried out
to define adequate values for crossover and mutation operators in NSGA-II.

During the experiments, we also have observed that the preservation of build-
ing blocks leads to a quick convergence. While MOBAIS found a good Pareto
front in a few generations, the other methodologies needed more generations to
achieve the same result. Although mBOA is also able to identify building blocks,
its performance was inferior when compared with MOBAIS because MOBAIS
has a better mechanism to explore/exploit the search space.

Another advantage of MOBAIS over the contenders is its capability to control
the population size in response to the particularities of the problem, allowing
a more efficient exploration/exploitation of the search space. Consequently, the
initial population size is not crucial to MOBAIS, differently from MISA, NSGA-
II and mBOA.

Regarding the implementation of MOBAIS, we notice that the algorithm does
not require a large amount of computation resources. The only drawback is
the time spent to build the Bayesian network at each iteration. However, the
proposed methodology still preserves the computational tractability due to the
restriction of at most two parents for each node in the network. The relatively
high computational cost to implement MOBAIS is in contraposition with the
aforementioned advantages of the algorithm.

Roughly comparing the computational cost of MOBAIS, MISA, NSGA-II and
mBOA, in terms of execution time, we could observe that MOBAIS requires
much less individuals and much less generations than MISA and NSGA-II, and
thus produces a slightly better execution time. When compared with mBOA,
the computational burden is equivalent.

5 Conclusion

In this paper we have proposed a novel immune-inspired algorithm for solv-
ing multi-objective problems. Our proposal, called Multi-Objective Bayesian
Artificial Immune System (MOBAIS), replaces the traditional mutation and
cloning operators with a probabilistic model representing the joint distribution
of promising solutions and, subsequently, uses this model for sampling new so-
lutions. The probabilistic model used is a Bayesian network due to its capabil-
ity of properly capturing the most relevant interactions among the variables of
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the problem, representing a significant attempt to improve the performance of
immune-inspired algorithms when dealing with building blocks.

To evaluate the algorithm, we have applied it to the multi-objective Knapsack
problem and compared the obtained results with those produced by state-of-the-
art- approaches. All algorithms presented similar performance in terms of cover-
age of the Pareto front. However, MOBAIS offers qualitative advantages over the
contenders such as (i) automatic identification/preservation of building blocks,
yielding a quick convergence; (ii) no necessity of specifying important parame-
ter values to guide the search; (iii) adaptive population size in response to the
particularities of the problem, allowing a more efficient exploration/exploitation
of the search space. Consequently, the initial population size is not crucial to
MOBAIS, differently from the compared algorithms.

We are currently investigating some aspects that can be further improved,
such as alternative metrics for evaluating the Bayesian networks and other algo-
rithms for sampling new individuals. We are also analyzing the performance of
MOBAIS in other problems. Another aspect to be considered is the extension of
the proposal to handle optimization problems in a continuous domain.
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Abstract. In electronics, there are two major classes of circuits, analog
and digital electrical circuits. While digital circuits use discrete voltage
levels, analog circuits use a continuous range of voltage. The synthesis of
analog circuits is known to be a complex optimization task, due to the con-
tinuous behaviour of the output and the lack of automatic design tools;
actually, the design process is almost entirely demanded to the engineers.
In this research work, we introduce a new clonal selection algorithm, the
elitist Immune Programming, (eIP) which uses a new class of hypermu-
tation operators and a network-based coding. The eIP algorithm is de-
signed for the synthesis of topology and sizing of analog electrical circuits;
in particular, it has been used for the design of passive filters. To assess the
effectiveness of the designed algorithm, the obtained results have been
compared with the passive filter discovered by Koza and co-authors us-
ing the Genetic Programming (GP) algorithm. The circuits obtained by
eIP algorithm are better than the one found by GP in terms of frequency
response and number of components required to build it.

1 Introduction

The immune system consists of a complex network of process interactions, which
cooperates and competes to contrast the antigen attacks. Theory of clonal se-
lection principle hypothesizes that B-cells contrast the infections by means of
a series of measures. Every being has a very large population of different B-
cells within its body. In case an external entity, such as a virus or a bacterium,
trespasses the body barriers, B-cells start trying to match the external body
or antigen, by means of the receptors present on their cell surface. When the
receptors of a B-cell totally or partially match the antigen, the B-cell starts to
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proliferate in a process called clonal expansion. Moreover, the cloned B-cells can
undergo to somatic mutations, in order to increase the affinity with an antigen:
it is a Darwinian process of variation and selection, called affinity maturation
[1]. This bottom-up behaviour has received a great attention in computer sci-
ence, and it is the main source of inspiration for the emerging class of Immune
Algorithms [2,3,4,5,6].

In electronics, the design of analog circuits is an iterative process accom-
plished by skilled engineers. There is no CAD tool that automatically designs
analog circuits starting from a set of requirements [7]. The main idea is to find
a general methodology that makes effective this working flow in order to au-
tomatically design new analog circuits and speeding up the time-to-market for
new devices [8,9]. In order to tackle this problem, the elitist Immune Program-
ming algorithm (eIP) is introduced: it extends the Immune Programming (IP)
algorithm [10] with the introduction of elitism and ad-hoc hypermutation oper-
ators for handling analog circuits. The eIP algorithm is adopted for the design
of analog circuits belonging to the class of passive filters. A Passive filter is an
interesting test-bed tackled firstly by the Genetic Programming (GP) algorithm
[11,12,13,14]. We have conducted several experiments in order to highlight two
important aspects: firstly, how the elitism impacts the exploring and exploiting
ability of the immune programming algorithm; secondly, the suitability of eIP

for the automatic synthesis and sizing of analog electrical circuits. The obtained
experimental results confirm that eIP outperforms the standard IP approach in
terms of convergence speed and quality of the designed circuits; moreover, the
new immune algorithm is able to design passive filters that are clearly better
than the one discovered using GP in terms of frequency response and number of
components required.

In section two we give an overview on the passive filters; in section three we
describe the elitist Immune Programming algorithm; in section four, we report our
experimental results and in section five we outline conclusions and future works.

2 Passive Filters Circuits

Passive filters are a particular class of analog circuits, which are made of passive
components, such as resistors, capacitors and inductors. Given a signal, a filter
leaves it unchanged in a frequency range called pass band, instead, in a frequency
range called stop band, it attenuates the signal below a certain level. In the pass
band a ripple voltage (Vr) should be achieved; Vr is the maximum acceptable
amplitude of the oscillations in pass band. In the range between pass and stop
bands, called transition band, the filter must reduce the input signal amplitude in
order to reach the desired attenuation with a very smooth behaviour. Slight de-
viations from an ideal behaviour are considered acceptable and they are specified
by the two deviation parameters d and h.

The circuit contains a test structure and a circuit core, in this way, the same
operating conditions are used for every circuit put into the core structure. The
test structure is made of a signal generator (VSOURCE), a series resistance
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Fig. 1. Passive Filter Circuit. It is possible to note the shunt resistance, RSOURCE,
the Load Resistance, RLOAD and the power supply source, VSOURCE.

(RSOURCE), a Load Resistance (RLOAD) and a Ground link. This structure
supplies three links, the first link provides the power voltage to the circuit core,
which is connected to the load resistor via the second link and the third provides
the connection to the ground, as shown in Fig. 1.

In our experiments, we synthesize a passive filter with a cut-off frequency
of 1KHz and a transition band of 1KHz. The value for d and h were settled
respectively at 0.1V and 10−4V and the Vr parameter was settled to 0.03V. The
set of available values for resistors and capacitors is that of the commercial series
E-24. The order of magnitude of resistors values ranges from 108Ω to 10−2Ω,
while the order of magnitude of capacitors ranges from 10−1F to 10−11F. For
inductors there is not an analogue standardization, so we have chosen values
ranging from 1H to 10−11H with a step size of 0.1 [12].

3 Immune Programming for Analog Circuit Design

In this section we give an overview of the standard IP algorithm and, successively,
we give a detailed description of the new eIP algorithm.

3.1 Immune Programming

The Immune Programming. (IP) is a population-based algorithm inspired by
the clonal selection principle. The algorithm starts with a population of ran-
domly generated B-cell. At each generation g, IP builds a new population by
considering each B-cell for replacing, cloning or hypermutation. The process is
iteratively performed until the maximum number of generations (or objective
function evaluations) is reached. The Replacement operator replaces a B-cell of
the population with a new random one, it is mainly employed in the early stage
of the evolutionary process, and it is one of the major responsible for the diver-
sity of the current population. The Cloning operator is used to create multiple
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copies of the best individuals in the population, this operator gives more chance
to explore a promising region of the solution space. The Hypermutation operator
is used to modify a B-cell according to its fitness value and it is the crucial point
for the exploring ability of the algorithm.

In the IP algorithm, these three operators are controlled by three parameters
Pr, Pc, Pm. Pr represents the minimum percentage of newly generated B-cell at
each iteration, and it is inversely proportional to the average fitness function
value of the previous generation. In the early stage of the evolutionary process,
the IP algorithm makes a lot of replacements that decrease when a good reper-
toire of solutions is established. The parameter Pc controls the ratio between
number of cloned B-cells and the number of B-cells that will be mutated. The
last parameter Pm represents the percentage of receptors of the best B-cell that
will be mutated; according to this strategy, the best circuit is less mutated than
the worst ones that can undergo a complete mutation of each receptor.

3.2 The Elitist Immune Programming Algorithm

IP was the starting point to develop the new elitist Immune Programming (eIP)
algorithm; the pseudo-code of the algorithm is provided in Fig.2. eIP differs
from IP in several points, the following new features are introduced to effectively
tackle the synthesis of topology and the sizing of analog circuits.

Firstly, the algorithm was modified with the introduction of elitism. At each
generation g, the best solution found so far cannot be erased from the population.
This strategy, already introduced in other immune inspired algorithms [5,6,2],
greatly helps the convergence of the algorithm and it overcomes the problem of
IP that tends to quickly forget good solutions especially in the initial phase of the
search process. The other main difference is the application of the cloning and
hypermutation operators. As in IP the chance to be cloned or mutated is driven
by a parameter Pc but, in eIP, for each cloning two mutations are performed.

Mutation Operators. The hypermutation operators operate only on the core
structure; in particular, the hypermutation acts on one component, link or node
at a time. All the operators take in input and return in output only consistent
circuits. This design choice forces the algorithm to search in the feasible region of
the solution space, and it helps the algorithm to immediately discard infeasible
or meaningless solutions. Ten different mutation operators have been introduced,
and each of them makes a specific mutation on the circuit as described below.

ADD-SERIES. Given a circuit, it randomly selects a component and it randomly
unplugs one of its terminals; successively, a new component is created and the
operator connects it in series to the selected component, linking the floating
terminal to the new one.

ADD-PARALLEL. It establishes a shunt connection. After a component is selected,
the operator randomly creates a new component and then it links its terminals
to the same nodes of the selected one.
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1: procedure eIP(D, MaxGen, Pr, Pm)
2: G ← 1
3: Population(0) ← Initialize(D)
4: Evaluate(Population)
5: while G < MaxGen do
6: Population(G+1) ← empty
7: Population(G+1) ← BestCircuit[Population(G)]
8: Population(G+1) ← Hypermutation[BestCircuit[Population(G)]]
9: i ← 0

10: repeat
11: if rand() < Pr then
12: NewCircuit ← Initialize()
13: Population(G+1) ← NewCircuit()
14: else
15: if rand() < Pc(Circuiti) then
16: Population(G+1) ← Population

(G)
i

17: end if
18: for j ← 1 to 2 do
19: if rand() < Pm(Circuiti) then
20: Population(G+1) ← Hypermutation[Population

(G)
i ]

21: end if
22: end for
23: i ← i + 1 mod D
24: end if
25: until size[Population(G+1)] < D
26: end while
27: end procedure

Fig. 2. The pseudo-code of the eIP algorithm

ADD-RANDOM-COMPONENT. It randomly creates a new component that will be
connected to two random nodes of the circuit.
EXPAND-NODE. This operator randomly selects a circuit node and it randomly
generates a new node and a new component. Successively, it connects the new
component to the previous selected node.The scope of this procedure is to easily
plug in a new component into a highly linked node, or a test structure node.
DELETE-COMPONENT. This procedure tries to decrease the size of the circuit by
deleting a component. It does not affect the consistency of the circuit; however,
if a deletion causes damages, the operator is able to repair the circuit.An incon-
sistent circuit can arise due to one or more floating terminals, the unplugging of
the circuit core from the test structure or the unlinking of a part of the circuit.
MUTATE-COMPONENT-VALUE. The operator randomly selects a component and it
changes its value by randomly picking a new value from the set of allowed values.
COPY-COMPONENT-VALUE. The operator randomly selects a component of the
circuit and it copies the value of a randomly chosen component of the same
type. If there is no other similar component, it does nothing.
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MUTATE-COMPONENT-KIND. This operator randomly selects a component, then it
modifies the relative type and it assigns a value to the component according to
the allowed set of values for the new type.
LINK-MODIFY. The operator randomly disconnects a link of a component and
reconnects it to a different circuit node. Like DELETE-COMPONENT, this procedure
is able to recover from inconsistent circuits.
SHRINK. The SHRINK operator scans the circuit in order to find a series or par-
allel connection between two or more components. It reduces the circuit size by
replacing a couple of components with one equivalent component which value is
as close as possible to the values of the two components.This operator greatly
improves the quality of the design since it allows the automatic introduction of
standard components and the reduction of the circuit size with only marginal
side effects [15].

Fitness Function. The quality of the circuit is assessed by means of an ad-hoc
objective function; it measures the distance between the curve described by a
circuit and the one described by a hypothetical ideal circuit according to the
following expression:

fpf (x) =
1KHz∑

i=100mHz

[Wp((fi), fi) × d(fi)] +
100MHz∑
i=2KHz

[Ws((fi), fi) × d(fi)] (1)

where x is a consistent circuit, fi is the i− th frequency, d(fi) is the signal devi-
ation from an ideal behaviour and Wp(d(fi), fi) and Ws(d(fi), fi) are weighting
factors respectively for the pass and stop band. For each frequency, the corre-
sponding weighting factor for the pass band is determined as follows:

Wp =

⎧⎨
⎩

0 d(fi) ≤ Vr

c Vr < d(fi) ≤ d
10 · c d(fi) > d

where Vr is the ripple voltage and d, c are experimentally obtained constants
that were fixed to d = 0.1V and c = 3. The weighting factor for the stop band
term is obtained as follows:

Ws =

⎧
⎨
⎩

0 d(fi) ≤ SBA
m SBA < d(fi) ≤ h
10 · m d(fi) > h

where SBA is the desired Stop Band Attenuation, that was fixed to −60dB and
d, h, m are experimentally obtained constants fixed to d = 0.1V , h = 10E − 5V
and m = 50. It is possible to observe that the co-domain of the distance function
is [0, +∞[, where an ideal circuit has fpf (x) = 0. This distance function neglects
small deviations from an ideal behaviour and it strongly penalizes unacceptable
deviations. The fitness of each B-cell is the value of fpf normalized in the range
[0, 1] according to the following expression:
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Table 1. Experimental results, the performances of the two immune algorithms. For
each parameters setting, we report the Circuit with the Lowest Fitness Function value
(CLFF) and the Circuit with the Lowest Number of Components (CLNC).

CLFF CLNC

Algorithm d Pm fpf Components fpf Components

IP 5 × 103 0.1 1632.04 5 1632.04 5
IP 5 × 103 0.3 1343.03 5 1343.03 5
IP 104 0.1 1758.54 3 1758.54 3
IP 104 0.3 1742.77 6 1763.77 4

eIP 5 × 103 0.1 20.5486 20 20.948 18
eIP 5 × 103 0.3 10.2221 20 11.3294 16
eIP 104 0.1 0.0 12 0.29 10
eIP 104 0.3 8.7778 18 8.78324 16

fitness(xg
i ) =

1 − sfpf
(xg

i ) × mfpf
(xg

i )k
α

(2)

sfpf
(xg

i ) =
fpf (xg

i )
fMAX

pf (g)
(3)

mfpf
(xg

i ) = e
fpf (xg

i
)

k (4)

where xg
i is the i − th B-cell of the population at generation g, fMAX

pf (G) is
the max value of the objective function at generation g, instead k is a constant
used to constraint the fitness in the range [0, 1]. Moreover, the fitness was scaled
of α = 25% in order to prevent that the worst B-cell undergoes to a complete
mutation of the circuit.

4 Experimental Results

In order to assess the effectiveness of the eIP algorithm, we performed several
experiments. Firstly, we compared eIP with the standard IP algorithm. We have
tested these two algorithms with a population of size d ∈ {5000, 10000} [16]. The
mutation probability parameter was settled to Pm ∈ {0.1, 0.3}; since Pm is the
percentage of receptor mutated in the best circuit, a larger value of this param-
eter makes the algorithm acting as a random search. Finally, the replacement
probability Pr and the cloning probability Pc are fixed to Pr = 0.01, Pc = 0.2
[10]. In order to simulate the behaviour of the circuits, the tested algorithms
use the NGspice circuit simulator. The maximum number of objective function
evaluations was set to 107 for all the experiments and the same set of mutation
operators were used in both algorithms.

It is possible to note in Tab.1,2 that eIP clearly outperforms the IP algorithm.
For all settings, eIP shows a good convergence to near optimal solutions, instead
IP produces only meaningless circuits. The scheme adopted by IP for replace-
ment, cloning and hypermutation is not effective for this problem; at each iter-
ation only replacement are performed and it means that IP works most likely a
random search.
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Table 2. Experimental results, a comparison of 5 independent runs of IP and eIP

using the best parameter setting according to Tab.1

Run Algorithm fpf Components Algorithm fpf Components

1 IP 1542.72 3 eIP 3.93 20
2 IP 1765.63 6 eIP 16.79 20
3 IP 1658.13 6 eIP 12.62 20
4 IP 1492.22 4 eIP 0.29 10
5 IP 1497.31 3 eIP 0.0 12

Average 1591.202 4.4 Average 6.726 16.4
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Fig. 3. The output voltage frequency response (a) and the attenuation plot (b) of the
best circuit found by eIP (fpf = 0.0, 12 components)
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Fig. 4. The output voltage frequency response (a) and the attenuation plot (b) of
the circuit with the lowest number of components found by eIP (fpf = 0.29, 10
components)

By inspecting the eIP results, it is possible to note that using a population
of 10000 B-cells and a mutation probability Pm = 0.1, the algorithm found
a circuit that perfectly matches the design requirements (Fig.3). By analyzing
the circuit structure it is possible to note that is made of only 12 components
that is an important aspect for the manufacturability of the filter. Moreover, by
inspecting all the circuits designed by eIP, the algorithm has found a circuit of
10 components with fpf = 0.29 (Fig.4); despite the value of the fitness function
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is not optimal, the circuit shows a very regular behaviour and, probably, it can be
considered a good trade-off between the requirements and the manufacturability
of the filter. By observing the circuits it is possible to note that they show
different shapes but common building blocks: this behaviour suggests that eIP

is able to find a common regular structure and, at the same time, it is able
to arrange them in order to deeply explore the space of solutions. Finally, the
population-based approach gives to the engineers not only a single solution but
a set of circuits that could be inspected in order to find the one that optimally
fits the design requirements.
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Fig. 5. A comparison of the output voltage frequency response of the circuit with the
optimal fitness function value (a, fpf = 0.0, 12 components) and the one with the
lowest number of components (b, fpf = 0.29, 10 components) found by eIP with the
Campbell filter [11]. it is possible to note that in the transition band the Campbell filter
has not a regular behaviour instead the eIP circuits have a regular and smooth curve.

The GP algorithm was able to find a passive filter, known as the Campbell fil-
ter [11]. This filter shows a very regular structure and a good symmetry, since it
is built using the same building block repeated multiple times in order to form
a seven rung ladder structure. The frequency response of the Campbell filter is
substantially linear in pass band and the curve inclination is very high. The two
best circuits found by eIP are better then the Campbell filter for three important
aspects. Firstly, in the transition band, the signal of Campbell filter shows large
swings that are an undesirable behaviour instead, the eIP circuits show a very
regular and smooth curve as showed in Fig.5. Secondly, the eIP circuits have only
10 and 12 components instead the Koza’s circuit has 14 components, and this fact
makes the eIP circuits more suitable for a real implementation. Finally, the eIP

algorithm requires 107 fitness function evaluations to design these circuits instead
the GP algorithm requires 1.5 × 107 evaluations; this experimental result proves
that the immune algorithm, for this design problem, is more efficient than GP.

5 Conclusions and Future Works

In this research work, we have introduced a new immune algorithm, called eli-

tist IP, for the synthesis of topology and sizing of analog electrical circuits.
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The algorithm extends the Immune Programming approach with the intro-
duction of elitism and ad-hoc operators for handling analog circuits.

The experimental results confirms that eIP clearly outperforms the standard
Immune Programming approach in terms of quality of the circuits and speed
of convergence. The analysis of the eIP circuits shows that the algorithm is able
to synthesize analog circuits with excellent frequency responses, having small
swings, high inclination and a good shape regularity.

The comparison with the Campbell filter, a passive filter discovered using
Genetic Programming, shows that eIP is able to find a better circuit in
terms of regularity in transition band and number of components required.

Starting from these results, there are two major fields that we are investi-
gating. Firstly, we are extending the eIP algorithm in order to use a selection
strategy based on the Pareto Optimality criterion; using this approach, it is pos-
sible to explicitly introduce different design requirements, such as the number
of components and the frequency response, and leaving to the algorithm the
automatic discovering of optimal trade-off [17]. Finally, we are designing an im-
proved eIP that is able to synthesize the topology and the sizing of active filters
[18]; this last task is a visionary research topic since there is not an automatic
approach for the design of these analog circuits and it could be an important
step to dramatically decrease the time-to-market required for these circuits.
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L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M.,
Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska,
N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 171–182.
Springer, Heidelberg (2003)

6. Cutello, V., Morelli, G., Nicosia, G., Pavone, M.: Immune algorithms with aging
operators for the string folding problem and the protein folding problem. In: Raidl,
G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 80–90. Springer,
Heidelberg (2005)

7. Streeter, M., Keane, M., Koza, J.: Iterative Refinement Of Computational Circuits
Using Genetic Programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference table of contents, pp. 877–884 (2002)



70 A. Ciccazzo et al.

8. Koza, J., Bennett III, F., Andre, D., Keane, M., Dunlap, F.: Automated synthesis
of analog electrical circuits by means of genetic programming. IEEE Transactions
on Evolutionary Computation 1(2), 109–128 (1997)

9. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs.
Proceedings of the National Academy of Sciences 102(39), 13773–13778 (2005)

10. Musilek, P., Lau, A., Reformat, M., Wyard-Scott, L.: Immune programming. In-
formation Sciences 176(8), 972–1002 (2006)

11. Koza, J., Bennett III, F., Andre, D., Keane, M.: Synthesis of topology and sizing
of analog electrical circuits by means of genetic programming. Computer Methods
in Applied Mechanics and Engineering 186(2-4), 459–482 (2000)

12. Koza, J., Jones, L., Keane, M., Streeter, M.: Towards industrial strength automated
design of analog electrical circuits by means of genetic programming. Genetic Pro-
gramming Theory and Practice II (2004)

13. Grimbleby, J.: Automatic analogue circuit synthesis using genetic algorithms. Cir-
cuits, Devices and Systems. IEE Proceedings [see also IEE Proceedings G-Circuits,
Devices and Systems] 147(6), 319–323 (2000)

14. Alpaydin, G., Balkir, S., Dundar, G.: An evolutionary approach to automatic syn-
thesis of high-performance analog integrated circuits. IEEE Transactions on Evo-
lutionary Computation 7(3), 240–252 (2003)

15. Dastidar, T., Chakrabarti, P., Ray, P.: A Synthesis System for Analog Circuits
Based on Evolutionary Search and Topological Reuse. IEEE Transactions on Evo-
lutionary Computation 9(2), 211–224 (2005)

16. Koza, J.: Genetic Programming III: Darwinian Invention and Problem Solving.
Morgan Kaufmann, San Francisco (1999)

17. Subramanian, A., Sayed, A.: Multiobjective filter design for uncertain stochastic
time-delay systems. IEEE Transactions on Automatic Control 49(1), 149–154 (2004)

18. El-Habrouk, M., Darwish, M., Mehta, P.: Active power filters: a review. IEE Pro-
ceedings Electric Power Applications 147(5), 403–413 (2000)



A Multi-Objective Multipopulation Approach

for Biclustering

Guilherme Palermo Coelho, Fabŕıcio Olivetti de França,
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Abstract. Biclustering is a technique developed to allow simultaneous
clustering of rows and columns of a dataset. This might be useful to ex-
tract more accurate information from sparse datasets and to avoid some
of the drawbacks presented by standard clustering techniques, such as
their impossibility of finding correlating data under a subset of features.
Given that biclustering requires the optimization of two conflicting ob-
jectives (residue and volume) and that multiple independent solutions
are desirable as the outcome, a multi-objective artificial immune system
capable of performing a multipopulation search, named MOM-aiNet, will
be proposed in this paper. To illustrate the capabilities of this novel algo-
rithm, MOM-aiNet was applied to the extraction of biclusters from two
datasets, one taken from a well-known gene expression problem and the
other from a collaborative filtering application. A comparative analysis
has also been accomplished, with the obtained results being confronted
with the ones produced by two popular biclustering algorithms from the
literature (FLOC and CC) and also by another immune-inspired ap-
proach for biclustering (BIC-aiNet).

Keywords: biclustering, multi-objective optimization, multipopulation
search, artificial immune systems, gene expression, collaborative filtering.

1 Introduction

Due to the increasing amount of information acquired in business, science, inter-
net and biomolecular research, data clustering has become an even more essential
subject on knowledge extraction. Classical data clustering tools, such as k-means,
Self Organized Maps (SOMs) and Hierarchical Clustering have been success-
fully applied to different kinds of problems, but they present some limitations
when dealing with large and heterogeneous datasets, structured as data matrices
of objects (rows) and their corresponding attributes (columns). When dealing
with such matrices, these clustering approaches cannot detect partial matching
since the dataset is grouped based solely on global similarities (considering all
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the attributes simultaneously). Also, most of these techniques are only capable
of assigning a given object to only one group (cluster), what may be insuffi-
cient in several applications, ranging from text mining to complex networks in
biology [1].

In order to avoid these drawbacks and knowing that the discovery of simi-
larities between two objects, considering different subsets of attributes, may be
useful to make deeper inferences, the biclustering technique was proposed [2].
This technique is capable of finding several subsets of rows and columns from
the data matrix. In this way, each subset will be composed of objects (rows) that
share some similarities specifically on the selected attributes (columns). That is
why a single object may take part in multiple biclusters, in association with a
distinct subset of attributes at each bicluster, thus allowing the extraction of ad-
ditional information from the dataset. The problem of finding several biclusters
may be considered similar to the problem of finding several two-way bipartitions
of the whole dataset, which is clearly a combinatorial optimization problem.
Also, the construction of a high-quality bicluster requires a compromise between
two conflicting objectives: both the volume of the bicluster and the degree of
similarity among its elements should be maximized.

Since the amount of biclusters that can be extracted from a given dataset is
previously unknown and due to the multi-objective nature of the problem, an al-
gorithm that performs multi-objective optimization and adopts multipopulation
search is likely to be successful in the biclustering generation task.

In 2001, de Castro & Von Zuben [3] have developed the first tool of a family
of immune inspired algorithms, called Artificial Immune Network (aiNet), that
evolves multiple subpopulations in parallel. Given this multipopulation property
of aiNet and the importance of the biclustering technique, in this work a multi-
objective immune-inspired biclustering algorithm (named MOM-aiNet, Multi-
Objective Multipopulation Artificial Immune Network) is proposed.

The MOM-aiNet algorithm was applied to two important problems with dis-
tinct characteristics: the Yeast problem [4], which is a gene expression dataset
that has been extensively studied along the biclustering literature, and the
Movielens dataset [5], which is a set of movie ratings given by the clients of
a video rental store. The Movielens problem is considered a challenge to data
mining due to its sparseness and the need to correlate a given client to more than
one group simultaneously. The results obtained by MOM-aiNet were compared
to those of three other algorithms from the literature: the algorithm of Cheng &
Church (CC) [2], FLOC (FLexible Overlapped biClustering - [6]) and BIC-aiNet
(Artificial Immune Network for Biclustering - [7], [8], [9]).

This paper is organized as follows. Section 2 presents some general aspects
of biclustering. Section 3 outlines the algorithm proposed in this work and the
basic immune concepts employed. The experiments performed and the compar-
ison of MOM-aiNet with CC, FLOC and BIC-aiNet are depicted in Section 4.
Finally, the concluding remarks of the paper and further steps of the research
are presented in Section 5.
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2 Biclustering

In data mining, biclustering is referred to the process of finding subsets of rows
and columns of a given data matrix [2] (see Fig. 1). This data matrix may
represent different kinds of numerical data, such as objects and their attributes
(comprising the rows and columns of the matrix, respectively).

The biclustering approach covers a wide scope of different applications, and
some examples are dimensionality reduction [10], information retrieval and text
mining ([7], [11], [12]), electoral data analysis [13], collaborative filtering ([8], [9],
[14]) and biological data analysis ([10], [15]).

The biclustering task can be classified into several categories, according to (i)
the way the bicluster quality is measured; (ii) how the set of biclusters are built;
and (iii) which structure of bicluster is adopted [16].

The classification based on the quality measure of a biclustering algorithm
is related to the concept of similarity between the elements of the matrix. For
instance, some algorithms search for constant value biclusters, some for constant
columns or rows, and others for coherency in the values of the elements. In
Fig. 1 some of the quality measures of biclustering algorithms are illustrated.
Of course, in practical applications, the obtained biclusters will not follow the
quality measure without some deviation, interpreted as an error (residue) to be
minimized at the same time that the volume of the biclusters (to be defined in
what follows) is maximized.
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Fig. 1. A concise and didactic example of four biclusters ((b), (c), (d) and (e)), each
one obeying a specific optimization criterion, extracted from the original matrix (a).
The bicluster (b) was created with rows {1, 2} and columns {2, 4}, and is an example
of a constant bicluster. The bicluster (c) was created with rows {1, 4, 5} and columns
{2, 4}, and is an example of a bicluster with constant rows. The bicluster (d) was created
with rows {1, 2, 3} and columns {2, 5}, and is an example of a bicluster with constant
columns. The bicluster (e) was created with rows {1, 4, 5} and columns {1, 3, 4, 5}, and
is an example of a bicluster with coherent values.

In this paper, biclustering will be employed to find coherence inside biologi-
cal data on microarray experiments and to extract overlapping information on
a sparse dataset used for collaborative filtering. Both applications involve the
search for biclusters equivalent to bicluster (e) in Fig. 1.

The way the biclusters are built refers to the number of biclusters discovered
per run. Some algorithms find only one bicluster at each run, while others are
capable of simultaneously finding several biclusters. Besides, there are nondeter-
ministic and deterministic algorithms. Non-deterministic algorithms are able to
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find different solutions for the same problem at each execution, while the deter-
ministic ones produce always the same solution. MOM-aiNet is nondeterministic
and several biclusters are given as the outcome at each run.

The biclusters returned by the algorithms can have different structures: (i)
exclusive columns and/or rows, which consists of biclusters that cannot overlap
in either columns or rows of the matrix; (ii) arbitrarily positioned and possibly
overlapping biclusters, which is the case of MOM-aiNet; and (iii) overlapping
biclusters with hierarchical structure.

Concerning the quality measure to be adopted, to calculate the coherence
among the elements of a bicluster, it is used the mean squared residue, intro-
duced by Cheng and Church [2]. This metric consists in the calculation of the
additive coherence inside a bicluster by assuming that each row (or column) of
the bicluster presents a profile identical to (or very similar to) the one exhib-
ited by other rows (or columns), except for a constant bias. Therefore, finding
a coherent bicluster is basically the same as finding a bicluster that minimizes
the error between the calculated value and the real value of an element of the
matrix. So the mean squared residue becomes H(I, J):

H(I, J) =
1

|I||J |
∑
i,j

(aij − aIj − aiJ + aIJ)2, (1)

where |I| is the total number of rows of the bicluster, |J | is the total number of
columns of the bicluster, aij is the value in row i and column j, aIj is the mean
value of column j, aiJ is the mean value of row i, and aIJ is the mean value
considering all the elements of the bicluster.

Other important aspect of the biclusters is their volume, generally denoted in
the literature by |I|×|J |. In order to be functional and to allow a deeper analysis
of the data, it is usually required that a bicluster presents a large volume (large
number of rows AND columns).

Notice that minimizing the mean-squared residue and maximizing the volume
are conflicting objectives, given that larger biclusters tend to present higher
residues.

3 MOM-aiNet: Multi-Objective Multipopulation
Artificial Immune Network

The aiNet algorithm was first proposed by de Castro & Von Zuben [3] to solve
clustering problems, and it is based on two immune concepts: the Clonal Selec-
tion principle [17] and the Immune Network theory [18]. In aiNet, the population
of candidate solutions corresponds to the antibodies of the system, while the data
of the problem is associated with the antigens. In general terms, the population of
antibodies is successively submitted to a cycle of cloning, hypermutation (with
genetic variability proportional to the fitness of each individual – also known
as the affinity of each antibody with the antigens of the problem) and selection
[19]. Due to the immune network principles also followed by the algorithm, such
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antibodies are capable of recognizing each other, so that if two individuals are
similar, the worst one is eliminated from the population (in the phase known
as suppression), and new randomly generated antibodies are inserted into the
population to contribute with the diversity of solutions.

Such structure of the aiNet algorithm allows it to evolve multiple popula-
tions in parallel (associated with each antibody there is a population of mu-
tated clones), and stimulates the convergence of such subpopulations to distinct
promising regions of the search space (generally to the nearest local optimum),
thus preserving diversity.

Given the two conflicting objectives of the biclustering problem and the usual
necessity of extracting several biclusters from a single dataset, the multipopula-
tion property of the aiNet algorithm will be exploited in this work, together with
the concept of dominance, to create a novel algorithm capable of finding multi-
ple biclusters while simultaneously optimizing both objectives and also obeying
some pre-defined constraints.

The concept of dominance [20] is generally adopted to compare the quality of
two solutions, of a given problem, when there is more than one objective being
optimized. It is said that solution A dominates solution B (and so solution A
is better than solution B) when A presents all the values of the objective func-
tions better than or equal to the corresponding objective values of solution B,
and there is at least one of the objectives for solution A that is strictly better
than the equivalent for solution B. Therefore, it is possible to notice that three
different situations can occur in a multi-objective problem: solution A domi-
nates solution B (A is better than B); solution B dominates solution A (B is
better than A); and A and B are mutually non-dominant. In a multi-objective
optimization problem with conflicting objectives, the solution is, in fact, a set
of non-dominated solutions, that correspond to the different trade-offs consid-
ering all the objectives. Current non-dominated solutions may be dominated by
subsequent candidate solutions proposed along the execution of the algorithm.
However, there is a set of solutions that will never be dominated by any feasible
candidate solution, and they constitute a front in the objective space, which is
known as the Pareto Front of the problem.

The aiNet family have already been successfully adapted to multi-objective
optimization [21], but the approach presented in this paper will be significantly
different from the one in [21]. omni-aiNet, besides additional attributes, is spe-
cialized in sampling the Pareto front uniformly and with high precision, while
the algorithm to be presented in this section makes a rougher approximation
of the Pareto front. In most multi-objective optimization algorithms, including
omni-aiNet, a single set of non-dominated solutions is usually returned. But, in
this paper, we propose a multi-objective and multipopulation immune-inspired
approach, denoted MOM-aiNet, which returns several sets of non-dominated
solutions (dominance is measured inside each set), each one potentially corre-
sponding to biclusters extracting distinct correlations of rows and columns of
the data matrix. As mentioned before, MOM-aiNet considers two objectives for
optimization: the residue of the biclusters (which should be minimized) and their
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volume (which should be maximized). The proposed algorithm is composed of
the modules depicted in Alg. 1, which are going to be explained in the sequence.

Algorithm 1. The MOM-aiNet algorithm
generate initial population();
while stopping criterion is not met do

for each population do
clones = clone(smallest bicluster & largest bicluster);
populationi = select nondominated(clones + populationi);

end for
network suppression();
insert new();

end while

The algorithm starts with the generation of n subpopulations of one bicluster
each, generated by randomly choosing one row and one column of the dataset. If
the dataset is sparse, the algorithm must choose only among the non-null values.
Inside the main loop, for each subpopulation n clones clones are generated, being
half of the clones copied from the bicluster with the smallest volume in the
subpopulation, and the other half from the bicluster with the highest volume.

Each clone then suffers a mutation process, which consists of one of three
possible actions chosen randomly with the same probability: insert a row, insert
a column, remove a row or column. Each action randomly selects one element
to be inserted/removed. After the mutation step is performed on each clone,
interpreted as a subpopulation of the algorithm, all the non-dominated biclusters
of this subpopulation are selected to generate the new subpopulation, for the next
iteration. If the number of non-dominated elements exceed n clones, a crowding-
distance-based [22] suppression is performed in order to maintain a small and
locally diverse subpopulation.

The reason for the cloning process being performed only on the smallest and
largest biclusters is the incremental nature of the mutation process, where only
one row or one column can be inserted in/removed from each bicluster at a
time. Therefore the biclusters are likely to suffer an incremental growth toward
both ends (low and high volume), thus tending to be equally distributed on the
non-dominated front.

Two constraints of the bicluster can be controlled on these steps. One is the
residue value that can be limited to a specified value (δ), where every bicluster
with a residue value higher than δ is said to be dominated by any other (unless
there is only two or less biclusters on the population). And the other is the
occupancy rate, for sparse matrices, that measures the proportion of non-null
values in the bicluster. When an insertion action is chosen by the mutation
process, the number of available rows/columns to insert is reduced to those that
makes the bicluster occupancy rate no less than a threshold α.

After the cloning and mutation process, from time to time, a suppression op-
eration is performed, so that the largest biclusters of each subpopulation are
compared, based on the degree of overlapping. When a pair of biclusters have
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a degree of overlapping higher than a given σ, the two subpopulations are com-
bined and the non-dominance selection is performed, creating a single subpop-
ulation. Only the largest bicluster of each population is taken for comparison
because they tend to be more representative, and so two subpopulations will
only be merged when they start to express the same correlations among rows
and columns of the data matrix.

Finally, besides the suppression of similar subpopulations, it is also performed
an insertion of new randomly generated subpopulations, in order to increase
diversity and the exploration capability of the algorithm. This random insertion
is performed in the same way as the initial subpopulations are generated, but
with the difference that first it is chosen a pair of row and column that are not
contained in any existing bicluster.

In the next subsection, a brief explanation of each one of the other three
algorithms adopted in this work for comparison will be given.

3.1 Comments on BIC-aiNet, CC and FLOC

The BIC-aiNet and MOM-aiNet algorithms work in a very similar way, except
that BIC-aiNet keeps just one bicluster per population (antibody) and there is
no constraint on residue and occupancy. Also, the fitness function is a weighted
sum of the two objectives being optimized (residue and volume).

The CC algorithm is a constructive heuristic that starts with a single bicluster,
representing the whole dataset, and iteratively removes rows and columns of
this bicluster until the residue is equal or less than δ. After that, it starts to
insert rows and columns (that are not in the bicluster yet) sequentially, until
the insertion of any other row or column increases the residue to a value above
δ. After the first bicluster is constructed, the rows and columns already present
in the bicluster are replaced by random values in the original dataset, and the
whole process is restarted until a predefined amount of biclusters is created.

Finally, the FLOC algorithm tries to improve CC’s mechanism by creating all
the biclusters at the same time. The algorithm starts with the random generation
of n biclusters with a predefined size, and then performs successive insertions or
removals of each row and column of the dataset (according to the presence or
absence of the row/column in the selected bicluster) in the bicluster that presents
the highest reduction in the residue, when submitted to this modification.

4 Experimental Results

The MOM-aiNet algorithm was implemented in the C++ programming language
and it was executed on an Athlon64 3500+ machine with 1GB of RAM. To
evaluate its performance, first the algorithm was compared to FLOC, CC and
BIC-aiNet algorithms on a dense dataset called Yeast microarray dataset [4],
that contains 2, 884 genes under 17 experimental conditions. After that, MOM-
aiNet was compared to BIC-aiNet on a sparse dataset called Movielens [5], that
presents 80, 000 ratings of 1, 682 movies given by 943 users.
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For the Yeast dataset, the results of FLOC and CC were taken from [6]. In
this experiment, different values of the residue threshold (the δ parameter) were
adopted for each immune-inspired algorithm (when compared to those in [6]
for FLOC and CC), since each of these algorithms deals with this parameter
differently. FLOC and CC continue the optimization process of the residue until
they can not improve the solutions anymore, while the MOM-aiNet considers δ as
a constraint and so generates the largest biclusters that present a residue lower
than this threshold. Therefore, in order to make fair comparisons among the
algorithms, this parameter was set as 185 for MOM-aiNet, which corresponds to
a value a little lower than the average residue obtained by FLOC in [6]. The BIC-
aiNet algorithm introduces δ in the definition of the fitness of the individuals,
so that a value of 100 was empirically obtained.

The remaining parameters of MOM-aiNet and BIC-aiNet were also empiri-
cally determined as follows: for both algorithms it was adopted 1000 iterations,
n clones = 20, and a maximum number of subpopulations/biclusters of 100; for
the BIC-aiNet, the row importance weight was set to wr = 2 and the column
importance weight was set to wc = 3 (further details about the parameters of
BIC-aiNet can be found in [7]).

Table 1 presents the average results obtained by MOM-aiNet and BIC-aiNet,
over 10 independent runs, together with the results from the other two algorithms
(taken from [6]) on the Yeast dataset. Since MOM-aiNet is a multi-objective
approach, each subpopulation generates up to n clones biclusters so, in order to
compare its results with the ones of the other algorithms, the average residue
and volume of the largest bicluster of each subpopulation were taken in each
independent run.

Table 1. Performance comparison among MOM-aiNet, BIC-aiNet, CC and FLOC
algorithms for the Yeast dataset. The MOM-aiNet and BIC-aiNet results are shown in
the format (average ± std. deviation), taken over 10 independent runs.

Algorithm Avg. Residue Avg. Volume

MOM-aiNet 178.28 ± 5.24 1831.80 ± 114.54
BIC-aiNet 194.65 ± 9.25 2556.60 ± 188.92

CC 204.29 1576.98
FLOC 187.543 1825.78

From Table 1, it can be seen the superior performance of the immune-inspired
algorithms over CC and FLOC, since they can generate biclusters with lower
residue values and/or higher volumes. It can also be seen that, differently from
BIC-aiNet, the multi-objective approach was able to generate biclusters with
residues close to the desired threshold and, at the same time, high volumes.
This illustrates a disadvantage of the BIC-aiNet algorithm, more specifically the
lack of control of the residue values of the generated biclusters.

Other advantage of the MOM-aiNet algorithm is that it also returns an array of
different biclusters (the final individuals in each subpopulation), that correspond
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to the compromise betweenvolumeand residue (non-dominated individuals) found
in distinct regions of the data matrix (representing distinct correlations), which is
very useful in the post-analysis process. In order to illustrate this set of biclusters
returned by MOM-aiNet, Fig. 2 presents the residue and volume of the individuals
in the final subpopulations obtained in one of the ten independent runs performed
here, together with the final population generated by BIC-aiNet and the average
results of FLOC and CC (taken from [6]).
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Fig. 2. 1/(Volume) (in logarithmic scale) and residue of the individuals in the final
subpopulations of MOM-aiNet and of the final population of BIC-aiNet, for the Yeast
problem. The results of FLOC and CC correspond to the average values of residue and
volume of the final population of biclusters, as reported in [6].

As can be seen from Fig. 2 (and also from Fig. 3), the final individuals of dif-
ferent subpopulations returned by MOM-aiNet clearly present different quality
(if only the two optimization criteria are considered) since several of them are
dominated. However, it is important to notice that, although these individuals
are dominated by others, they correspond to biclusters in different regions of the
data matrix (otherwise, they would have been joined in a single subpopulation)
and, consequently, are also of relevance in the post-analysis process.

It can also be observed in Fig. 2 that the individuals of the final population
of the BIC-aiNet algorithm are concentrated in a region of higher volume when
compared to the individuals returned by MOM-aiNet. However, most of these
individuals are significantly above the required residue threshold (δ = 185),
what highlights the difference of both immune-inspired algorithms in the ability
to control the residue values of the generated biclusters.

Next, on Table 2, the results obtained by MOM-aiNet and BIC-aiNet on the
Movielens dataset (taken over 10 independent runs) are presented. This dataset
is very sparse, which makes the generation of dense and coherent biclusters
difficult. The parameters used for both algorithms were the same ones adopted
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for the Yeast problem, except for the residue threshold and maximum number
of subpopulations (biclusters), that were set to 2 and 300, respectively.

The results presented in Table 2 points out to the MOM-aiNet advantage of
having a better control over the upper bound of the residue, what guarantees
the generation of biclusters of higher volumes with residue values close to the
desired one (threshold). The BIC-aiNet does not present an explicit control over
this parameter, so it generates biclusters with a smaller residue, but also with a
smaller volume.

Table 2. Performance comparison between MOM-aiNet and BIC-aiNet algorithms for
the Movielens dataset. The results are shown in the format (average ± std. deviation),
taken over 10 independent runs.

Algorithm Avg. Residue Avg. Volume

MOM-aiNet 1.26 ± 0.68 203.88 ± 23.51
BIC-aiNet 0.43 ± 0.03 83.39 ± 13.56
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Fig. 3. Individuals in the final populations of MOM-aiNet, together with the final
population of biclusters generated by BIC-aiNet for the Movielens dataset. The volume
axis is in logarithmic scale.

Figure 3 presents the residue and volume of the individuals in the final subpop-
ulations, together with the final population generated by BIC-aiNet, obtained in
one of the ten independent runs performed here. As can be seen from Fig. 3, the
individuals of the final population of the BIC-aiNet algorithm are concentrated
on a smaller region of the objective space, and are clearly dominated by some
individuals obtained by MOM-aiNet. It can also be seen that the region popu-
lated by the individuals returned by BIC-aiNet also presents individuals from
MOM-aiNet (although in a smaller number), which illustrates that MOM-aiNet
was also capable of covering the region explored by BIC-aiNet.
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5 Final Remarks

In this paper, a novel multi-objective multipopulation artificial immune net-
work for data biclustering, named MOM-aiNet, was proposed. The MOM-aiNet
algorithm allows the generation of more than a single non-dominated front of
solutions, each one corresponding to a different region of the original dataset.

The proposed algorithm was applied to two well-known datasets from the
literature: a dense matrix called Yeast microarray data (for which MOM-aiNet
was compared with BIC-aiNet, FLOC and CC algorithms); and a sparse dataset
called Movielens (for which MOM-aiNet was compared with BIC-aiNet). The
results have shown that the proposed algorithm was able to produce better
results than the other algorithms on the two datasets, with the advantages of
having a better control over the bicluster quality and also returning a broader set
of non-dominated solutions. Besides that, MOM-aiNet together with BIC-aiNet
also present the advantage of being easily divided into several parallel processes,
which may be explored when dealing with larger datasets.

As future steps, more extensive sets of experiments will be performed with the
MOM-aiNet algorithm and the biclusters generated by the proposed algorithm
will be applied to collaborative filtering in the Web 3.0, which is a method to
perform automated suggestions for a user, based on the opinion of other users
with similar interests.
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Abstract. This paper presents Viral System as a new immune-inspired compu-
tational intelligence approach to deal with optimization problems. The effec-
tiveness of the approach is tested on the Steiner problem in networks a well 
known NP-Hard problem providing great quality solutions in the order of the 
best known approaches or even improving them. 

1   Introduction 

Artificial Immune Systems (AIS), introduced in [1], has a wide scope that covers 
from optimisation to classifiers or networks. AIS are a biological representation of the 
Natural Immune System (NIS). NIS protects the organism from dangerous extern 
agents such as viruses or bacteria. Antibodies try to protect the organism from such 
pathogens. Immune systems have a lot of peculiarities that make them very attractive 
for computational optimization. Examples are pattern recognition, auto-identification, 
diversity, autonomy, multilayered, cooperation, robustness, apprenticeship and 
memory, self-organization and integration among others. All these aspects make AIS 
attractive to manage optimization problems with constraints and objective functions. 
Some examples for combinatorial optimization problems are [2], [3] or [4]. 

Attending to these optimisation capabilities of AIS, we present Viral System (VS) 
that makes use of the same infection-antigenic response concept from immune 
systems, but from the perspective of the pathogen. In fact, real optimization problems 
are complex, especially those that are classified as NP-Hard. Several metaheuristics 
(as genetic algorithms, tabu search or simulated annealing among others) have 
successfully tried to deal with such problems. However, new research is being 
undertaken in order to find more successful methods to solve this kind of problems. 
Examples of that are Artificial Life algorithms, in particular predator prey type 
models, which are relatively closed to our VS, see [5] for an in-depth description of 
such models in a Multi-Agent System context. 

The rest of the paper deals with the natural description of VS in section 2 where the 
natural immune characteristics of the algorithm are described, the computational 
aspects of the system in section 3, section 4 shows the results of VS when applying to 
the Steiner problem what is a well-known NP-Hard problem that was used as 
framework to test VS, and finally the main conclusions are detailed in section 5. 
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2   Virus Organisms and Virus Replication Mechanisms 

Viruses are intracellular parasites shaped by nucleic acids, such as DNA or RNA, and 
proteins. The protein generates a capsule, called a capsid, where the nucleic acid is 
located. The capsid plus the nucleic acid shape the nucleus-capsid, defining the virus. 

One of the main characteristics of viruses is the replication mechanism. The phage 
(a common type of virus) does follow lytic replication process. Right side of Fig. 1 
depicts the biological evolution of the virus infection following the next steps: 

1. The virus is adhered to the border of the bacterium. After that, the virus penetrates 
the border being injected inside this one, (a) and (b) in Fig. 1. 

2. The infected cell stops the production of its proteins, beginning to produce the 
phage proteins. So, it starts to replicate copies of the virus nucleus-capsids, (c) and 
(d) in Fig. 1. 

3. After replicating a number of nucleus-capsids, the bacterium border is broken, and 
new viruses are released, (e) in Fig. 1, which can infect near cells, (f) in Fig. 1. 

The life cycle of the virus can be developed in more than one step. Some viruses 
are capable of lodging in cells giving rise to the lysogenic replication. This case is 
shown in the left side of Fig. 1. It follows: 

1. The virus infects the host cell, being lodged in its genome, (g) and (h) in Fig. 1.  
2. The virus remains hidden inside the cell during a while until it is activated by any 

cause, for example ultraviolet irradiation or X-rays, (i) in Fig. 1. 
3. The replication of cells altered, with proteins from the virus, starts. 
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Fig. 1. Lytic (left) and lysogenic (right) replication of viruses 

However, some viruses have the property of leading an antigenic response in the 
infected organism. In these situations an immune response is originated causing the 
creation of antibodies. 

The main difference between VS and AIS is the final goal of the process. 
Meanwhile AIS are focused on the organism side, VS is focused on the virus side. 
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The optimum is got when the organism dies and the infection triumphs. So it follows 
other objective different from traditional AIS. Next section describes the process due 
to the interaction between the viruses and the organism. 

3   Viral System Description 

3.1   Viral System Components 

VS are defined by three components: a set of viruses, an organism and an interaction 
between them: VS = <Virus, Organism, Interaction>.  

The Virus component of the VS is a set consisting of single viruses: Virus = 
{Virus1, Virus2 , … , Virusn}. And each virus is defined in four components: Virusi = 
<Statei, Inputi, Outputi, Processi> 

Where each component means: 

• Statei characterizes the virus. It defines the cell infected by the virus. It is typically 
the mathematical encoding of the solution in computational terms, which we also 
call genome. 

• A concrete virus, Virusi, can produce the infection of a cell of the organism 
providing a host. Additionally, the evolution of the residence time of the virus 
inside the cell can be defined by the number of nucleus-capsids replicated for the 
lytic replication (NR) or the number of iterations for the lysogenic replication (IT). 
So, the three-tuple genome-NR-IT defines the Statei for the Virusi. 

• Inputi identifies the information that the virus can collect from the organism. This 
information is always collected in the proximity of the virus. Inputi represents the 
input’s interaction with the organism (organism’s information  virus). It 
corresponds to the neighbourhood of the cell in computational terms. 

• Outputi identifies the actions that the virus can take. Outputi represents the output’s 
interaction with the organism (virus  organism). It corresponds to the selection 
mechanism of the type of virus replication in computational terms. 

• Processi represents the autonomous behaviour of the virus, changing the Statei. It 
corresponds to the replication operator process in computational terms. 
The Organism component of the VS is defined by two components: 

Organism = < Stateo, Processo> 
Where each component means: 

• Stateo characterizes the organism state in each instant. It consists of the clinical 
picture and the lowest healthy cell (the best solution found of the optimization 
problem). The set of feasible solutions in a specific space ℜn is given by the 
problem constraints (1). 

{ }nixgx i ,,1  , 0)(:K "=∀≤=  (1)

Each feasible solution of problem (1), x∈K, has been called a cell. The genome is 
the mathematical encoding of each cell or feasible solution. When a virus infects a 
cell, this cell enters the population of infected cells. The total amount of infected cells 
constitutes the infected part of K for each time instant, and it is named “clinical 
picture”. It contains the overall information of the infection needed by the algorithm 
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in each instant, t. Thus, the clinical picture consists of every three-tuple genome-NR-
IT defining the Statei of each Virusi. 

In the same way, the overall clinical picture plus the lowest value of f(x) defines 
the Organism Stateo. Fig. 2 depicts the State concept for the organism and the viruses. 

• Processo represents the autonomous behaviour of the organism that tries to protect 
itself from the infection threat, consisting of antigen liberation. Medically, an 
antigen is any substance that elicits an immune response. The antigens generate an 
immune response by means of antibodies trying to fight the virus infection. The 
computational mission of the antigens is to liberate space in the population of 
infected cells (clinical picture), trying to maintain free record memory in the 
clinical picture to incorporate new infected cells (new feasible solutions). Thus, 
due to the antigens’ activity, infected cells (in the clinical picture) can be recovered 
(removed) and cells in the organism that could be infected are not infected due to 
this antigenic substance. 

Clinical picture
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Virus2 State

Genome of cell 1
(encoding of the feasible solution x1)
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(encoding of the feasible solution x2)
Genome of cell 3
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Fig. 2. Organism and virus state 

3.2   Viral System Interaction  

The Interaction component of the VS is conditioned by the Input and Output actions 
that lead to a Process of every virus and the corresponding Organism response. A 
Virusi process implies a resulting change in the organism, and the same applies for an 
Organism’s process. The interaction is the union of both actions.  

3.2.1   Virus Input Sensor: Neighborhood Identification 
The input sensor of each virus, Inputi, collects information from the organism. The 
sensors map the genome of the cell and detect the set of cells close to the infected 
one. This set is named the neighbourhood of the feasible solution x, V(x). The 
neighbourhood depends on the shape of the constraints of the problem, gi(x). 

3.2.2   Virus Output Ejector: Replication Type Selection 
The ejector, Outputi, selects the type of evolution of the virus. We consider one step 
lytic replication (probability plt); and two steps lysogenic replication (probability plg). 
See Fig. 1. Where plt + plg  = 1. 
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3.2.3   Process: Lytic Replication 

3.2.3.1   Virus process. The lytic replication starts only after a specific number of 
nucleus-capsids have been replicated. So, each time instant (iteration t) a number of 
virus replications (NR) takes place. The number of replications per iteration is 
calculated as function of a binomial variable, Z, adding its value to the total NR. 

After a specific number of nucleus-capsids has been replicated inside the cell 
(LNR), the bacterium border is broken, liberating the lodged viruses. All these viruses 
are active and prepared to infect new cells. The value of LNR depends on the cell’s 
health conditions. So a healthy cell (with high value of f(x)) will have low probability 
of getting infected, and therefore the value of LNR will be higher. In the opposite it 
will have a lower value of LNR. Following equation (3) shows the calculation 
procedure for LNR in a cell x: 
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The number of nucleus-capsids replicated each iteration can be approximated by a 

Binomial distribution given by the maximum level of nucleus-capsids replicated, 
LNR, and the single probability of one replication, pr,: Z = Bin (LNR , pr). 

Once the distribution has been stated, we can calculate the probability of 
replicating exactly z nucleus-capsids, P(Z=z), as well as the average, E(Z), and 
variance, Var(Z), equations (3-5). 
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Once the number of nucleus-capsids surpasses the limit given by LNR, the border 
of the cell is broken and the viruses are liberated. For this case, one single cell is 
selected to be infected. In order to do so, the neighbourhood is evaluated and one of 
the less healthy cells is selected, configuring the new host to expand the infection.  

3.2.3.2   Organism process. In this case, the virus selects a cell with a low value of 
f(x) in the neighbourhood. However, the virus will not be able to infect those cells 
that have developed antigens. 

Higher values of f(x) imply healthy cells and therefore cells that have a higher 
probability of developing antigenic responses. On the contrary, cells with low value 
of f(x) imply unhealthy cells with lower probability of developing antigenic 
responses. 
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In order to represent such phenomenon, we use a hypergeometric function. The cell 
with an inverse objective function evaluation, ( )1 f x , in ranking position-i, has a 

probability of generating antibodies, pan(x), that is given by q(1-q)i, being q the 
probability of generating antibodies for the worst individual. Finally, a residual 
probability remains, which is added to the worst individual.  

Then, if the probability of generating antibodies for the case of cell x is pan(x), A(x) 
is defined as a Bernoulli random variable: A(x) = Ber (pan(x)). 

If cell x generates antibodies, the cell is not infected and it is therefore not included 
in the new clinical picture. For recording this clinical picture we use the original cell 
(that was infected by the virus and that reached the LNR limit) and we initiate a 
lysogenic cycle for that cell. 

x

x
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Output ejectors: lytic replication Input sensors: neighbourhood

Organism antigenic response

INTERACTION

VIRUS PROCESS
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Clinical picture
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Fig. 3. Virus process evolution during the lytic cycle 

Fig. 3 defines the algorithm evolution for the infection. The initial state is on the 
left-hand side: the virus process starts with viruses breaking the border and starting 
the infection of new cells in their neighbourhoods. Each virus selects the most 
promising cell, which is the least healthy cell. The Organism process is characterized 
by the probability of antigenic response in the least healthy cell. Those cells 
developing antibodies are not infected. Finally, the interaction (right hand side of the 
figure) defines the new clinical picture, with new infected cells lodging viruses. The 
cells generating antibodies follow a new lysogenic replication. 
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3.2.4   Process: Lysogenic Replication 

3.2.4.1   Virus Process. During the lysogenic cycle the virus remains hidden inside the 
cell until an external cause activates the virus. We consider that the activation of the 
lysogenic replication can happen after a limit of iterations has passed (LIT). As for the 
calculation of LNR, the value of LIT depends on the cell’s health conditions, so a 
healthy cell (high value of f(x)) will have a low probability of getting infected, id est. 
the value of LIT will be higher. On the contrary, it will have a lower value of LIT. 
Equation (6) shows the calculus procedure for LIT in a cell x: 

LITLIT 0
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(6)

                                 Where LIT0 is the initial value for LIT 

Once the virus has been activated, it produces alterations in the cell’s genome. It is 
equivalent to a genome mutation process in the mathematical programming encoding 
of the feasible solution. 

3.2.4.2   Organism Process. The lysogenic interaction is described as the substitution 
of the new genome-modified cell by the old one. It is quite similar to a mutation 
process in several types of evolutionary algorithms.  

3.3   End of the Biological Process 

The VS ending is achieved in two ways: the organism beats the virus implying the 
host recovery, or the virus beats the defence capabilities of the organism and the host 
death takes place. 

Computationally, the death of the organism can be reached when the difference 
between the best found solution and a known lower bound is smaller than a stated 
gap. There exist certain lower bounds known for several NP-problems. Nevertheless, 
a lower bound could always be calculated by means of the linear or Lagrangian 
relaxation for problems with a linear objective function and linear constraints. In case 
of knowing the optimum of the problem, the gap can be set equal to zero. This is a 
common case when dealing with trial problem collections. 

When the difference between the lower bound and the best found solution is below 
a gap, we consider that the organism has collapsed (7), and the VS infection ends. 

LB

|LB)(| * −
=

xf
gap  (7)

Other possible end appears after reaching a maximum number of iterations 
(Nmax), we consider that the viral infection cannot evolve further and the virus is 
isolated.  

When this criterion is used together with the previous one, the situation denotes 
that the gap is not reached, and the virus does not create a serious infection in the 
organism. Under this condition, the organism would have survived the virus infection. 
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3.4   Viral System Pseudocode Algorithm 

Table 1 details the main functions of the VS pseudocode. 

Table 1. VS pseudocode 

Initiate clinical_picture 
Select infection type 
Initiate iterations 
Do { 
 if case_infect = massive  
{ antigen(clinical_picture) 
} 
 replicat_type(clinical_picture)= 
output(clinical_picture) 
 Do { 
 if (replicat_type(cell) = lytic) 
  { replicate(cell) 
   NR = NR + replicate(cell) 
   if (NR ≥ LNR) 
   { neighbourhood(cell) = input_lytic(cell) 
    cell_infected= 
process_virus(cell,case_infect) 
    update_clinical_picture(cell_infected) 
   } 
  } 
  else 
  { iter = iter + 1 
if (iter ≥ LIT) 
mutate_genome(cell) = input_lysogenic(cell) 
    update_clinical_picture(mutate_genome) 
  } while (clinical_picture) 

} while{ gap () OR Nmax} 

4   Computational Results: The Steiner Problem in Networks 

We used the Steiner problem (SP), a well-known NP-Hard problem to test VS. SP is 
stated as follows: given a non-directed graph G = (N,A) with |N| nodes and |A| arcs 
with costs cij ∀(i,j)∈A; and a subset T⊆N with |T| nodes called terminals or targets, 
with the rest of the nodes in N called Steiner nodes, the goal is to find a network GT ⊆ 
G joining all the terminal nodes in T at minimum cost. This network can include some 
of the Steiner nodes but does not have to include all the Steiner nodes. 

4.1   VS Characterization for the Steiner Problem 

The Organism state is depicted by the clinical picture representing the infected part of 
the SP hull, K. A coverage formulation for the SP is shown in equation (8), [6]. 
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Where δ(X) denotes the cut induced by X⊆N, that is, the set of arcs with one node in 
W and one in its complement. It is easy to see that there is a one-to-one 
correspondence between Steiner trees in G = (N,A) and {0,1} vectors satisfying K. 

We represent the genome of the cells by a bit string of size equal to |N| in which 
each bit position i corresponds to the node i in the graph. A 1 means that the node i is 
connected, while the bit is set to 0 otherwise. As all the terminals must be in the 
Steiner tree, it is sufficient to use a bit string of size |N-T| including only the Steiner 
nodes belonging to the Steiner tree. So, the Steiner tree can be constructed by a 
minimum spanning tree that contains all the terminal nodes (set T), the subset of 
Steiner nodes in the bit string fixed to 1 and, perhaps, some artificial arcs if the set is 
disconnected. We made use of the graph construction mechanisms described in [7]. 

Once we have stated the cell genome we can define the Virus state. The three-tuple 
formed by the genome of each cell infected plus the number of replicated nucleus-
capsids (in the case of lytic replication) or the number of generations (in the case of 
lysogenic replication) defines the virus state. The entire infected cell population, 
which is the clinical picture, and the best solution complete the Organism and 
therefore the Virus state. 

The Output ejectors of the Virus component of the VS are clearly defined by the 
type of replication. On the contrary, the Input sensors must be carefully stated. In 
fact, a key decision is to state an adequate cell neighbourhood for the virus in the lytic 
replication process and a genome alteration process for the lysogenic replication. 

In case of the Steiner problem, the lysogenic replication is characterized as a 
genome alteration by flipping a bit in the string. The lytic replication for a feasible 
solution x∈K, maps the neighbourhood consisting of the set of bit strings that can be 
obtained by the removal or the addition of a single Steiner node from/to the current 
cell encoding. In order to be efficient, the new MSTs must be found by manipulating 
a rooted tree data structure carefully, [7]. 

Finally, the Virus and Organism components are completed by the specification of 
the Process. The Organism Process consists of the antigenic response and it is mainly 
determined by the determination of the parameter pan. The Virus Process consists of 
the determination of the type of replication that is conditioned by the parameters plt 
and plg. Additionally, the Virus Process depends on the parameters of replication, pr, 
infection, pi, and the limits LNR0 and LIT0. Due to the special encoding for the 
Steiner problem solutions the neighbourhood size is constant and equal to the number 
of Steiner nodes. It must be noted that the neighbourhood is set by changing the value 
of each bit from 0 to 1 and vice versa.  

The Interaction takes place after the selection of the Virus Process. It depends on 
the random evolution of the viral infection and the antigenic capacity of response.  

4.2   Results 

We used the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html) for the 
Steiner problem: series C, D and E, each one of them including 20 problems. Steiner  
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series C consists of trials with 500 nodes, arcs varying from 625 to 12,500, and 
terminals from 5 to 250; series D consists of problems with 1,000 nodes, arcs varying 
from 1,250 to 25,000, and terminals from 5 to 500; and finally series E includes trials 
of 2,500 nodes, arcs varying from 3,125 to 62,500, and terminals from 5 to 1,250. 

Table 2. Results: a comparison among Genetic Algorithm, Tabu Search and Viral System 

Problem GA-E F-Tabu VS  Problem GA-E F-Tabu VS 
C1 0.00% 0.00% 0.00%  D1 0.57% 0.00% 0.00% 
C2 1.67% 0.00% 0.00%  D2 0.00% 0.00% 0.00% 
C3 0.13% 0.00% 0.00%  D3 0.92% 0.06% 0.00% 
C4 0.11% 0.00% 0.00%  D4 0.52% 0.00% 0.00% 
C5 0.00% 0.00% 0.00%  D5 0.12% 0.00% 0.00% 
C6 0.73% 0.00% 0.00%  D6 0.00% 0.00% 0.00% 
C7 1.76% 0.00% 0.00%  D7 1.94% 0.00% 0.00% 
C8 0.63% 0.00% 0.00%  D8 1.55% 0.37% 0.47% 
C9 1.05% 0.14% 0.00%  D9 0.50% 0.21% 0.69% 
C10 0.26% 0.00% 0.00%  D10 0.13% 0.00% 0.00% 
C11 1.88% 0.00% 0.00%  D11 2.07% 0.00% 0.00% 
C12 1.30% 0.00% 0.00%  D12 0.00% 0.00% 0.00% 
C13 1.01% 0.00% 0.00%  D13 0.56% 0.00% 0.00% 
C14 0.87% 0.31% 0.00%  D14 0.30% 0.15% 0.15% 
C15 0.25% 0.00% 0.00%  D15 0.16% 0.00% 0.00% 
C16 0.00% 0.00% 0.00%  D16 0.00% 0.00% 0.00% 
C17 0.00% 0.00% 0.00%  D17 0.00% 0.00% 0.00% 
C18 0.71% 0.00% 0.00%  D18 1.26% 0.90% 0.90% 
C19 0.41% 0.00% 0.00%  D19 1.03% 0.32% 0.65% 
C20 0.00% 0.00% 0.00%  D20 0.15% 0.00% 0.37% 

Total 0.64% 0.02% 0.00%  Total 0.59% 0.10% 0.16% 
        

  Problem GA-E F-Tabu VS   
  E1 0.00% 0.00% 0.00%   
  E2 0.93% 0.00% 0.00%   
  E3 0.00% 0.32% 0.24%   
  E4 0.02% 0.00% 0.00%   
  E5 0.00% 0.00% 0.00%   
  E6 0.00% 0.00% 0.00%   
  E7 0.00% 0.00% 0.00%   
  E8 0.23% 0.42% 1.14%   
  E9 0.19% 0.14% 0.47%   
  E10 0.00% 0.04% 0.14%   
  E11 0.00% 0.00% 0.00%   
  E12 1.49% 1.49% 0.00%   
  E13 0.70% 0.63% 1.33%   
  E14 0.23% 0.23% 0.64%   
  E15 0.00% 0.11% 0.00%   
  E16 0.00% 0.00% 0.00%   
  E17 0.00% 0.00% 0.00%   
  E18 3.37% 1.60% 2.66%   
  E19 1.26% 1.19% 1.18%   
  E20 0.00% 0.00% 0.15%   
  Total 0.42% 0.31% 0.40%   

        

 
Table 2 shows the results (in error percentage with respect to the optimum) for the 

Stein-C, Stein-D and Stein-E problems and the comparison with the best Tabu Search 
approach from [7] (the F-Tabu method), which is the best approach for the Steiner 
problem in terms of solution quality. Additionally we have selected the best 
biologically inspired method to solve the Steiner problem. It is the case of the Genetic 
Algorithm approach due to [8], (GA in the table). 
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Each problem was four times solved and results in Table 2 show the best value 
reached in all the considered replications for VS, GA or TS. The standard deviation of 
the solutions provided by the methods was less than 5% as average value what is a 
feasible value for a design problem (SP). 

According to the results of Table 2 (a total of 60 problems), VS was the best 
approach in 48 times and outperformed the GA-E (22 times) approach. F-Tabu 
showed better performance, being the best approach 51 times. However, VS provided 
a better solution for the C9, C14, D3, E3, E12, E15 and E19 problems. VS provided 
very valuable results taking into account that F-Tabu was processed after selecting the 
100 best different trees found by the MPH algorithm, after executing the P-Tabu 
approach as an initial search and reprocessing it into the final Full Tabu Steiner (F-
Tabu). So the quality of the F-Tabu results is very high but it is also very much 
conditioned by the very good seed that is provided. On the contrary, we applied VS 
directly to the graph without pre-processing it with any special previous heuristic as 
MPH or previous metaheuristics as P-Tabu. Nevertheless, the initial clinical picture of 
VS was wholly random-generated. We did not use a good seed provided by a good 
heuristic because we were interested in observing the quality of the VS evolution to 
the final solution, more than on outperforming previous heuristics. However, we 
realized that without searching for a good seed we were obtaining results equivalent 
(in quality terms) to the best Steiner approach: the F-Tabu algorithm. 

With respect to the time consumption, we have to say that time values among 
methods cannot be directly compared because tests were run in a different computers. 
However, we can estimate the order of time consumption by the algorithm’s 
complexity, given in (9). 

( )2~ NgraphsNumSteinerITEROtime ⋅⋅  (9)

Where ITER is the maximum number of iterations, NumSteiners the number of 
Steiner nodes in the graph and Ngraph the total number of nodes in the graph. 

The solutions were attained using the parameters of Table 3. We found that VS 
efficiency was non-dependent on the probability of generating a great or low number 
of nucleus-capsids (parameter PZ), so its performance showed non-dependency from 
this parameter in the SP case. The rest of parameters depended on the percentage of 
terminals mainly. So, two set of parameters were considered. We executed four times 
the VS with the first set, and four additional times for the second set of parameters.  

Table 3. Parameters selection for VS 

 % Terminals < 15% % Terminals ∈ [15%,30%] % Terminals 30% 
Parameters 1st set 2nd set 1st set 2nd set 1st set 2nd set 
ITER 50,000 10,000 50,000 50,000 10,000 50,000 
POB 100 50 100 50 50 50 
PLITI 0.7 0.7 0.7 0.7 0.7 0.7 
LNR 15 15 15 15 10 10 
LIT 10 10 20 10 10 10 
Pz 0.5 0.5 0.5 0.5 0.5 0.5 
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5   Conclusions 

We have presented a new approach to optimize combinatorial problems called Viral 
System which is inspired in a natural immune system. The main difference between 
VS and traditional AIS is the final goal of the process. Meanwhile AIS are focused on 
the organism side, VS is focused on the virus side. The optimum is got when the 
organism dies and the infection triumphs. So it follows other objective different from 
traditional AIS. The method was tested with an extremely difficult combinatorial 
problem as the Steiner problem is. It is a well-known NP-Hard problem. In fact, most 
of the network problems are proved to be NP-Hard by reduction to the SP. 

VS was applied to a large set of trials and was compared with the best approaches 
to solve the SP. VS clearly improved the results from the Genetic Algorithms (a bio-
inspired evolutionary methodology close to our proposal) and also outperformed 
several times the Tabu Search approach (the best known metaheuristic for the SP).  

Our future research is focused on applying VS to other well-known NP-Hard 
problems that arises in contexts different from networks in order to test its efficiency.  
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Abstract. Specknets consist of hundreds of miniature devices, which are
each capable of processing data and communicating wirelessly across short
distances. Such networks, with their great complexity, pose considerable
challenges for engineers due to the unreliability and scarce resources of
individual devices. Their limitations make it difficult to apply traditional
engineering approaches. In this paper, we describe a model inspired by the
dendritic cells of the innate immune system; often overlooked in artificial
immune systems, dendritic cells possess a unique ability to scout the body
environment and then present an integrated picture of the internal state
of the body to the adaptive system. We adopt a model, inspired by this
approach, to sense the state of a Specknet and provide experimental re-
sults to show that useful information can be gathered from the Specknet
in order to determine local states. Experiments are conducted using real-
istic random topologies in a simulation environment, in a scenario which
models sensing temperature changes.

1 Introduction

Specks are autonomous, minute semi-conductor grains of around 5x5mm2 which
possess the capability to sense, process, and transmit data via wireless sensor
networking. Platforms consisting of thousands of such specks, termed Specknets,
offer the potential of truly ubiquitous computing in which collaboration between
specks results in programmable computational networks [2]. A Specknet fully em-
braces the idea of an autonomous system with programmable constituent parts,
where the parts themselves are sustaining the system by showing ‘self’ proper-
ties such as self-organisation, self-sufficiency and self-adaptation. The network
lacks powerful central processing units and relies on each programmable speck to
process and act on information, in collaboration with its neighbours over short
communication ranges of the order of tens of centimetres. These requirements
pose considerable challenges to application developers, on top of the non-trivial
challenges posed by the development of the specks themselves.

Biology, and in particular the immune system, provides a rich and obvious
source of inspiration for working with such systems, given the similar require-
ments for meaningful behaviours to emerge from interactions of substantial num-
bers of individually weak entities. This has already been recognised in the field of
wireless sensor networks (WSNs) [7] and was first proposed as a viable metaphor
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for programming Specknets in [6]. In this paper, we present clarification and fur-
ther results from a model first described in [5], which takes inspiration from the
innate immune system. Despite having received relatively scant attention from
the community of artificial immune systems (AISs) until recently, the innate im-
mune system exhibits many appealing features from a system perspective. Once
thought to simply provide an indiscriminate, rapid defence until an adaptive
response kicked in, it is now clear that the innate system is actually responsible
for activating the adaptive system; this occurs as a result of scouting the body
environment and presenting an integrated picture of the internal state of the
body to the adaptive system, which is then triggered to react, or suppressed,
according to the state information. This metaphor is ripe from exploration in a
system-based application such as a network exposed to both external and internal
signals, as in the body.

This paper presents extensions to the model described in [5] and provides
further initial results obtained in random Specknet topologies, using a simple
scenario in which a Specknet equipped with temperature sensors monitors exter-
nally applied fluctuations. In particular, Sect. 2 discusses related work; Sect. 3
describes the immunological theory that supports the model for a Specknet,
which is presented in Sect. 4; Sect. 5 describes the simulation setup used to ob-
tain the results presented in Sect. 6; finally the conclusions are discussed Sect. 7.

2 Related Work

Although the literature contains a wealth of work relating to biologically in-
spired approaches to WSNs and to immune-inspired algorithms in many diverse
domains, there is little which is directly relevant to the use of immune systems
in the class of WSNs typified by Specknet. We briefly mention some work which
has some similarities, although as far as we can ascertain, our work is novel in
the use of innate immune-inspired mechanisms to WSNs.

The SASHA architecture, proposed by [4], presents a self-healing hybrid sensor
network architecture which is inspired by the natural immune system. This work
is motivated by the same ideas as our work in taking a holistic approach to the
immune system; the architecture is implemented on a classic sensor network and
is directed towards achieving fault tolerance and adaptability to pathogens. The
model incorporates many features of the immune system, but includes the use
of high-powered database components and base stations which are not included
in the vision of a Specknet, and hence reduces the applicability of the approach.

Atakan et al. [3] employ a method inspired by the behaviour of B cells in
the adaptive immune system to distributed node and rate selection in a WSN.
The aim is to select appropriate sensor nodes and regulate reporting frequencies
to meet the event estimation distortion constraint at sink nodes, with the mini-
mum number of sensor nodes. Essentially, the problem of reducing the amount of
redundant information transmitted through the network is treated as an optimi-
sation problem, with competitive selection acting on nodes in order to determine
which nodes are best placed to transmit.
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Finally, although not concerned with sensor networks, at a high-level our
work has much in common with the dendritic cell algorithm (DCA) proposed by
Greensmith et al. [8]. However, the implementation details differ at a low-level.
This work was the first to exploit one of the essential properties of the innate
immune system, that of its ability to perform sensor fusion of data and signals
in order to determine system state. The DCA was proposed in the context of
performing anomaly-detection in computer-security; although we do not utilise
their algorithm itself, our approach captures the same essential property; that
of gathering context dependent information over time in order to determine the
state of a system. The DCA’s main function is in determining the context of
collected data; currently our approach focuses more directly on the gathering
process of the data itself in a difficult, distributed environment. However, in
future, the DCA may be employed more directly.

3 The Innate Immune System

As briefly described in Sect. 1, the innate immune system is a key component in a
natural immune system. The innate system consists of a number of players, which
collectively contribute to its overall functionality. In this section, we provide a
brief, high-level overview of the role of one of those players in this system, the
dendritic cell. The description necessarily omits much of the biological detail; the
aim is simply to provide sufficient understanding of the processes that occur in the
natural immune system to motivate the inspiration for our current work in WSNs.

The dendritic cell is often referred to as the ‘sentinel’ of the immune system
[10], playing a unique role in sampling the body’s tissues and reporting back
on the state of them to the next line of defence, the adaptive immune system.
Dendritic cells reside in the epithelial tissues of the body (e.g. the skin), sam-
pling the tissue in their vicinity. Essentially, they soak up molecular debris (e.g.
bacteria or other pathogenic material) and, additionally, sense molecular signals
present in the tissue. The signals may derive from ‘safe’ or ‘normal’ events (e.g
regular, pre-programmed cell death) or from potentially dangerous events, where
cell death occurs due to stress or attack. These signals may be exogenous and/or
endogenous. Whatever their source, collection of ‘sufficient’ signal and antigen
triggers immature dendritic cells to mature. At this point, they travel back to
the nearest lymph node through a complex system of lymphatic vessels.

The lymph nodes function as dating agencies where the different immune cells
of the body congregate. In particular, the dendritic cells that reach the lymph node
carry a snapshot of the current state of the tissues back. The snapshot contains two
important pieces of information: antigen, i.e. (potentially) unsafe material, and
also signals representing the context under which the material was collected. This
snapshot is viewed by the reactive immune cells, in particular T cells, and a process
of communication and collaboration between cells ensues. This process ultimately
results in activation, or tolerance, of the immune system, depending on the content
and context of the information presented. From the perspective of our research
in Specknets, we identify two distinct roles of the innate immune system; firstly,
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the physical role of traversing the immune system and gathering information, and
secondly, the process of presenting that information to the adaptive system in the
correct context. In this paper, we concentrate on the former role. In future work,
we turn our attention to extracting the context of the gathered information and
actuating the system to react accordingly.

4 An Immune-Inspired Model for a Specknet

The innate immune system processes, described in Sect. 3, offer three major
sources of inspiration for the current model.

– Dendritic cells circulate through body tissues, sampling exogenous and en-
dogenous signals.

– The dendritic cells return to the lymph nodes, via a process of chemotaxis,
when they become mature, where they deliver a snapshot of the current
environment.

– The lymph nodes in the body are distributed; the large lymph nodes are
strategically located to areas of the body that are closer to sources of input
from the environment.

From this, we derive a model consisting of specks and scouting messages (SMs).
We currently distinguish between two different types of specks:

– Tissue specks correlate to tissues in the body, and contain sensors for moni-
toring the external environment (e.g. light, pressure, temperature etc.). They
can also provide internal signals, for example relating to their own state (i.e.
battery power). These specks constitute the majority of specks in any given
environment.

– Integration specks correspond to lymph nodes. These specks receive informa-
tion from dendritic cells, process it, and determine an appropriate response.
These specks may have greater processing power than tissue specks.

A typical environment will contain a high ratio of tissue specks over integration
specks. Although in the body lymph nodes are strategically placed, this is not
feasible in a typical speck deployment, where thousands of specks may be sprayed
at random into an environment. Therefore, we model random placements of
integration specks. Dendritic cells are mapped to SMs. Messages originate at
integration specks and traverse the tissue specks, where they collect information
from each speck visited. Eventually, they return to the integration specks, where
the information collected is processed. The implementation of these processes
are discussed below.

4.1 Traversal of Tissue Specks

Messages originate from the integration speck and follow a random walk through
the tissue. The walk is achieved by using one-hop neighbourhoods. Each speck
maintains a list of IDs that lie within radio range, from where it randomly selects



Computing the State of Specknets 99

the next speck ID to be visited by the SM. If the destination hop is a tissue
speck, the SM collects one more sample, otherwise the integration speck simply
relays the message to another random neighbour. The technical details regarding
the manner in which a speck obtains and maintains its list of neighbours are
described in [5].

Aggregating information from the network via SMs is configurable with respect
to the type of information needed. With every SM it releases, the integration speck
can specify the type of local (L) and group (G) samples to be gathered. A local
sample is the information a SM requests from each tissue speck visited, and may
for example take the form of an average value of sensor readings over a specified
window size. The collection of local samples is returned to the integration speck,
in a form known as group sample, by applying a function to the set of local sam-
ples (e.g. an average, minimum or maximum). The parameters used for processing
sensor readings from the tissues and the functions applied to local sensor values
are application dependent. With respect to group samples, the processing of local
samples can be performed as the SM passes through the network, reducing the re-
quired data rate. However, in other cases this reduction may not be possible, for
example when more complex functions need to be applied.

The life cycle of a SM is shown in Fig. 1. Scouting messages that sample
the network are in a naive state, and can either become mature, as a result of
collecting interesting information, 1 or simply expire; in either case they return
to the lymph to present their information. Information gathered by expiring SMs
is of relevance to the integration speck, which can estimate context based on the
proportion of expired to mature messages returning, and also by aggregating
information contained in the expired messages.

4.2 Chemotaxis Back to Integration Specks

In the immune system, cells are directed to the lymph node by a process of
chemotaxis. In this case, dendritic cells express receptors for chemokines, which
are transmitted by the lymph node. As already noted, we wish to avoid indis-
criminate broadcasting of messages, thus ruling out the possibility of integration
specks transmitting homing messages. However, we wish to direct the SM back
to the integration specks. This is implemented by using a simple routing algo-
rithm, based on spanning trees, which is described in detail in [5]. The algorithm
utilised requires that each tissue speck stores locally the root ID, the ID of its
parent in the tree and the number of hops that it is away from the root. It
also requires that the routing paths are refreshed periodically, to restore any
corrupted links due to potential failures of communication between specks.

4.3 Summary of the Model

In summary, integration specks send out SMs which traverse tissue specks,
where they collect external and internal signals. They then return to the nearest
1 This is an application dependent feature; candidates, currently being explored, take

advantage of the processing power of individual tissue specks and include measuring
variance of external signals and monitoring of internal signals such as battery power.



100 D. Davoudani, E. Hart, and B. Paechter

Released
by

integration
speck

MATURE EXPIRED

Presenting

Unexpected event /
problem found

Max path-
length reached

Lost

Unfavourable
network conditions Received by

integration speck

Migrating

Sampling

NAIVE

Fig. 1. The life cycle of a scouting message

integration speck, where their information is filtered and aggregated. Eventu-
ally, a decision may be made by the integration speck to act upon the collective
information. This may result in one or more possible actions: effector messages
may be sent out, which modify the external environment (e.g. turning a heat
source on or off); alternatively, the integration speck may modify the internal
variables of the system, for example alerting tissue specks to modify their in-
ternal parameters, or increasing the rate at which it sends out SMs in order to
gather further information. We intend to examine these further in future work.

5 Verification of the Model in Realistic Topologies

5.1 SpeckSim

In the first instance, we test our model in a behavioural speck simulation environ-
ment, SpeckSim [9], provided by the Speckled Computing consortium. Details of
the simulation tool can be obtained from [1]. The simulation tool has been aug-
mented to enable the immune model to be deployed, details for which are given
in [5]. In addition, a heat model was added which simulates ambient temperature
in the environment. Furthermore, it allows the introduction of hot spots, which
radiate heat at variable temperatures. Specks are assumed to contain temper-
ature sensors, which incorporate both white noise and an individual tuneable
random bias in the readings.
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5.2 Simulation Setup

In [5] we presented preliminary results regarding the coverage of the network by
SMs. These results were obtained in static Specknet deployments, in which specks
were arranged in a regular grid pattern on a 2D plane. We now extend this analy-
sis in more realistic topologies, in which specks are randomly distributed on a 2D
plane. The radio range is fixed such that, on average, each speck is within commu-
nication range of four neighbours (the actual value of the range was determined
empirically from extensive investigation with random topologies). Three integra-
tion specks are randomly positioned in the Specknet, as shown in Fig. 2(a).
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Fig. 2. A snapshot from SpeckSim shows an example of one of the network layouts
used for experiments (a). The corresponding heat map is shown in (b).

Initialisation Phase. When a simulation run is launched, devices are initialised
at random times to reduce the chances of collision. After a random start-up
delay, specks establish their local neighbourhoods by broadcasting their IDs. The
one-hop neighbourhood list, that each speck maintains, is updated by periodic
broadcasts of its own ID (further details on the formation of neighbourhoods is
given in [9]). In this phase, the spanning trees are also established. Full details
of this process are given in [5].

Operational Phase. Upon completion of the initialisation phase, integration
specks start producing SMs, currently with fixed, pre-determined frequency.
Each SM contains information regarding the number of tissue specks that the
message must sample (i.e. the path-length) before it expires, the type of local
samples to collect (e.g. local mean or maximum value over a specified window
size), and the type of group sample to return (e.g. the mean of the local samples).
This information may be altered by the integration speck as time progresses,
based on the information it is currently receiving.

Using this Specknet deployment, a number of experiments are performed in
which the path-length of the SMs and the topology of the network is varied,
in an environment defined by the heat model. The results are presented in the
next section.
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6 Results

Experiments were conducted using ten, randomly generated, topologies, each
containing 225 specks. Three randomly positioned specks were assigned to be
integration specks, the remainder allocated as tissue specks. All specks refresh
their list of neighbours every 10 time units; the lifetime of a neighbourhood
record for each speck is 15.1 time units; the spanning trees are refreshed at
a frequency of 5 time units — spanning tree records never expire; SMs are
generated from integration specks every 2 time units. These values are currently
chosen arbitrarily. In the future, extensive experimentation will be performed in
order to optimise the parameter settings and determine the robustness of the
system to each parameter.

6.1 Coverage of Network

To determine the relationship between the coverage of the entire Specknet and
the path-length of the SMs, ten experiments were performed for each topology,
in which the number of scouting messages returning to the integration specks
was measured over a time period of 255 units (in which 100 SMs were sent).
Path-lengths were varied systematically from 1 to 50. Figure 3 presents the
results from the perspective of the number of specks sampled and the number of
messages sent. The percentage of sampled specks refers to the percentage of all
tissue specks that have been sampled by a SM at least once. On the other hand,
successfully sampled specks is the percentage of the tissue samples taken, that
are actually received by integration specks, and therefore may be lower than the
former measure. Finally, we also measure the percentage of SMs that are sent
but do return to an integration speck, which comprise the lost SMs. Loss may
occur due to radio collisions or timed out broadcasts.
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Fig. 3. Sampled specks and lost scouting messages over path-length
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Figure 3 shows that at low path-lengths, transmission and reception of SMs
is reliable; as the path-length increases, lost messages account for at maximum
30% of messages sent at path-length 50. On the other hand, the success-rate,
as measured by the number of specks successfully sampled, increases with path-
length; the longer path-length allows parts of the Specknet to be sampled that
may not be possible to reach at short path-lengths, given the random placement
of the integration specks. The figure shows that despite the loss of up to a third
of messages at high path-length, almost 100% coverage of the Specknet can
still be achieved. Clearly, the low success-rate at low path-length is inevitable,
but could be countered by increasing the number of integration specks in the
system.

6.2 Locality of Information

The path-length of a SM plays a key role in determining how localised is the
information that is returned to an integration speck. Low path-lengths result
in a snapshot of the immediate environment of an integration speck being ob-
tained. In contrast, high path-lengths result in messages scouting larger areas
and a more general picture being built up. This is illustrated in Figs. 4(a) and
4(b) which depict the tissue specks sampled by each integration speck at path-
lengths 5 and 35 respectively. The shading of specks reflects the number of
times a speck was sampled (lighter shading indicates more samples). Blank ar-
eas indicate regions which were not sampled at all or do not contain any specks
(the topology corresponds to that shown in Fig. 2(a)). At low path-length, each
integration speck receives a distinct picture of its local environment. On the
other hand, at path-length 35, the regions sampled overlap. We expect that
this will have significant impact on the next stage of our research, in which the
integration specks will be required to route effectors back to sites of interest,
just as the lymph nodes route T cells to infected sites as reported by dendritic
cells.

6.3 Monitoring Environmental Changes

In the above experiments, the heat model used maintained the ambient tem-
perature at 21◦C; tissue specks sample the temperature from the environment
every time unit and maintain a window of the last 4 readings. They pass their
local sample mean SL over this time window to a SM. Each speck is assigned
a random bias at the start, drawn from a Gaussian distribution with mean 0
and standard deviation 1, and a random measurement noise, again drawn from
a Gaussian distribution with the same parameters.

In order to test the ability of the integration specks to monitor the local
environment based on information returned by SMs, we performed a further ex-
periment in which a hot spot was introduced into the environment at time step
t=30; the temperature at this hot spot increased linearly over 40 time steps,
to reach 40◦C at t = 70. The temperature was then maintained at this value
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Integration speck 1
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Integration speck 3
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Fig. 4. Coverage of the tissue specks’ network in terms of scouting messages returning
to each integration speck; shading shows the number of times a speck was sampled

until t = 80, at which point it linearly decreased to a value of 38◦C at t = 100.
The hot spot causes a temperature gradient throughout the environment, shown
in Fig. 2(b) — the hot spot itself is indicated on Fig. 2(a).

Scouting messages returning to an integration speck, notify the speck of their
group sample mean SG. The integration speck maintains a list of the last 5
temperature values delivered by SMs and calculates an estimation mean value
E. In Figs. 5(a) and 5(b), we plot the estimation value E against time for each
of the integration specks for path-lengths 5 and 35; the graphs shown are the
result of averaging over 30 separate experiments on a single topology.

From both graphs we can see the initialisation phase of the network, which is
completed in, approximately, the first 20 time units of the simulation runs. This
phase is followed by a start-up transient, during which the integration specks fill
their empty buffers with received SMs. At this stage, the results are inaccurate,
as the integration specks have not yet collected sufficient samples for calculating
their estimation values. This stage lasts for a longer period in the latter figure
due to the much longer path-length that the SMs must complete, before they
expire and head back to an integration speck. After this necessary time lag, the
network enters the operational phase of its life.

In both cases, the temperature at each of the three integration specks stabilises
at the ambient value. Furthermore, in both figures, it is clear that integration
speck 1, which is closest to the hot spot, becomes aware of the temperature
change in its local environment, whilst the remaining integration specks record
only a slight increase in temperature. Figure 5(a) clearly shows that the short
path-length results in SMs capturing a more tightly localised representation of
the environment; integration speck 1 records a maximum average temperature
of approximately 30◦C. This is contrasted in Fig. 5(b), in which integration
speck 1 registers a maximum temperature of approximately 26◦C, reflecting the
sampling of greater regions indicated in Fig. 4(b).
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Fig. 5. Estimation mean temperature E obtained by integration nodes over time from
returning scouting messages

7 Conclusions

The paper has presented a model inspired by the innate immune system for com-
puting the state of an environment using a Specknet; both external environmental
signals as well as internal system variables, regarding the state of the system it-
self, can be monitored. The experiments presented in the paper, verify the basic
premises of the model when deployed in a simulated environment consisting of
randomly placed specks. The results validate that SMs can be used to sense the
state of the environment; experiments have also analysed the relevance of some of
the parameters of the model, in particular the effect of the path-length of SMs. In
future work, we plan to investigate the scaling up of network size, and analysing
the effect of increasing the number of integration specks. In parallel, we are cur-
rently experimenting with refinements of the model, in which SMs mature as a
result of collecting ‘interesting’ information, and immediately return to the inte-
gration specks. We also intend to examine how information received by SMs can
be integrated and acted upon.

The Specknet environment presents an exciting, but challenging, platform
for research in autonomous systems. The natural immune system formulates an
immune response as a result of the cumulative experience of the immune system
dealing with both the body and the world. Ee hope to achieve desired responses
in a Specknet by computing the state of the Specknet and reacting accordingly.
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Abstract. This paper introduces a hybrid model for network intrusion detection 
that combines artificial immune system methods with conventional information 
security methods. The Network Threat Recognition with Immune Inspired 
Anomaly Detection, or NetTRIIAD, model incorporates misuse-based intrusion 
detection and network monitoring applications into an innate immune capability 
inspired by the immunological Danger Model. Experimentation on a prototype 
NetTRIIAD implementation demonstrates improved detection accuracy in 
comparison with misuse-based intrusion detection. Areas for future investiga-
tion and improvement to the model are also discussed. 

1    Introduction 

Preserving the confidentiality, integrity and availability of networked systems is an 
increasingly important and difficult task.  Misuse-based network intrusion detection 
systems have been an effective safeguard against known threats to networked assets. 
Improving these systems with adaptive capabilities to detect novel threats and with 
improved accuracy to reduce false alarms will maintain their usefulness. 

A long-time goal of the security community has been to create an 'immune system' 
for information systems with the flexibility, effectiveness and robustness of the im-
mune systems that protect organisms [7]. A system that responds effectively to new 
threats without human intervention would significantly improve security. 

Artificial immune systems (AIS) offer a means to solve complex, dynamic prob-
lems like many of those found in the domain of information system security [5]. 
However, problems of scalability and detection of a broad range of potential threats 
have so far limited the success of intrusion detection systems based solely on artificial 
immune systems. 

A hybrid threat detection model that combines artificial immune system methods 
with conventional intrusion detection techniques has the potential to provide results 
superior to that offered by either of these approaches separately. Such an approach 
could be a step toward more secure, self-protecting information systems. 

This paper presents a model for network threat recognition with immune-inspired 
anomaly detection. This model combines immune-inspired mechanisms with proven, 
conventional network intrusion detection and monitoring methods. The model builds 
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upon these conventional methods, employing them as the foundation for an innate 
immune capability rather than replacing them. This approach preserves the functional-
ity of an existing set of information security applications, providing enhanced capa-
bilities via the artificial immune system overlay. 

The remainder of this paper is organized as follows. Section 2 provides background 
information on the biological inspiration for the model and a brief overview of related 
work. Section 3 presents the model, covering the components, representation schemes 
and methods of operation. Section 4 relates experimentation on a prototype implemen-
tation of the model. Section 5 discusses conclusions and areas for future work. 

2    Background 

2.1    Immunological Inspiration 

The Danger Model is an alternative to self - nonself discrimination as an explanation 
for behavior of the immune system [19]. This theory states that the primary trigger of 
an immune response is not the fact that a pathogen is foreign so much as that it does 
harm and is therefore dangerous. The Danger Model holds that the body's tissues, not 
the immune cells, are the primary controllers of the immune response [21]. Distressed 
tissues emit chemical danger signals to stimulate immune reactions while healthy tis-
sues emit ‘calming’ or safe signals to induce tolerance by the immune system [20]. 

Antigen presenting cells such as dendritic cells exist in tissues throughout the body 
as part of the innate immune system. These cells spend a time in an immature state 
during which the sample their surroundings to collect antigens. Eventually a dendritic 
cell matures, leaving the tissue and migrating to the lymphatic system. Once there, 
dendritic cells present their antigens to the adaptive immune system’s T cells. 

The Danger Model theorizes that dendritic cells mature due to stimulation from 
danger and safe signals. Further, maturation in a context of danger will cause the den-
dritic cell to signal that the antigens presented require an immune reaction while 
maturation in a context of safety signals that the antigens should be tolerated. 

2.2    Related Work 

Several authors apply AIS methods to problems in network intrusion detection. Kim et al. 
provide a detailed review of this work [16]. Hofmeyr and Forrest present an implementa-
tion of a network intrusion detection system called the Lightweight Intrusion Detection 
System, or LISYS [13]. LISYS uses distributed populations of negative detectors to iden-
tify anomalous TCP SYN connections on a single network broadcast domain. Kim and 
Bentley propose a model for an immune-inspired network intrusion detection system 
[14]. They subsequently present a dynamic clonal selection algorithm, DynamiCS, that 
attempts to overcome scaling issues in the LISYS approach [15].  

Aickelin and Cayzer discuss applying Danger Model concepts to AIS [2]. Aickelin 
et al. subsequently argue that the Danger Model provides a good source of inspiration 
for AIS that address intrusion detection problems [1]. They describe a framework for 
intrusion detection based on the correlation of danger signals derived from the state of 
systems and observed events, with the type and strength of the signals determining the 
occurrence of alerts or other reactions. Kim et al. present a Danger Model inspired 
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approach for host-based intrusion detection [17] while Tedesco, Twycross and Aicke-
lin address network intrusion detection [25]. These approaches emulate the interac-
tions of dendritic cells and T cells to identify and respond to pathogens. Dendritic 
cells stimulate or suppress the reaction of T cells to a given antigen based on the pres-
ence or absence of danger signals with the antigen. Twycross and Aickelin propose a 
larger role for innate immune system concepts in AIS and provide the libtissue soft-
ware framework to facilitate implementation of these concepts [26, 27]. 

Greensmith, Aickelin and Cayzer discuss fully incorporating Danger Model con-
cepts into an actual AIS anomaly detector by emulating the functioning of dendritic 
cells [10]. This proposal has been developed into the Dendritic Cell Algorithm (DCA) 
that demonstrates promising results on a number of problems, including network port 
scan detection [11, 12]. 

3    A Model for Immune Inspired Intrusion Detection 

The Network Threat Recognition with Immune-Inspired Anomaly Detection (Net-
TRIIAD) model draws inspiration from both the innate and adaptive portions of the 
natural immune system. The model can be logically divided into an Innate Layer and 
an Adaptive Layer. Figure 1 depicts an overview of the NetTRIIAD model. 

The Innate Layer conducts the majority of NetTRIIAD's external data collection. 
This layer synthesizes antigens from packets observed on the network. It also synthe-
sizes danger model signals from observed events and the state of the network and its 
hosts. The Innate Layer classifies antigens as dangerous or safe and provides this in-
formation the Adaptive Layer for further processing. 

The Adaptive Layer emulates the interactions that occur between the adaptive im-
mune system's T cells and dendritic cells in locations such as the paracortex of a 
lymph node. This layer processes the antigens presented by dendritic cells migrating 
from the Innate Layer. The Adaptive Layer recognizes threats visible on the network, 
using a combination of self - nonself discrimination on the presented antigens and the 
Innate Layer's classification of the antigens as dangerous or safe. 

3.1    Representation Schemes 

The NetTRIIAD model uses two primary structures to represent information: antigens 
and danger model signals. The antigens represent network traffic, with each observed 
packet resulting in the synthesis of a corresponding antigen. The NetTRIIAD antigen 
contains two types of features: address features and protocol features. Address fea-
tures are 32-bit, unsigned integer values corresponding to the network-ordered repre-
sentation of an Internet Protocol, version 4 (IPv4) address. Protocol features are  
32-bit, unsigned integer values derived from the protocol value found in the IPv4 
packet header and, for Transmission Control Protocol (TCP) or User Datagram Proto-
col (UDP) packets, a port value. The value of a protocol feature is: (IP protocol value 
* 65536) + port value. A NetTRIIAD antigen is then a vector of four real-valued fea-
tures derived from an Internet Protocol Version 4 (IPv4) packet: destination_address, 
source_address, destination_protocol, and source_protocol. 
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NetTRIIAD danger model signals emulate the various chemical signals that pro-
mote and suppress reactions in the immune system. A danger model signal includes 
two functional elements. First is a single feature value that affects the signal’s binding 
potential. This is an address or protocol feature value in the same format as the fea-
tures that comprise antigens, described above. The other functional element is a signal 
level value. This is an integer value that determines the degree of danger or safety the 
signal represents. A danger model signal with a signal level that indicates danger is a 
danger signal. Similarly, a danger model signal with a signal level that indicates 
safety is a safe signal. 
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Fig. 1. NetTRIIAD Model Overview 

3.2    The Innate Layer 

The NetTRIIAD Innate Layer emulates the functions of the dendritic cells in the tis-
sues of an organism. The Innate Layer consists of a misuse-based network intrusion 
detection system (NIDS), a set of danger model signal generators, and a Peripheral 
Immune Node in which the artificial dendritic cells, antigens and danger model sig-
nals interact. 

The misuse-based NIDS component gives NetTRIIAD an innate ability to recog-
nize known network threats. A NIDS alert event occurs when network traffic matches 
an element of the rule set. An alert event includes, as a minimum, both destination 
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and source IP addresses and a labeling of the type of alert. The alert event may also 
include protocol and other amplifying information. 

The danger model signal generators process external data pertaining to the state of 
the network and its attached systems, emitting corresponding danger model signals. 
Each generator monitors a specific set of external data, synthesizing danger model sig-
nals and forwarding them to the Peripheral Immune Node. NetTRIIAD includes three 
danger model signal generators: the Alert Monitor, Host Monitor and Network Monitor.  

The Alert Monitor observes the alert events emitted by the NIDS and emits a corre-
sponding sequence of danger model signals. Evidence of danger seen in the network 
traffic can thus affect the immune response. This is inspired by the ability of the in-
nate immune system to detect the presence of pathogens through its sensitivity to 
various pathogen associated molecular patterns (PAMP).  

The Alert Monitor synthesizes two danger model signals for each alert event ob-
served. One signal has its feature value set to that of the alert event source address 
while the other has its feature value set to the destination address. The Alert Monitor 
sets the signal level of the danger model signals based upon the type of the alert event. 
The Alert Monitor contains a mapping of each of the possible alert types to a specific 
danger model signal level. For example, an alert event indicating a more serious 
threat, such as attempted root access, maps to a correspondingly higher danger value.  

The Host Monitor emits danger model signals corresponding to the perceived 
'health' of a population of hosts. This allows the state of the hosts to affect NetTRI-
IAD in a manner analogous to the effect of tissue states on the immune response.  In-
dications of damage promote immune reactions while indications of normal operation, 
or 'health', suppress immune reactions.  

The Host Monitor periodically retrieves status information about each host in the 
monitored population. The sampling interval is measured by the network traffic flow, 
with a status sample being retrieved each time lh packets are observed. Each Host is 
classified into one of four states based upon the status information received and as-
signed a corresponding danger or safe signal level. The Host Monitor emits a danger 
model signal for each host with a determined state during each sampling interval. The 
feature value of each signal is determined by the IP address of the corresponding host 
and the signal level follows from the host’s state. Table 1 describes the host state cri-
teria and resulting signal levels. 

Table 1. Host State Classification 

Host State Host Status Resulting Signal 
Necrotic The host is non-

operational 
Full strength danger signal 
(s = bn ) 

Stressed The host is operating 
but is impaired 

Reduced strength danger 
signal ( s = bn  / 2 ) 

Healthy The host is operating 
normally 

Safe signal (s = cn ) 

Undetermined Host is in scheduled 
down time or status can 
not be determined 

No signal 
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The Network Monitor observes the overall state of the network traffic flow, emit-
ting corresponding danger model signals. This emulates the effect of general stress 
signals on the immune response. Tissues under stress emit chemical signals that pro-
mote immune reactions while unstressed tissues suppress immune reactions [22]. The 
Network Monitor considers four network traffic parameters to determine the network 
stress level: the overall traffic rate (Xr), the rate of ICMP unreachable packets (Xu), the 
rate of TCP SYN packets (Xs) and the percentage of packets dropped by the misuse-
based NIDS (Xd). 

The first three parameters are commonly employed to detect undesirable network 
activity [6]. The fourth parameter, Xd, is a useful indicator of stress in network intru-
sion detection scenarios [3]. The use of network statistics, such as packet rates, for the 
synthesis of danger signals has also been explored in related work [13]. 

The Network Monitor makes an observation of the network parameters after each 
interval of ln observed packets, and then compares the observation with a traffic pa-
rameter profile. This profile consists of a separate mean and standard deviation value 
for each of the four parameters, computed from previous observations. The Network 
Monitor incorporates each observation into the traffic parameter profile, allowing the 
stress computations to adapt to routine parameter changes over time. 

The Network Monitor computes an individual stress value for each of the four pa-
rameters, using the observed value and the mean and standard deviation. 
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Where Xi is the observed value, µ i is the mean and δi is the standard deviation for pa-
rameter i. The overall stress level is the arithmetic mean of the four stress values: 
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The Network Monitor then emits a single, general danger model signal with a 
‘wildcard’ feature value that allows it to bind with every artificial dendritic cell. If the 
stress value is less than the safe stress level threshold, tn, the signal is safe signal with 
strength determined by: 
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Where bn is the danger signal coefficient, cn is the safe signal coefficient and s is the 
resulting signal strength. 

The Peripheral Immune Node (PIN) provides the location in which NetTRIIAD 
antigens and danger model signals interact to classify antigens, and thus the corre-
sponding packets, as 'dangerous' or 'safe'. The PIN contains a population of artificial 
dendritic cells to carry out the classification process. The PIN takes as its input the an-
tigens corresponding to observed packets and the signals emitted by the danger model 
signal generators. Its output is a stream of artificial dendritic cells that present anti-
gens and the corresponding contexts of danger or safety in which they were collected. 

An artificial dendritic cell (DC) acts as a container for an antigen and correspond-
ing danger model signals. Each DC presents exactly one antigen while no antigen is 
presented by more than one DC at a time. The DC contains a danger level value that 
is the sum of the signal strengths of all the danger signals that have bound with the 
DC. Similarly, the DC also contains a safe level value for the sum of binding safe sig-
nals. Finally, the DC maintains an antigen count that records the number of antigens 
that have arrived since the DC was instantiated and match the DC’s antigen. 

When a danger model signal arrives, the PIN compares the signal with each DC to 
determine if binding occurs. A danger model signal binds with a DC if the danger 
model signal's feature value is equal to any of the feature values in the antigen pre-
sented by the DC. A binding danger model signal adds its signal level to the DC’s 
danger level or safe level, as appropriate. Binding does not exhaust or otherwise alter 
a danger model signal. A single danger model signal arriving at the PIN may thus 
bind with and stimulate multiple DCs. 

DCs persist in the PIN until they mature. A DC matures in a dangerous context 
when its danger level reaches the danger maturation threshold. Similarly, the DC ma-
tures in a safe context if its safe level reaches the safe maturation threshold. The DC 
leaves the PIN and migrates to the Adaptive Layer to present its antigen and the con-
text in which it matured. 

3.3    The Adaptive Layer 

The Adaptive Layer emulates the interactions that occur between dendritic cells and-
the adaptive immune system's T cells in locations such as the paracortex of a lymph 
node. The Adaptive Layer identifies threats through immune reactions triggered by 
the activation and proliferation of artificial T cells. This emulates the action of helper 
T cells stimulating immune reactions in the natural immune system to specific anti-
gens identified as threats. 

The main component of the Adaptive Layer is the Artificial Lymphatic Paracortex 
(ALP). The ALP contains populations of artificial T cells (TC), each of which repre-
sents a population of identical, activated T cells. The TC contains a T cell receptor 
(TCR), a vector of values defined identically to the NetTRIIAD antigen, specifying 
which antigen will bind to the TC. The TC maintains a population value for the quan-
tity of T cells it represents. It also records the sum of the antigen count values of the 
DCs that have presented antigens to the TC. TCs exist in two classes: effectors that 
promote immune reactions to antigens matching their TCR and regulators that sup-
press immune reactions.  
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NetTRIIAD does not attempt to explicitly represent the huge population of naïve, 
nonself-reactive T cells to implement self – nonself discrimination (SNSD). NetTRI-
IAD uses a positive characterization approach that explicitly defines a set of self anti-
gens. The self set contains antigens representing the network’s normal, threat-free 
traffic. An antigen is classified as self if and only if it is found to exist in this self set, 
otherwise it is nonself. The presence of a matching naïve T cell is implied by the clas-
sification of an antigen as nonself. This avoids the potentially high overhead of gener-
ating negative detectors or other negative characterizations of self [24].  

Since client / server communications frequently use dynamically assigned, or 
ephemeral, ports for the client endpoint, a series of essentially identical communica-
tions can result in large number of self antigens differing only in one protocol feature 
value. NetTRIIAD defines protocol feature similarity classes that specify ranges of 
port values that will all be considered equal if used for the client endpoint of a known 
client / server session. This allows a single self antigen to provide a summarized rep-
resentation of multiple antigens pertaining to equivalent client / server communica-
tions, significantly reducing the size of the self set. 

The ALP manages DCs and TCs using a population update cycle consisting of 12 
processing intervals of eight minutes each. Thus the total population update cycle 
time is equal to 96 minutes, giving 15 cycles in a 24 hour period. This duration pro-
vides an adequate time window to process the antigens and danger model signals that 
may result from multi-staged or stealthy threats. It is also short enough to ensure TCs 
do not persist so long that they combine evidence from unrelated events to promote 
unwarranted immune reactions and cause false positive alerts [4, 29]. 

The ALP processes DCs as they arrive throughout the processing interval. The 
ALP first uses the SNSD mechanism to classify a DC’s antigen as self or nonself. A 
self antigen is tolerated and thus receives no further processing. A nonself antigen re-
sults in activation and proliferation of a TC with matching TCR. A DC presenting in 
the dangerous context results in a TC of the effector class with a population equal to 
the DC’s danger level. Conversely, presentation in the safe context results in a TC of 
the regulator class with a population equal to the DC’s safe level. The new TC’s anti-
gen count is equal to the antigen count of the presenting DC. If a TC of the same class 
and TCR value already exists in the ALP, the new TC merges with it, increasing the 
total population and antigen count of the existing TC. Otherwise the new TC joins the 
ALP population directly. 

At the conclusion of each processing interval, the ALP checks for immune reac-
tions and updates the TC population. The ALP determines the effect of immune sup-
pression by calculating a net population for each effector TC. The net population is 
the effector TC population minus the population of the regulator TC with a matching 
TCR, if such exists.  

The ALP carries out a clonal selection process on the effector TCs to ensure only 
those most representative of a given threat will promote an immune reaction. The 
clonal selection has the effect of clustering the TCs corresponding to a given group of 
traffic sources and destinations and eliminating as potential false positives those 
stemming from weaker danger signals. The ALP partitions the TC population into  
disjoint sets using the address features in their TCRs [8]. Two TCs fall in the same 
disjoint set if the same address feature value appears in both their TCRs. The ALP de-
termines the maximum net population value among the TCs in each disjoint set. Any 
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TCs in the disjoint set having a net population value less than one half this maximum 
value receives no further consideration for immune reaction computations in the cur-
rent interval.  

The ALP evaluates the remaining TCs to determine if any triggers an immune re-
action. A TC’s danger concentration is the net population divided by the TC’s anti-
gen count value. This gives greater weight to the antigens, and thus packets, that  
appear less frequently in a given dangerous context. If the danger concentration ex-
ceeds the immune reaction threshold, the TC is considered to have caused an immune 
reaction to the antigens matching its TCR. The ALP emits a threat alert, using the IP 
address, protocol and port information contained in the TCR. 

TCs do not persist in the ALP indefinitely. At the conclusion of each processing in-
terval, the ALP carries out a population decay operation that reduces the population 
level of each TC by one half. A TC with a population value decaying to zero is elimi-
nated. This gives each T cell a finite lifespan and causes the effect of each antigen 
presentation by a DC to fade away over time. 

The ALP also includes an acquired tolerance mechanism that allows it to adapt to 
changes in the normal traffic on the network, adding self antigens for traffic found  
to be safe. If a regulator class TC persists in the ALP for a complete population up-
date cycle during which no immune reaction to the antigen matching its TCR occurs, 
the TC causes a tolerization reaction. The ALP acquires a new self antigen corre-
sponding to the regulator TC’s TCR and will henceforth classify this antigen as self 
and thus tolerate it. Since population decay constantly reduces the TC population, 
strong evidence in the form of multiple safe presentations of the same antigen are 
needed for a regulator TC to persist long enough to cause a tolerization reaction. 

4    Experimentation 

Experimentation on a prototype implementation of the NetTRIIAD model provides a 
comparison of its performance versus that of a conventional NIDS. 

The NetTRIIAD components are implemented as separate processes, with socket-
based inter-process communication enabling flexible deployment in support of typical 
NIDS architectures. The prototype builds upon proven, conventional information  
security tools, augmenting their capabilities. The prototype uses the Snort NIDS, ver-
sion 2.6.1.3 as the misuse-based NIDS component [23]. A custom Snort plug-in syn-
thesizes NetTRIIAD antigens from captured packets and retrieves network statistics 
for the Network Monitor. The prototype also uses the Nagios network monitoring ap-
plication to gather information for the Host Monitor [9].  

The experimentation compares the detection results of NetTRIIAD with those of a 
baseline Snort installation on the DARPA / MIT 1999 Intrusion Detection Evaluation 
(IDEVAL99) inside data sets [18]. Host status changes required to drive the Host 
Monitor process were reconstructed from the IDEVAL99 documentation and played 
back through Nagios in synchronization with the recorded network traffic. The Net-
TRIIAD self set was captured from two weeks of threat-free IDEVAL99 training 
data. The 16 million packets in this training data yielded 31, 215 distinct self antigens.  

Both installations ran against the two weeks of inside evaluation data with true and 
false positive detections determined by comparison of the alert output with the 
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IDEVAL99 master identifications list. Figure 2 depicts the true positive rates and 
positive predictive value figures from the experimental runs. There were no signifi-
cant differences in the true positive rates (t = 1.01766, df = 16, p > .25). However, the 
NetTRIIAD implementation had a significantly lower number of false positive detec-
tions. This led to a positive predictive value of 0.65, significantly better than the 0.38 
returned by Snort alone (t = 4.85328, df=16, p < .001).  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
4D

1

W
4D

3

W
4D

4

W
4D

5

W
5D

1

W
5D

2

W
5D

3

W
5D

4

W
5D

5

TOTALS

IDEVAL99 Week / Day

Baseline TPR

NetTRIIAD TPR

Baseline PPV

NetTRIIAD PPV

 

Fig. 2. Performance of NetTRIIAD and Snort Baseline 

5    Conclusions and Future Work 

NetTRIIAD demonstrates performance improvements over a conventional, misuse-
based network intrusion detection system. NetTRIIAD shows a significantly better 
positive predictive value for threat detection than is achieved by a conventional mis-
use-based NIDS on the same data. A high positive predictive value has two benefits 
for protecting networks. One is as a 'priority of work' mechanism for security ana-
lysts, allowing limited resources to be focused on actual threats. The other benefit is 
in facilitating intrusion prevention and other automated security responses. Any sys-
tem empowered to automatically respond to threats runs the risk of doing more harm 
than good through disruption of legitimate network traffic unless it can accurately dif-
ferentiate true threats from false alarms.  

The NetTRIIAD model builds upon trusted information security tools, preserving 
their effectiveness while providing improved performance with the addition of im-
mune inspired components.  

Several opportunities for future work exist. The initial NetTRIIAD experimenta-
tion occurred in a controlled laboratory environment as an essential first step in de-
veloping a usable security tool from the model. However, further experimentation on 
live networks would help to better understand the true utility of NetTRIIAD. 
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Extending NetTRIIAD to move beyond threat recognition and include automated 
threat response would be a step towards a computer immune system and would bene-
fit from the improved positive predictive value. The features in a NetTRIIAD antigen 
contain sufficient information to create firewall rules to block or shape the associated 
traffic. Such work could extend the adaptive immune metaphor beyond T cell activa-
tion, adding elements inspired by B cells and antibody production. 

Improvements to the danger model signal generators, possibly to examine addi-
tional external data sources, could gather better evidence of threats and improve de-
tection.  Similarly, a mechanism for accurate reactions to ‘dangerous self’, suggested 
by the Danger Model, would permit NetTRIIAD to recognize threats hidden in ‘nor-
mal’ network traffic. 
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Abstract. We apply Artificial Immune Systems(AIS) [4] for credit card
fraud detection and we compare it to other methods such as Neural
Nets(NN) [8] and Bayesian Nets(BN) [2], Naive Bayes(NB) and Deci-
sion Trees(DT) [13]. Exhaustive search and Genetic Algorithm(GA) [7]
are used to select optimized parameters sets, which minimizes the fraud
cost for a credit card database provided by a Brazilian card issuer. The
specifics of the fraud database are taken into account, such as skewness
of data and different costs associated with false positives and negatives.
Tests are done with holdout sample sets, and all executions are run us-
ing Weka [18], a publicly available software. Our results are consistent
with the early result of Maes in [12] which concludes that BN is better
than NN, and this occurred in all our evaluated tests. Although NN is
widely used in the market today, the evaluated implementation of NN is
among the worse methods for our database. In spite of a poor behavior
if used with the default parameters set, AIS has the best performance
when parameters optimized by GA are used.

1 Introduction

In recent years many bio-inspired algorithms are sprouting for solving the clas-
sification problems as one can see for instance in [3]. In 1998, Neal et al. [9]
developed an artificial immune system (AIS), JISYS, applied it for mortgage
fraud detection, and reported some first results, still based on simulated data.
In 2002, the journal Nature [10] published an article on AIS where it indicated
that AIS had many kinds of applications, including the detection of fraudulent
financial transactions. Even though this article previewed a possible commercial
application for 2003 by a British company, we are not aware of any subsequent
publication on AIS in financial fraud detection which reported good experimen-
tal results. The current paper reports our studies and application of AIS on
credit card fraud detection. Moreover, in contrast to the poor performance of
AIS with the default parameters, we report here an optimized and robust set of

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 119–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



120 M.F.A. Gadi, X. Wang, and A.P. do Lago

parameters under which AIS led to the best results, even when compared to the
best results from all other analyzed methods.

The lack of publicly available database has been a limiting factor for the pub-
lications on financial fraud detection [14], particularly credit card transactions.
In fact, only few publications on this field bring a real contribution based on
experiments. For instance, the method AdaCost [16,6] was developed from Ad-
aboost [15] for credit card fraud detection, and resulted in the metaheurists Cost
Sensitive [5], which can be applied for many applications where there are different
costs for false positive and false negative. Comparative studies between Neural
Networks (NN) and Bayesian Networks (BN) in credit card fraud detection were
reported [12], which favored the result of BN.

In this paper, we present our studies of AIS compared to other techniques such
as BN and NN as well. In addition, we have also included comparative studies
with two other methods: Decision Trees (DT) and Naive Bayes (NB). Moreover,
we take into account the skewed nature of the dataset, the different costs for
false positive and false negative in order to evaluate a classifier performance, as
well as the need of a parametric adjustment in order to obtain the best results
for every compared method.

Background: Fraud prevention is interesting for financial institutions. The ad-
vent of new technologies as telephone, automated teller machines (ATMs) and
credit card systems have amplified the amount of fraud loss for many banks.
Analyzing whether each transaction is legitimate or not is very expensive. Con-
firming whether a transaction was done by a client or a fraudster by phoning
all card holders is cost prohibitive if we check them in all transactions. Fraud
prevention by automatic fraud detections is where the well-known classification
methods can be applied, where pattern recognition systems play a very impor-
tant role. One can learn from past (fraud happened in the past) and classify
new instances (transactions). In credit card business today, perhaps the most
commonly used technique is Neural Networks, for example in Fair Isaac’s Falcon
software as claimed in its website (http://www.fairisaac.com/fic/en/product-
service/product-index/falcon-fraud-manager/). In general, the NN implementa-
tion is inside a complex work-flow system which is integrated with the bank
database. When a new transaction comes in, the work-flow calculates all the in-
put variables and outputs a fraud score. Then this score is used to decide which
transaction is going to be checked manually and to order its priority.

Skewed data and other discussions: Fraud detection model is among the most
complicated models used for the credit card industry. Skewness of the data,
search space dimensionality, different cost of false positive and false negative,
durability of the model and short time-to-answer are among the problems one
has to face in developing a fraud detection model. In this article we focus our
attention on skewness of the data by comparing five methods1 .
1 The problem of taking into account the different cost between false positive and

false negative during the training phase needs a special investigation which is what
we intend to conclude before December this year. The durability and short time-to-
answer problem we intend to start to analyze next year.
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Fraud Tagging: We have obtained our database from a large Brazilian bank, with
registers within time window between Jul/14/2004 through Sep/12/2004. Each
register represents a credit card authorization, with only approved transactions
excluding the denied transactions. One applies the following rule for classifying
an authorization: a transaction is considered fraudulent if, in the next 2 months
after the date of the transaction, which is called performance period, either the
client queried the transaction, or the bank distrusts it as a legitimate transaction
and confirms it does not belong to the client; otherwise the transaction is tagged
as legitimate. When an authorization is tagged as fraudulent2, the Bank has
almost 100% of certainty about this claim, but when the transaction is tagged
legitimate, it cannot be affirmed this is in fact legitimate, but it can only be sure
that the transaction was still not identified as fraudulent in the performance
window. However, according to the Bank, at least 80% of the occurred frauds
are identified as fraudulent in 2-month period.

Sampling: The sampling of transactions is done in two steps: first, one randomly
samples card numbers to be analyzed in this period, irrespective to whether the
card had or not a fraud transaction in the historical period; second, there is a
weighted sampling of the class where 10% of legitimate transactions are selected
and 100% fraudulent transactions are selected.

In the end, the database that we have received from the bank contains 41647
registers, from which 3.74% are fraudlent.

Categorization: We preprocess the database in three steps:

1. We apply statistical analysis in order to remove variables that are consid-
ered unimportant for the modeling (ex: card number). From 33 variables in
the beginning we had 17 independent variables and 1 dependent variable
(flag fraud) after this phase;

2. We bind the variables. All variables but Merchant Category Code (MCC)3

are categorized in at most 10 groups, one digit only. See Table 1.
3. We generate 9 splits (also known as samples) from the databases. Each split

contains a pair of databases: 70% of transactions for development (training
set), and 30% of transaction for validation (testing set, holdout sample).
Table 2 shows that these splits have about the same number of frauds and
legitimates transactions.

All 9 splits are subsequently converted to Weka [18] format (.arff), on which our
studies are executed. The software Weka-3-4-11 is used for all of our studies and
the implementations used for DT, BN, NB and NN are built in Weka. The only
plugged in implementation was the AIS, the AIRS2 version 1.6 (March 2006)
implemented by Jason Brownlee [1], originally designed by Watkins et al. [17].
2 According to the scope of the annotated dataset provided by the Bank, we dealed

with the fraud modalities Lost/Stolen, Skimming, Mail Order, Account Take Over
and Telephone Order ; and we did not manage other types like Never Received Is-
suance, Manual Counterfeit and Fraud Application.

3 MCC got 33 categories so it could fit the number of groups of Transaction Category
Code (TCC).
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Table 1. Number of categories for each variable. Previous represents the value of the
last transaction made for the same client.

name mcc mcc previous zip code zip code previous value trans
# of categ. 33 33 10 10 10

name value trans previous pos entry mode credit limit brand variant
# of categ. 10 10 10 6 6

name score type person type of trans # of statements speed
# of categ. 10 2 2 4 8

name diff score credit line flag fraud
# of categ. 6 9 2

Table 2. Number of frauds and legitimates in each split

base 1 2 3 4 5 6 7 8 9
development frauds 1,084 1,092 1,088 1,075 1,081 1,116 1,099 1,106 1,100
development legitimates 27,904 28,012 28,061 28,145 28,045 27,973 28,113 27,884 28,188
validation frauds 475 467 471 484 478 443 460 453 459
validation legitimates 12,184 12,076 12,027 11,943 12,043 12,115 11,975 12,204 11,960

Performance measures: In order to evaluate the classifiers, we have considered
the use of KS, ROC Curve, Lift Curve, Precision (Hit Rate) and Recall accuracy
(Detection Rate). From conversations with fraud prevention specialists and the
first results using ROC curve and Hit Rate, we found out that we would obtain
more appliable results if we used a cost function in which we adopted an average
cost of $ 1 for every verification, and an average loss of $ 100 for every undetected
fraud. This cost function combines Hit Rate and Detection Rate in one unique
measure, and evaluates the function in only one point, the applicable cut-off. This
was considered to be more similar to the used practice of a fraud score than a
ROC curve that compares multiple references simultaneously. If we denote tp,
fp and fn as the number of true positives (true frauds), false positive and false
negatives, the final cost is given by:

$cost = $100 × fn + $1 × ( fp + tp ).

Since the received database had only 10% of legitimate and 100% of fraudulent
transactions, we had to adjust the cost function to:

$cost = $100 × fn + $10 × fp + $1 × tp.

Once we prepared the data, we chose the methods to compare with the opti-
mization criteria.

2 Parameter Space

In this small section we just introduce a very short description of the input
parameters for the five chosen methods. A better description of these parameters
can be found in the Appendix, and details about the methodologies and their
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parameters can be found in Weka documentations [19,18] as well. The methods
and their respective parameters are:

– NB has no parameter;
– DT has 2 parameters ( C, M);
– BN has 3 parameters ( D, Q, E) and 3 sub parameter (P, S, A);
– NN has 7 parameters ( L, M, N, V, S, E, H);
– AIS has 9 parameters ( S, F, C, H, R, V, A, E, K).

The methods NB and DT have a small parameter space. The parameter space
of BN is also quite small, especially if we notice that there are few choices for
many of them.

3 Optimization of Parameters

The parameter spaces of the methods Decision Tree, Bayesian Network and
Naive Bayes are small enough in such a way that an exhaustive exploration of all
possible parameter is possible. However, this is not the case for Neural Networks
and Artificial Immune Systems. In order to find an optimized parameter set for
these methods, we performed a parameters set optimization based on a Genetic
Algorithm (GA).

Initial Population 
(50 randomly executions)

GA – start
generation pool

GA – Best Parents
(15 parameter sets 
with smaller costs)

Cross Over

Children
(15 new children)

Mutation

20 generations?

Local Search
around the best
parameter set

new population

NO

YES

Fig. 1. Genetic Algorithm for parameters optimization

As showed in Figure 1, we start with an initial pool of 50 random execu-
tions, followed by 20 Genetic Algorithm (GA) generations. Each GA generation
combines two randomly selected candidates among the best 15 from previous
generation. This combination performs: cross over, mutation, random change
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or no action for each parameter independently. As the generation goes by, the
chance of no action increases. In the end, we perform a local search around the
optimized founded by GA optimization. Notice that the final solution cannot be
claimed to be optimal, and it is usually not optimal, but only suboptimal.

4 Robustness of the Parameters

Given a classification method M , after the parameter optimization, all opti-
mized parameters may be independent of the split. In this case we say that this
parameter set is robust and we name it ROBUST (M).

When this does not happen, the optimization process is not as strong since
the obtained optimized parameter set loses generalization power. In this case
we decided to sacrifice prediction in order to gain robustness in the parameter
set. In order to rewrite the optimization function that should be used in a GA
algorithm, we have used a visualization procedure with computed costs for many
equally spaced parameter sets in the parameter space. After defined a good
optimization function, we proceeded not with another GA optimization because
our time constraints, but we reused our initial runs used in the visualization,
with the following kind of multiresolution optimization [9]:

1. we identify those parameters that have not changed, and we freeze these
values for these respective parameters;

2. for any other parameter we screen the 20 best parameter sets for each split
and identify reasonable range;

3. for all non-robust parameters, we choose an integer step s so the the searching
space does not explode;

4. we evaluate the costs for all possible combinations according to the searching
space defined above, and find the parameter set P that brings the minimum
average cost among all the different used splits;

5. we zoom the screen to the neighborhood of P, refine steps s, and repeat the
process from then on, until no refinement is possible.

In this case, after this process, we also call this parameters set robust and we
name it ROBUST (M). We should notice that we could also have used a GA
optimization instead of a multiresolution optimization like the one performed by
our multiresolution optimization.

In order to run the multiresolution optimization, we elected 6 splits (2,3,4,5,6
and 7) as the robustization split group, and 3 others (8,9 and 1) as the evaluation
split group for posterior evaluation and comparison of all methods.

5 Results

We compare the following five classification methods: Naive Bayes (NB), Neural
Network (NN), Bayesian Network (BN), Artificial Immune System (AIS) and
Decision Tree(DT). For any method M, we have applied three different strategies:
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DEFAULT (M), OPTIMIZED(M) and ROBUST (M), in which DEFAULT
means to use default parameters provided by Weka; OPTIMIZED refers to an
optimized set of parameters obtained as described in Section 3, and ROBUST
is an optimized robust set of parameters.

DT AISBN NNNB

DTAIS

BN

NN

NB

DT
AIS

BN

NNNB

parameters

parameters

parameters

default

optmized

robust

R$20K R$30K R$40K

Fig. 2. Summary results for the methods in all strategies. Average and standard devi-
ation (statistics based on the 3 evaluation splits) are represented by small error-bars,
for the 5 methods, for the 3 strategies. The figure is divided in three stacked horizontal
lines with their methods statistics (the error-bars) in order to separate strategies: de-
fault parameters, optimized parameters and robust parameters, in order of evolution.
All 3 large horizontal lines represent the cost functions, ranging from R$ 20 thousand
in the left end to R$ 40 thousand in the right end. In order to better display the error-
bars, some of them were vertically shifted. AIS led to the smallest cost with robust
parameters, followed by DT, and NN led to the largest cost.

Table 3. Summary results for the methods in all strategies. Average and standard
deviation for the 3 evaluation splits.

Strategy DT AIS BN NN NB

DEFAULT 32.76 (4.83%) 35.66 (3.21%) 28.91 (2.65%) 39.10 (4.68%) 30.44 (1.68%)
OPTIMIZED 27.84 (4.16%) 24.97 (5.43%) 28.90 (2.69%) 29.98 (4.38%) 30.44 (1.68%)
ROBUST 27.87 (4.21%) 23.30 (2.29%) 28.90 (2.69%) 36.33 (9.75%) 30.44 (1.68%)

One can see in Figure 2 and Table 3 the final costs of the classification meth-
ods obtained for all strategies. We show here only the average costs with their
standard deviations for the 3 splits used for evaluation of the robust parame-
ter sets. The cost is represented in thousand of Reais (Brazilian Currency), the
smaller, the better. The standard deviations (num%) are considered in the same
way as errors. From these results one can notice that:

– The Bayesian methods BN and NB are such that their results are indepen-
dent from the used strategies. This is expected for NB, since there are no
parameters. For BN, the default parameters performed almost in the same
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way as the optimized strategies, independently from the splits. The maxi-
mum number of node parents influences the final topology and probability
tables but not enough to impact the final costs;

– For strategy DEFAULT we used the default parameters. BN was the best
method. AIS and NN got relatively poor results compared to the others. Par-
ticularly, NN improved only 15.4%4 in relation to a strategy which considers
all transactions as legitimate;

– For what concerns the strategy OPTIMIZED with optimized parameters,
we verified that almost all the methods led to reduced costs in comparison to
the case with default parameters. The method that reduced its cost the most,
with 29.98%5 of cost reduction, was AIS and it became the best method
for this strategy. The second best method was DT, that reached a 15.01%
of cost reduction. NN reduced its cost by 23.33%6 ;

– When we analyzed the strategy ROBUST , we saw two important facts:
first, there was an abrupt cost increase for ROBUST (NN) in relation to
OPTIMIZED(NN), that shows the over-fitting tendency of method NN
with optimized parameters. There was a cost reduction for ROBUST (AIS)
in relation to OPTIMIZED(AIS). We suppose that this happened due
to the fact that AIS has more parameters and also the largest parametric
search space. In this way, when the parametric space is reduced, after the
freezing of some parameters during the parameters robustization process, it
can be observed a more efficient optimization. This phenomenon is many
times mentioned as “Curse of Dimensionality”.

Robust set of parameters: The table 4 shows the set of optimized robust param-
eters for each method.

At first glance, we can observe that for DT we have a tree with minimum
pruning according to parameter M. For NN, we see that the parameters L and
M achieved very interesting values with a big L (Learning Rate) and very small
M (Momentum). This fact allows us to trace a parallel with DT, saying that,
as well as DT, NN takes a step to less pruning and more over-fitting. BN was
already optimal with default parameters. Finally, for AIS, we obtained a very
good set of parameters from GA execution, which made the multiresolution
optimization phase quite easy in order to obtain a good optimized and robust
set of parameters. One of the most surprising results was K equals to 1, which
means that no voting is necessary: the first rule that matches decides the class.

Final comparison of all methods: Since the standard deviation seen in Figure 2
suggests us that DT, BN and NB could have the same costs, we performed four
statistics t-student tests with 100 new random splits in the same proportion.
4 15.4% = $39.1 thousands/$46.2 thousands, where $46.2 thousands corresponds to

the average cost of the validation part of the splits 8, 9 and 1 when one simply
decides letting frauds happen unwatched.

5 29.98% = 1 - $ 24.97 thousands / $ 35.66 thousands = 1 − OPTIMIZED(AIS)/
DEFAULT (AIS).

6 23.33% = 1 - $ 29.98 thousands / $ 39.10 thousands = 1 − OPTIMIZED(NN)/
DEFAULT (NN).
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Table 4. Summary of optimized robust parameters. Parameters N,S for NN and A,S
for AIS were not iterated. Parameters E,V for NN and K,F,H,V for AIS were frozen for
the multiresolution optimization. Parameters L,M,H for NN and C,R,E for AIS needed
a multiresolution optimization. Parameter H=20 in NN is the number of attributes +
number of classes + 1, parameter P=17 for BN is the number of attributes.

Average Cost
Method on validation Robust parameters in command line display

DT $ 27,870.66 -C 0.49 -M 1
NB $ 30,439.33 n/a
BN $ 28,901.66 -D -Q weka.classifiers.bayes.net.search.local.K2 – -P 17 -S BAYES

-E weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5
NN $ 36,332.33 -L 0.40 -M 0.12 -H 20 -E 0 -V 0 -N 500 -S 0
AIS $ 23,303.00 -C 30 -R 177 -E 5 -K 1 -F 0 -H 10 -V 1 -A -1 -S 1

These splits were specially created for these tests. We tested if ROBUST (AIS)−
ROBUST (DT ) = 0, ROBUST (DT )−ROBUST (BN) = 0, ROBUST (BN)−
ROBUST (NB) = 0 and ROBUST (NB) − ROBUST (NN) = 0. Not surpris-
ingly, with 99.9% of certainty, all H0 were rejected, which means that none of
them is equal. In the end, the average of costs for strategy robust is what defines
the rank of methods. From the Figure 2, we can notice that AIS produced the
best classifiers, followed by DT, BN, NB, and NN, in this order.

6 Future Work

We intend to analyze in details the optimized parameters in the coming future,
and try to reach better relations between the value of each parameter and its
relation to the skewness of the data, at same time that we enquire why AIRS2
implementation of AIS outperforms the implementations of other methods. We
are also extending the analysis in such a way to evaluate the influence of a
metaheuristics like Cost Sensitive Classifier [5], which takes into account the
different costs of false positive and false negative in the training phase. Using
this metaheuristics, in our preliminary and unfinished results, we are observing
that one may obtain better classifiers for all methods, up to Naive Bayes. We
also consider the inclusion of Support Vector Machines (SVM) in the pool of
compared methods. And given we are using AIS, a suitable comparison method
would be k nearest neighbour.

We intend to apply the models for unseen out-of-date datasets to compare
stability and life expectancies. Since, as we know, the fraudulent behavior is
very dynamic, often a model loses its prediction power in a short time. Besides
knowing which method generates the most accurate model, it is important to
know which one generates the model that remains predictive for a longer time.

7 Conclusions

In this paper, we present a comparative study of five classification methods
(Decision Tree, Neural Network, Bayesian Network, Naive Bayes and Artificial
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Immune System). The used definition of an objective function to be optimized
that takes into account different costs for false positives and false negatives is
important. In all our executions, except for NB (no parameter needed) and BN,
we concluded that the best results had not been reached with default set of
parameters as given in Weka. Particularly for AIS and NN, the results gotten
using default parameters are very poor if compared with those gotten after a
parametric adjustment using GA. Our tests results show that BN is better than
NN, the most used method in real application today, which reproduces the results
from Maes [11,12]. In addition, we obtained that AIS and DT also surpass NN.
Perhaps because DT is a classic classification method, it has been forgotten in
recent works. However, it still reveals itself as one of the best methods, with
sufficient competitive results. On our tests AIS had a surprisingly large increase
of performance from default parameters to GA optimized parameters, and this
performance was kept in the obtaining of an optimized robust parameter set.

To sum up, AIS produced the best classifiers, followed by DT, BN, NB, and
NN, respectively.
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Appendix

For next paragraph, let us define VR = [X1;X2; step = S] as been the al-
lowed variation range from X1 to X2 and S, the precision step for this specific
parameter S.

Naive Bayes: NB does not have any parameter.

Decision Tree: DT has two parameters C and M:

– C: the confidence threshold for pruning. (Default: 0.25). VR = [0.01;1.00;
step = 0.01].

– M: the minimum number of instances per leaf. (Default: 2). VR = [1;100;
step = 1].

Bayesian Network: BN has three parameters ( D, Q, E):

– D: defines whether a structure called ADTree will or not be used;
– Q: defines which search for topology algorithm will be used. The available

ones are: GeneticSearch, HillClimber, K2, LocalScoreSearchAlgorithm, Re-
peatedHillClimber, SimulatedAnnealing, TabuSearch e TAN. Every search
algorithm has two parameters:

Weka-3-4-11.doc/weka/classifiers/functions/MultilayerPerceptron.html
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• P: defines the number of parent’s allowed in the topology.
• S: defines the type of score to be used to build the conditional table,

they are: BAYES, BDeu, MDL, ENTROPY e AIC;
– E: defines the estimator algorithm to calculate the conditional tables. In

Weka they are: BayesNetEstimator, BMAEstimator, MultiNomialBMAEs-
timator and SimpleEstimator (this estimator has one parameter (A), called
alpha, and it ranges between 0% e 100%, and it represents a start value for
the conditional probability.).

Neural Network: NN has seven parameters ( L, M, N, V, S, E, H):

– L: the learning rate. (default 0.3). The closer to zero, the smaller the impact
of the incoming information to be learnt. VR = [0.01;1.00; step = 0.01].

– M: the momentum (default 0.2). Its inclusion (values greater than zero) has
for objective to increase the speed of the training of a neural net and to
reduce the instability. VR = [0.00;1.00; step = 0.01].

– N: the number of epochs to train through. (default 500). our tests indicates
that using N greater than 500 does not increase the performance significantly,
and fixing it to its default 500. VR = [500;500; step = 0].

– V: the percentage size of the validation set from the training to use. (default
0 (no validation set is used, instead number of epochs is used). It ranges
between 0% and 99,99%, when this parameter is greater that zero intend to
reduce over-fitting. VR = [0.00;0.99; step = 0.01].

– S: the seed for the random number generator. We used default value. VR =
[0;0; step = 0].

– E: the threshold for the number of consecutive errors allowed during valida-
tion testing. (default 20). Number between 1 and 100. This parameter par-
ticipates with N to form the stop condition of the algorithm. VR = [1;100;
step = 1].

– H: string of numbers of nodes to be used on each layer. Each number rep-
resents its own layer and the number of nodes on that layer. There are also
some wildcards: ’a’, ’i’, ’o’, ’t’. These are ’a’ = (number of attributes + num-
ber of classes) / 2, ’i’ = number of attributes, ’o’ = number of classes, and
’t’ = number of attributes + number of classes. VR = [1;20; step = 1].

Artificial Immune System: AIS has 9 parameters ( S, F, C, H, R, V, A, E, K):

– S: the seed for the random number generator. (default 0). We adopted the
fixed value 1. VR = [1;1; step = 0].

– F: the minimum number percentage affinity threshold (see [17] page 6). VR
= [0.00;0.5; step = 0.01].

– C: the Clonal Rate is an integer that ranges between 0 ant 100. VR = [1;100;
step = 1].

– H: the Hyper-mutation rate. Ranges between 0 and 100 and determines the
percentage of clones (from last parameter) that will suffer mutation. VR =
[0;10; step = 1].
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– R: the total resources is the maximum number of B-Cell (or ARB) allowed
in the system. VR = [0;200; step = 1].

– V: the Stimulation threshold is a number between 0 and 1 used as criteria
to keep or drop a given B-Cell. VR = [0.00;1.00; step = 0.01].

– A: the number of affinity threshold instances. Because of lack of documen-
tation in [1] we used the default (-1) value. VR = [-1;-1; step = 0].

– E: the memory pool size. Define the number of random initialization instances.
By simplicity we varied it between 0 and 10. VR = [0;10; step = 1].

– K: the number of nearest neighbors representing B-Cells to be matched and
consulted in a voting election of which class the current transaction belongs
to. K equals to 1 means no voting. VR = [0;10; step = 1].
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Abstract. Artificial Immune Recognition System (AIRS) has shown an 
effective performance on several machine learning problems. In this study, the 
resource allocation method of AIRS was changed with a nonlinear method. This 
new algorithm, AIRS with nonlinear resource allocation method, was used as a 
classifier in Traditional Malay Music (TMM) genre classification. Music genre 
classification has a great important role in music information retrieval systems 
nowadays. The proposed system consists of three stages:  feature extraction, 
feature selection and finally using proposed algorithm as a classifier. Based on 
results of conducted experiments, the obtained classification accuracy of 
proposed system is 88.6 % using 10 fold cross validation for TMM genre 
classification. The results also show that AIRS with nonlinear allocation 
method obtains maximum classification accuracy for TMM genre classification.  

Keywords: Artificial Immune System, AIRS, Music Genre Classification, 
Nonlinear Resource allocation. 

1   Introduction 

Interest on music information retrieval systems for the storage, retrieval and 
classification of large collections of digital musical files has grown in recent years. 
Metadata such as filename, author, file size, date and genres are commonly used to 
classify and retrieve these documents. Such manual classification is highly labor-
intensive and costly both in terms of time and money [1]. An automatic classification 
system that is able to analyze and extract implicit knowledge of the musical files is 
therefore highly sought. One approach to automated musical classification that is 
currently being widely studied is classification based on musical genres.  

Musical genres are labels created and used by humans for categorizing and 
describing music [2]. Examples of a few Western musical genres are such as Pop, Rock, 
Hip-hop, and Classical. Several systems for automated genre classification and retrieval 
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of musical files have been researched and developed [2], [3]. However, most of these 
studies were conducted using only western dataset and we focus on non-Western 
musical genres, and more specifically on Traditional Malay Music (TMM). Norowi et al 
[4] have shown the significance effect of beat features for TMM genre classification in 
comparison to Western musical genres. Therefore the behavior of TMM genres is 
different from western music genres and need more studies to explore it.  

Artificial immune system (AIS) is a computational method inspired by the biology 
immune system. It is progressing slowly and steadily as a new branch of computational 
intelligence and soft computing [5],[6]. One of AIS based algorithms is Artificial 
Immune Recognition System (AIRS). AIRS is a supervised immune-inspired 
classification system capable of assigning data items unseen during training to one of 
any number of classes based on previous training experience. AIRS is probably the 
first and best known AIS for classification, having been developed in 2001 [7].  

In this study, the proposed approach consists of three stages: feature extraction, 
feature selection preprocessing and finally classification with AIRS. Feature selection 
is used to improve the quality of data that has been extracted in manual manner. Also 
non linear resource allocation is used in AIRS to increase its classification 
performance by means of resource number. The performance of the proposed method 
was tested with regard to classification accuracy. The obtained classification accuracy 
of our method is 88.6% using ten fold cross validation for TMM genre classification. 
Based on the results, AIRS with nonlinear resource allocation has most accuracy 
among the classifiers that used in the experiments.  

The remainder of this paper is organized as follows: Section 2 gives the briefly 
description about Traditional Malay Music. Section 3 and 4 describe about feature 
extraction and feature selection methods, respectively. AIRS and using nonlinear 
resource allocation method in AIRS are explained in Section 5. In Section 6, we 
explain the experiments and discuss about the results and consequently in Section 7, 
we conclude the paper.  

2   Traditional Malay Music 

Traditional Malay music is mainly derivative, influenced by the initial overall Indian 
and Middle Eastern music during the trade era and later from colonial powers such as 
Thailand, Indonesia, Portuguese and British who introduced their own culture 
including dance and music. A thorough overview on the origin and history of TMM 
can be found in [8]. The taxonomy of TMM depends on the nature of the theatre 
forms they serve and their instrumentations. Categorization of TMM genres has been 
studied extensively by Ang [9]. Music of these genres is usually disseminated non-
commercially, usually performed by persons who are not highly trained musical 
specialists, undergoes change arising from creative impulses and exists in many 
forms. The musical ensembles usually include gendangs or drums that are used to 
provide constant rhythmic beat of the songs and gongs to mark the end of a temporal 
cycle at specific part of the song [10]. 

One common attribute that is shared by most TMM genres is that they are 
generally repetitive in nature and exist in ‘gongan’-like cycle. ‘Gongan’ is defined as 
a temporal cycle marked internally at specific points by specific gongs and at the end 
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by the lowest-pitched gong of an ensemble [8]. It is an important structural function 
as it divides the musical pieces into temporal sections. Once every measure has been 
played, musicians continue playing in a looping motion by repeating the cycle from 
the beginning again until one of the lead percussionists signals the end of the song by 
varying their rhythms noticeably. In general, TMM does not have a chorus that plays 
differently than other parts of the songs, which is the usual occurrence in western 
music. Its repetitiveness and constant rhythms are two aspects that are taken into 
account to facilitate classification by genre later. 

Very little study has been conducted on automatic traditional Malay music genre 
classification in the literature. Norowi et al [4] studied the effects of various factors 
and audio feature set combinations towards the classification of TMM genres. Results 
from experiments conducted in several phases show that factors such as dataset size, 
track length and location¸ together with various combinations of audio feature sets 
comprising Short Time Fourier Transform (STFT), Mel-Frequency Cepstral 
Coefficients (MFCCs) and Beat Features affect classification. This study also only 
used the J48 classifier and achieved   66.3% classification accuracy for TMM genres 
[4]. We could not find more researches about TMM genre classification. In this study, 
we propose the hybrid system that includes feature extraction, feature selection and 
AIRS classifier with new resource allocation method to improve the performance of 
automatic TMM genre classification.   

3   Feature Extraction 

Ten TMM genres were involved in this study. The breakdown for each genre and its 
number of musical files are listed in Table 1.  A relatively small dataset was used in 
this experiment due to the difficulty in obtaining digital files of TMM, as traditional 
Malay musical culture is fast corroding with little preservation in digital format. 
Whilst it was much easier to obtain dataset for western music, the number was also 
kept small to match the size of TMM dataset. 

Musical files for this experiment were obtained from the Malaysia Arts Academy, 
Sultan Salahuddin Abdul Aziz Shah’s Cultural and Arts Centre at Universiti Putra 
Malaysia, Student’s Cultural Centre at Universiti Malaya and also personal 
collections of audio CDs from many individuals. The dataset became available in both 
digital and analog format. Quite a number of musical data for TMM genres were in 
analog format and were digitized manually. All of the digital music files were then 
converted into wav files; the only audio format supported by the existing feature 
extraction tool used at the time of study. The whole dataset was later trimmed to 
specific length and location in the file by executing certain audio commands through 
batch processing before extraction began. 

The features were extracted from the music files through MARSYAS-0.2.2; a free 
framework that enables the evaluation of computer audition applications. MARSYAS 
is a semi-automatic music classification system that is developed as an alternative 
solution for the existing audio tools that are incapable of handling the increasing 
amount of computer data [2]. It enables the three feature sets for representing the 
timbral texture, rhythmic content and pitch content of the music signals and uses 
trained statistical pattern recognition classifiers for evaluation.  
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Table 1. Overall number of musical files for each genre  

NO Genre 
 

Class Label Number 

1 Dikir Barat A 31 
2 Etnik Sabah B 12 
3 Gamelan C 23 
4 Ghazal D 17 
5 Inang E 10 
6 Joget F 15 
7 Keroncong G 43 
8 Tumbuk Kalang H 13 
9 Wayang Kulit I 17 

10 Zapin J 10 

4   Feature Selection  

Feature selection is the process of removing features from the data set that are 
irrelevant with respect to the task that is to be performed. Feature selection can be 
extremely useful in reducing the dimensionality of the data to be processed by the 
classifier, reducing execution time and improving predictive accuracy (inclusion of 
irrelevant features can introduce noise into the data, thus obscuring relevant features). 
It is worth noting that even though some machine learning algorithms perform some 
degree of feature selection themselves (such as classification trees), feature space 
reduction can be useful even for these algorithms. Reducing the dimensionality of the 
data reduces the size of the hypothesis space and thus results in faster execution time.  

Feature selection techniques can be split into two categories – filter methods and 
wrapper methods. Filter methods determine whether features are predictive using 
heuristics based on characteristics of the data. Wrapper methods make use of the 
classification algorithm that will ultimately be applied to the data in order to evaluate 
the predictive power of features. Wrapper methods generally result in better 
performance than filter methods because the feature selection process is optimized for 
the classification algorithm to be used. However, they are generally far too expensive 
to be used if the number of features is large because each feature set considered must 
be evaluated with the trained classifier. For this reason, wrapper methods will not be 
considered in this study. Filter methods are much faster than wrapper methods and 
therefore are better suited to high dimensional data sets. We have used   Gain Ratio 
(GR) feature evaluation method. Since the GR does not perform feature selection but 
only feature ranking, this method usually is combined with searching strategy in 
feature subset space when one needs to find out the appropriate number of features. 
Forward selection, backward elimination, bi-directional search, best-first search, 
genetic search, and other methods are often used on this task. Specifically, we 
experimented with the best first search in this study. For detailed information about 
GR, readers are referred to [11], [12]. 
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5   AIRS 

Artificial Immune Recognition System (AIRS) is investigated by Watkins [7]. AIRS 
can be applied to classification problems, which is a very common real world data 
mining task. Most other artificial immune system research concerns unsupervised 
learning and clustering. The only other attempt to use immune systems for supervised 
learning is the work of Carter [13]. The AIRS design refers to many immune system 
metaphors including resource competition, clonal selection, affinity maturation, memory 
cell retention and also used the resource limited artificial immune system concept 
investigated by [14]. In this algorithm, the feature vectors presented for training and test 
are named as antigens while the system units are called as B cells. Similar B cells are 
represented with Artificial Recognition Balls (ARBs) and these ARBs compete with 
each other for a fixed resource number. This provides ARBs, which have higher 
affinities to the training antigen to improve. The memory cells formed after the whole 
training antigens were presented are used to classify test antigens. 

AIRS has four stages. The first is performed once at the beginning of the process 
(normalization and initialization), and other stages constitute a loop and are 
performed for each antigen in the training set: ARB generation, Competition for 
resources and nomination of candidate memory cell, promotion of candidate memory 
cell into memory pool. The mechanism to develop a candidate memory cell is as 
follows [7], [15]: 

1. A training antigen is presented to all the memory cells belonging to the same class 
as the antigen. The memory cell most stimulated by the antigen is cloned. The 
memory cell and all the just generated clones are put into the ARB pool. The 
number of clones generated depends on the affinity between the memory cell and 
antigen, and affinity in turn is determined by Euclidean distance between the 
feature vectors of the memory cell and the training antigen. The smaller the 
Euclidean distance, the higher the affinity, the more is the number of clones 
allowed. 

2. Next, the training antigen is presented to all the ARBs in the ARB pool. All the 
ARBs are appropriately rewarded based on affinity between the ARB and the 
antigen as follows: An ARB of the same class as the antigen is rewarded highly for 
high affinity with the antigen. On the other hand, an out of class ARB is rewarded 
highly for a low value of affinity measure. The rewards are in the form of number 
of resources. After all the ARBs have been rewarded, the sum of all the resources 
in the system typically exceeds the maximum number allowed for the system. The 
excess number of resources held by ARBs are removed in order starting from the 
ARB of lowest affinity and moving higher until the number of resources held does 
not exceed the number of resources allowed for the system. Those ARBs, which 
are not left with any resources, are removed from the ARB pool. The remaining 
ARBs are tested for their affinities towards the training antigen. If for any class of 
ARB the total affinity over all instances of that class does not meet a user defined 
stimulation threshold, then the ARBs of that class are mutated and their clones are 
placed back in the ARB pool. Step 2 is repeated until the affinity for all classes 
meet the stimulation threshold. 
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3. After ARBs of all classes have met the stimulation threshold, the best ARB of the 
same class as the antigen is chosen as a candidate memory cell. If its affinity for 
the training antigen is greater than that of the original memory cell selected for 
cloning at step 1, then the candidate memory cell is placed in the memory cell 
pool. If in addition to this the difference in affinity of these two memory cells is 
smaller than a user defined threshold, the original memory cell is removed from  
the pool.  

These steps are repeated for each training antigen. After completion of training the 
test data are presented only to the memory cell pool, which is responsible for actual 
classification. The class of a test antigen is determined by majority voting among the 
k most stimulated memory cells, where k is a user defined parameter. 

Some researches have been done to evaluate the performance of AIRS [15], [16], 
[17], [18], [19]. The results show that AIRS is comparable with famous and powerful 
classifiers.  

5.1   Nonlinear Resource Allocation 

Resource competition is one stage of AIRS. The purpose of resource competition 
stage is improving the selection probability of high-affinity ARBs for next steps. 
Resource competition is done based on the number of allocated resources for each 
ARB. According to this resource allocation mechanism, half of resources is allocated 
to the ARBs in the class of Antigen while the remaining half is distributed to the other 
classes. The distribution of resources is done by multiplying stimulation rate with 
clonal rate that shown in (1). Mervah et al [15] have used a different resource 
allocation mechanism. In their mechanism, the Ag classes occurring more frequently 
get more resources. Classical AIRS and Mervah study use the linear resource 
allocation and   the number of allocated resources has linearly relation with affinities. 
In linearity approach the difference in allocated resource number between high 
affinity ARBs and low affinity ARBs is not very wide. Therefore, the more number of 
low affinity ARBs remain in the system and algorithm uses excess resources.  

ClonalRatenRateStimulatioRsources ×=         (1) 

In this study, we use the nonlinear coefficient for clonal rate in (1) to solve this 
problem. The appropriate nonlinear coefficient should  allocate more resources for 
high affinity ARBs and  less resources for low affinity ARBs in comparison to linear 
method. Resource allocation is done in nonlinearly with affinities, by using this type 
of coefficient. Also, the difference in resources number between high-affinity ARBs 
and low affinity ARBs is bigger in this approach than linear approach. In this study, 
we use very simple mathematic function to satisfy maintained condition. This 
function is shown in (2).  To evaluate the proposed method, we apply the AIRS with 
this nonlinear resource allocation method to TMM genre classification and compare 
its accuracy to accuracies of some famous classifiers.  

⎪⎩

⎪
⎨
⎧

<×

≥×=
5.0)(

5.0)(
2

2
1

RatenStimulatioifClonalRateRatenStimulatio

RatenStimulatioifClonalRateRatenStimulatioRsources       (2) 



138 S. Golzari et al. 

6   Experiments and Results  

In this study, the feature extraction method, described in section 3, was used to extract 
the TMM features. The result of this phase was a data set with 63 features and   193 
instances. After that, we used the GR feature subset evaluation with best first search 
strategy to reduce the dimensional of data set. The  feature selection method reduced  
the number of features to 25 features.   

Some experiments were carried out in order to determine how AIRS with nonlinear 
resource allocation method performed TMM genre classification in compared to 
AIRS and some other famous classifiers. One advantage of AIRS is that it is not 
necessary to know the appropriate settings and parameters for the classifier. The most 
important element of the classifier is its ability to be self-determined. The used values 
of AIRS parameters can be found in Table 2.  

Table 2. Algorithm Parameters 

Used Parameter Value 

Clonal rate 10 
Mutation rate 0.1 

ATS 0.2 
Stimulation threshold 0.99 

Resources 150 
Hyper mutation rate 2.00 

K value in KNN classifier 4 

 
As we mentioned earlier, we couldn’t find more researches about TMM genre 

classification problem. Therefore, to evaluate the performance of proposed method, 
the follow classifiers were chosen.  

• Bagging  
• Bayesian Network 
• Cart   
• Conjunctive rule learner  (Conj-Rules)  
• Decision Stump 
• Decision Table 
• IB1 
• J48 (an implementation of C4.5) 
• Kstar 
• Logistic 
• LogitBoost 
• Multi-layer neural network with back propagation  (MLP) 
• Naïve Bayesian 
• Nbtree 
• PART (a decision list [20]) 
• RBF Network 
• SMO (a support vector machine [21]) 
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Table 3. TMM Genre Classification Accuracies 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Table 4. Confusion Matrix 

A B C D E F G H I J 

A 29 0 0 0 0 2 0 0 0 0 

B 2 6 0 0 0 0 0 0 4 0 

C 0 0 22 0 1 0 0 0 0 0 

D 0 0 0 17 0 0 0 0 0 0 

E 0 0 0 0 8 0 0 0 0 2 

F 0 0 1 0 2 12 0 0 0 1 

G 0 0 0 0 0 0 41 1 0 0 

H 0 0 0 0 1 0 0 12 0 0 

I 0 0 0 0 1 0 2 0 14 0 

J 0 0 0 0 0 0 0 0 0 10 
 

 
This list includes a wide range of paradigms. The code written on the WEKA [12] 

data mining package and the default parameters were used for each algorithm. 
A 10-fold cross validation approach was used to estimate the predictive accuracy 

of the algorithms. In this approach, data instances are randomly assigned to one of 10 
approximately equal size subsets. At each iteration, all but one of these sets are 
merged to form the training set while the classification accuracy of the algorithm is 
measured on the remaining subset. This process is repeated 10 times, choosing a 
different subset as the test set each time until all data instances have been used 9 times  
 

Method Accuracy (%) 
Conj-Rules 31.60 

Decision Stump 33.68 
Decision Table 52.85 

CART 61.67 
PART 68.39 

J48 73.06 
Nbtree 75.13 

Bagging 76.68 
Naïve Bayesian 77.72 

RBF 80.31 
Bayesian Network 80.83 

Kstar 80.83 
LogitBoost 81.35 

MLP 84.47 
IB1 84.97 

Logistic 86.01 
SMO 86.01 
AIRS 86.01 

The Proposed Method 88.60 
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for training and once for testing. The final predictive accuracy is computed over all 
folds in the usual manner but dividing the number of correct classifications taken over 
all folds by the number of data instances in all folds. This approach was used in all 
experiments to control the validity of experiments.  

The achieved accuracies by classifiers are shown in Table 3. Based on the results, 
the proposed method not only increases the accuracy of AIRS from 86.1% to 88.6 %, 
but also has most accuracy among the classifier.  

Table 4 shows the confusion matrix obtained by applying proposed method to 
TMM genre classification. Results show the class B has the worst behavior among 
classes and only 50% of this class instances are classified truly. More exploration on 
the data collection and feature extraction for this class can be done in feature work to 
achieve more accuracy. 

7   Conclusions 

AIRS is the most important classifier among the Artificial Immune System based 
classifiers. In this study, the resource allocation mechanism of AIRS was changed 
with a nonlinear resource allocation method. In the application phase of this study, 
this new version of AIRS was used to classify Traditional Malay Music genres. Some 
experiments were conducted to see the effects of proposed resource allocation 
method. According to experimental results, AIRS with nonlinear resource allocation 
method showed a considerably high performance with regard to the classification 
accuracy for Traditional Malay Music genres. The obtained classification accuracy of 
proposed algorithm for Traditional Malay Music genre classification was 88.6%. Also 
this accuracy was maximum accuracy among accuracies that obtained by used 
classifiers in experiments.  
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Abstract. As an immune-inspired algorithm, the Dendritic Cell Algo-
rithm (DCA), produces promising performance in the field of anomaly
detection. This paper presents the application of the DCA to a standard
data set, the KDD 99 data set. The results of different implementation
versions of the DCA, including antigen multiplier and moving time win-
dows, are reported. The real-valued Negative Selection Algorithm (NSA)
using constant-sized detectors and the C4.5 decision tree algorithm are
used, to conduct a baseline comparison. The results suggest that the
DCA is applicable to KDD 99 data set, and the antigen multiplier and
moving time windows have the same effect on the DCA for this partic-
ular data set. The real-valued NSA with contant-sized detectors is not
applicable to the data set. And the C4.5 decision tree algorithm provides
a benchmark of the classification performance for this data set.

1 Introduction

Intrusion detection is the detection of any disallowed activities in a networked
computer system. Anomaly detection is one of the most popular intrusion detec-
tion paradigms and this involves discriminating between normal and
anomalous data, based on the knowledge of the normal data. Compared to tra-
ditional signature-based detection, anomaly detection has a distinct advantage
over signature-based approaches as they are capable of detecting novel intru-
sions. However, such systems can be prone to the generation of false alarms.
The Dendritic Cell Algorithm (DCA) is an Artificial Immune Systems (AIS)
algorithm that is developed for the purpose of anomaly detection. Current re-
search with this algorithm [6,4] have suggested that the DCA shows not only
excellent performance on detection rate, but also promise in assisting in reducing
the number of false positive errors shown with similar systems.

To date, the data used for testing the DCA have been generated by the authors
of the algorithm. While this approach provided the flexibility to explore the func-
tionality of the algorithm, it has left the authors open to the criticism that the
performance of the DCA has not been assessed when applied to a more standard
data set. In addition to examining the performance of the DCA, such application
allows for comparison with more established techniques. For this purpose, the
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KDD Cup 1999 (KDD 99) data set [7] is chosen as the benchmark for evalua-
tion, as it is one of the most widely used and understood intrusion detection data
sets. This data set was originally used in the International Knowledge Discov-
ery and Data Mining Tools Competition. During the competition, competitors
applied various machine learning algorithms, such as decision tree algorithms
[12], neural network algorithms [10] and clustering and support vector machine
approaches [2]. In addition to these traditional machine learning algorithms, a
range of AIS algorithms have been applied to this data set, such as real-valued
Negative Selection Algorithm (NSA) [3].

The aim of this paper is to assess two hypotheses: Hypothesis 1, the DCA
can be successfully applied to the KDD 99 data set; Hypothesis 2, changing the
‘antigen multiplier’ and the size of ‘moving time windows’ have the same effect on
the DCA. We also include a preliminary comparison between the DCA, the real-
valued NSA using constant-sized detectors (C-detector) and the C4.5 decision
tree algorithm to provide a basic benchmark. This paper is organized as follows:
Section 2 provides the description of the algorithm and its implementation; the
data set and its normalization are described in Section 3; the experimental setup
is given in Section 4; the result analysis is reported in Section 5; and finally the
conclusions are drawn in Section 6.

2 The Dendritic Cell Algorithm

2.1 The Algorithm

The DCA is based on the function of dendritic cells (DCs) of the human immune
system, using the interdisciplinary approach described by Aickelin et al. [1],
with information on biological DCs described by Greensmith et al. [5]. The
DCA has the ability to combine multiple signals to assess current context of the
environment, as well as asynchronously sample another data stream (antigen).
The correlation between context and antigen is used as the basis of anomaly
detection in this algorithm. Numerous signal sources are involved as the input
signals of the system, generally pre-categorized as ‘PAMP’, ‘danger’ and ‘safe’.
The semantics of these signals are shown as following:

– PAMP: indicates the presence of definite anomaly.
– Danger Signal (DS): may or may not indicate the presence of anomaly,

but the probability of being anomalous is increasing as the value increases.
– Safe Signal (SS): indicates the presence of absolute normal.

The DCA processes the input signals associated with the pre-defined weights to
produce three output signals. The three output signals are costimulation signal
(Csm), semi-mature signal (Semi) and mature signal (Mat). The pre-defined
weights used in this paper are those suggested in [5], as shown in Table 1. The
equation for the calculation of output signals is displayed in Equation 1,

Oj =
2∑

i=0

(Wij × Si) ∀j (1)
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Table 1. Suggested weights for Equation 1

PAMP Danger Signal Safe Signal
S0 S1 S2

Csm O0 2 1 3

Semi O1 0 0 3

Mat O2 2 1 -3

where Oj are the output signals, Si is the input signals and Wij is the trans-
forming weight from Si to Oj .

The DCA introduces individually assigned migration thresholds to determine
the lifespan of a DC. This may make the algorithm sufficiently robust and flexible
to detect the antigens found during certain time periods. For example, in real-
time intrusion detection there are always certain intervals between the time when
attacks are launched and the time when the system behaves abnormally. The
use of variable migration thresholds generates DCs whom sample different time
windows, which may cover the intrusion intervals.

An individual DC sums the output signals over time, resulting in cumulative
Csm, cumulative Semi and cumulative Mat. This process keeps going until the
cell reaches the completion of its lifespan, that is, the cumulative Csm exceeds the
migration threshold, the DC ceases to sample signals and antigens. At this point,
the other two cumulative signals are assessed. If the cumulative Semi is greater
than the cumulative Mat value, the cell differentiates towards semi-mature state
and is assigned a ‘context value’ of 0, and vice versa - greater cumulative Mat
results in the differentiation towards mature state and a context value of 1. To
assess the potential anomalous nature of an antigen, a coefficient is derived from
the aggregate values across the population, termed the ‘MCAV’ of that antigen.
This is the proportion of mature context presentations (context value of 1) of
that particular antigen, relative to the total amount of antigens presented. This
results in a value between 0 and 1 to which a threshold of anomaly, termed
‘MCAV threshold’, may be applied. The chosen value for this threshold reflects
the distribution of normal and anomalous items presented within the original
data set. Once this value has been applied, antigens with a MCAV which exceeds
this threshold are classified as anomalous and vice versa. To clarify the algorithm
a pictorial representation is present in Figure 1.

2.2 The Implementation

The general function of the system is to read data instances of the data set and
then output the MCAV of each type of antigens. In order to implement this
function, three major components are implemented:

– Tissue: processes the data source to generate antigens and signals, in each
iteration Tissue stores the antigens into random indexes of an antigen vector
and updates current signals to a signal vector.
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Fig. 1. The illustration of the DCA processes

– DCell: manages the DC population and interacts with Tissue to process the
antigens and signals.

– TCell: interacts with DCell to produce the final results.

Two additional functions, antigen multiplier and moving time windows, are
added into the system for the purpose of optimization. The DCA requires multi-
ple instances of identical antigens, termed the ‘antigen type’, so processing across
a population can be performed in order to generate the MCAV for each antigen
type. The antigen multiplier is implemented to overcome the problem of ‘antigen
deficiency’, that is, insufficient antigens are supplied to the DC population. As
one antigen can be generated from each data instance within a data set such
as KDD 99, the antigen multiplier can make several copies of each individual
antigen which can be fed to multiple DCs.

The inspiration of applying moving time windows is from processes seen in
the human immune system. The signals in the immune system persist over time,
thus they can influence the environment for a period of time. The persistence of
the signals can be presented by the cascade of signals within their affective time
period. Due to missing time stamps in the KDD 99 data set, tailored window
sizes for each data instance are not applicable, and a fixed window size is applied.
The new signals of each iteration are calculated through Equation 2,

NSij =
1
w

i+w∑
n=i

OSnj ∀j (2)

where NSij is the new signal value of instance i in category j, w is the window
size, and OSnj is the original signal value of instance n in category j.
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input : antigens and pre-categorized signals
output: antigen types plus MCAV

initialize DC population;
while incoming data available do

update tissue antigen vector and signal vector;
randomly select DCs from DC population;
for each selected DC do

assign a migration threshold;
while cumulative Csm<=migration threshold do

get and store antigens;
get signals;
calculate interim output signals;
update cumulative output signals;

end
if cumulative Semi<=cumulative Mat then

cell context=1;
else

cell context=0;
end
log antigens plus cell context;
terminate this DC and add a naive DC to the population

end
end
while TCell analysis is not completed do

for each antigen type do
calculate MCAV;

end
log antigen types with corresponding MCAV;

end

Algorithm 1. Pseudocode of the implemented DCA

In brief the DCA combines multiple sources of input data in the form of pre-
categorized signals and antigens. This input is processed across a population of
DCs to produce the MCAV which is used to assess if an antigen type is normal
or anomalous. Antigen multiplier and moving time windows are added to the
algorithm to adapt the KDD 99 data set for use with this algorithm, as well
as to assess the hypothesis of they having the same effect on the DCA. The
pseudocode of the implemented DCA is shown in Algorithm 1.

3 The KDD 99 Data Set and Normalization Processes

3.1 The Data Set

The KDD 99 data set is derived from the DAPRA 98 Lincoln Lab data set [8] for
the purpose of applying data mining techniques to the area of intrusion detection.
The DAPRA 98 data set contains two data sources, which are the network sniffer
data from the sniffer placed between a router and the outside gateway and the
Solaris system audit data from the Solaris audit host. The KDD 99 summarizes
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the two data sources into connections (data instances), each connection has 41
features (attributes), which can be grouped into four categories [11]:

– Basic Features: derived from the packet headers without inspecting the
payload.

– Content Features: from the assessment of TCP packets by using domain
knowledge of intrusion detection.

– Time-based Traffic Features: from the statistical analysis to captures the
properties with a time window of two seconds.

– Host-based Traffic Feature: from the statistical analysis of the properties
over the past 100 connections.

The KDD 99 is one of the few labeled data sets available in the field of
intrusion detection. The data instances are labeled as normal connections or
attack types, and the attacks can be grouped into four categories: Denial of
Service (DOS), Remote to Local (R2L), User to Root (U2R) and Probe. The
data set used in this paper is the 10% subset of the KDD 99 data set that
is commonly used by other researchers. It consists of 494021 data instances,
which are relatively massive. The whole data set would be more computational
extensive, and hence much more difficult to handle, especially for the real-valued
NSA with C-detector and the C4.5 decision tree algorithm. Both algorithms
require training stage, the large the data set is, the longer the training would
take. The 10% subset is statistically compared with the whole data set, and it
features the similar ratio of the normal connections and the attacks.

3.2 Normalization of the Data Set

As anomaly detection is a two-class classification, the labels of each data instance
in the original data set are replaced by either ‘normal’ for normal connections or
‘anomalous’ for attacks. Due to the abundance of the attributes, it is necessary
to reduce the dimensionality of the data set, to discard the irrelevant attributes.
Therefore, information gains of each attribute are calculated and the attributes
with low information gains are removed from the data set. The information gain
of an attribute indicates the statistical relevance of this attribute regarding the
classification [11]. The information gain, termed Gain(S, A) of an attribute A
relative to a collection of examples S, is defined as Equation 3 [13],

Gain(S, A) ≡ Entropy(S) −
∑

v∈V alues(A)

(
|Sv|
|S| Entropy(Sv)) (3)

where V alues(A) is the set of all possible values for attribute A, and Sv is the
subset of S for which attribute A has value v. The entropy of S relative the
2-wise classification, termed Entropy(S), is defined as Equation 4 [13],

Entropy(S) ≡
2∑

i=1

−pilog2pi (4)

where pi is the proportion of S belonging to class i.
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The histograms of the remainder attributes are assessed for the normalization
of the DCA, to abstract the knowledge of both normal and anomalous. Based
on the characteristics of the input signals, ten numeric attributes are grouped
into the categories as follows:

– PAMP: serror rate, srv serror rate, same srv rate, dst host serror and dst
host rerror rate.

– DS: count and srv count.
– SS: logged in, srv different host rate and dst host count.

Let x be the value of an attribute, if it is certain that anomalies appear when
x ∈ [m, n], this attribute can either be PAMP or DS; otherwise if normality
arises in this range, this attribute can be SS. The value of this attribute is then
normalized into the range from 0 to 100 through linear normalization defined by
Equation 5,

f(x) =

⎧
⎨
⎩

0 x ∈ [0, m)
x

n−m × 100 x ∈ [m, n]
100 x ∈ (n, +∞)

(5)

where f(x) is the normalization function. The average of the multiple attribute
values in each signal category is the value of that category. In addition, the other
data steam of the DCA, the antigens, are created by combining three nominal
attributes, which are protocol, service and flag. Multiple instances of each antigen
type can generated through this way, which satisfies the requirement of the DCA
for multiple observations of each antigen type. It makes sense in the case of both
human immune system and intrusion detection: since antigens with the same
pathogenic patterns can invade the human immune system over and over again;
and attacks with the same patterns can be launched discretely over time in a
networked computer system.

The ten attributes selected for the signals in the DCA are chosen to represent
the detectors and antigens in the NSA. These attributes are normalized into
the range from 0 to 1, using max-min normalization, thus the data space is
a unitary hypercube [0, 1]10. The data set is then rearranged to generate ten
subsets through 10-folder cross-validation. The training data is made of the nine
folders and the testing data is made of the one folder in each subset. The self set
of the NSA is derived from all the normal data instances in the training data,
and the antigens are the data instances in the testing data. The input data of
the C4.5 decision tree algorithm contains the same attributes as those of the
NSA but without normalization, and the labels of normal and anomalous are
provided for the purpose of training.

4 Experimental Setup

Both the DCA and the NSA are implemented in C++ with the g++ 4.2 com-
plier, and the C4.5 decision tree algorithm is performed in Weka [14], which is a
collection of machine learning algorithms for data mining tasks. The experiments
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are run on a PC on which Ubuntu Linux 7.10 with a kernel version of 2.6.22-
14-generic is installed. The receiver operating characteristics (ROC) analysis is
performed to evaluate the classification performance of the DCA and the NSA.
The true positive (TP) rate, false positive (FP) rate, true negative (TN) rate
and false negative (FN) rate of each experiment are calculated, and the relevant
ROC graphs are plotted as well. Three sets of experiments are performed: various
DCA versions (E1), the real-valued NSA using C-detector (E2), and the C4.5
decision tree algorithm (E3).

In all experiments related to the DCA, the size of the DC population is set as
100 and it is constant as the system runs. The migration threshold of an individ-
ual DC is a random value between 100 and 300, to ensure this DC to survive over
multiple iterations. The ‘perfect MCAV’ of an antigen type is calculated based
on the labels of the original data set, normal is equivalent to context value 0 and
anomalous is equivalent to context value 1. To generate the classification results
of the DCA and the ‘perfect classification results’ from the perfect MCAVs, a
MCAV threshold of 0.8 is applied. The MCAV threshold is derived from the
proportion of anomalous data instances of the whole data set , which is equal to
80%. The classification results of the DCA are then compared with the perfect
classification results, to assess the TP, FP, TN and FN. Three experiments of
E1 are performed corresponding to the DCA versions as following:

– E1.1: the basic version of the DCA.
– E1.2: the system with antigen multiplier, the antigens are multiplied by 5,

10, 50 and 100.
– E1.3: the system with moving time windows, the window size is respectively

equal to 2, 3, 5, 7, 10, 100 and 1000.

For each single experiment, ten runs are performed and the final result is the
average of the ten runs. In order to make the results from different experiments
more comparable, a fixed sequence of random seeds for ten runs is used. For E1.2
and E1.3, the two-sided Mann-Whitney test is performed to assess if various
parameters can make the results statistically different from each other. The
statistical significance α is set as 0.05, thus giving a confidence of 95% to either
accept or reject the null hypothesis.

E2 includes a range of experiments of the NSA, as the data space increases
from two dimensional to ten dimensional. According to the parameters men-
tioned in [9], the self radius is equal to 0.1 and the detector amount is increased
to 1000 because of the large size of the data, and the matching rule used is the
Euclidean distance matching. The results produced by the algorithm are com-
pared to the labeled testing data, namely the ‘perfect result’, to perform the
ROC analysis. The final results of each dimension is the average of ten subsets.
The experiment setup of C4.5 decision tree algorithm are as follows: the clas-
sifier chosen in Weka is J48, which is a class for generating an unpruned or a
pruned C4.5 decision tree; the test option of the classification is set as 10-folder
cross-validation.
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Table 2. The ROC results of the experiments in E1

Category Parameter TP Rate TN Rate FP Rate FN Rate
E1.1 - 0.7375 1 0 0.2625

E1.2 5 0.75 1 0 0.25

E1.2 10 0.74375 1 0 0.25625

E1.2 50 0.75 1 0 0.25

E1.2 100 0.75 1 0 0.25

E1.3 2 0.75 1 0 0.25

E1.3 3 0.75 1 0 0.25

E1.3 5 0.74375 1 0 0.25625

E1.3 7 0.75 1 0 0.25

E1.3 10 0.75625 1 0 0.24375

E1.3 100 0.71875 0.96 0.04 0.28125

E1.3 1000 0.7 0.979592 0.0204082 0.3

Table 3. The ROC results of the experiments in E2

Data Dimension TP Rate TN Rate FP Rate FN Rate
2 0.98367 0.42944 0.37055 0.01633

3 0.23462 0.71834 0.08165 0.76538

4 0.08971 0.79289 0.00711 0.91029

5 0 0.79993 0.00007 1

6 0 1 0 1

7 0 1 0 1

8 0 1 0 1

9 0 1 0 1

10 0 1 0 1

5 Result Analysis

The results of E1 are shown in Table 2, which indicate the antigen multiplier
cannot consequentially enhance the system performance. The signals associated
with the misclassified antigens are generated incorrectly from the original data
set, thus the DCs always assign wrong context values no matter whether the
antigens are multiplied or not. Moreover, the moving time windows cannot sig-
nificantly improve the system performance either. Due to the limitation of the
data set, the tailored window sizes of each data instance that may result in
better system performance are not applicable. Furthermore, the Mann-Whitney
test suggests a 95% confidence to accept the null hypothesis, that is, the results
of all the experiments in E1 are not statistical different from each other.

The results of E2 are shown in Table 3, and the ROC results E2 from two
dimensional to ten dimensional are shown in Figure 2. The algorithm produces
acceptable results when the data space is two dimensional. But as the dimen-
sionality increases, the classification performance is getting worse and worse.
The algorithm cannot detect any anomalies when the the data space is six
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Fig. 3. The ROC graph of E1, E2 and E3 as data space is ten dimensional

dimensional or more. As the dimensionality of the data space increases, the
search space grows exponentially, thus it is becoming more and more difficult to
generate sufficient detectors that can effectively cover the space of non-self.

The ROC graph of the results in E1 and E2 when the dimensionality is ten
is shown in Figure 3. The results of the DCA are located on the top-left corner
of the graph, showing that all versions the DCA can successfully detect around
75% true anomalies over all actual anomalies as well as produce no or few false
alarms. The real-valued NSA with C-detector cannot produce any useful results,
as it fails to detect any anomalies. Moreover, as expected the C4.5 decision tree
algorithm produces superb results, the true positive rate is 0.988 and the false
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positive rate is 0.008. This algorithm is designed specifically for the purpose of
data mining, its classification performance is supposed to be better than the
other two algorithms that are designed for the purpose of anomaly detection.
But in terms of false positive rate, the classification performances of the DCA
and the C4.5 decision tree algorithm are comparable with each other.

6 Conclusions and Future Work

This paper presents the algorithm behaviors of the DCA, when it is applied to
a standard data set, the KDD 99 data set. The results show that the DCA is
able to work with the data set and produce reasonable performance, therefore
Hypothesis 1 is accepted. Moreover, the DCA is an unsupervised learning al-
gorithm, it does not require training with normal data instances. It acquires
the knowledge of normal and anomalous through the categorization of signals
based on basic statistical analysis. Besides, it is not constrained by high dimen-
sionality of the data sets. Thus the DCA is applicable to large data sets with
high dimensionality. The real-valued NSA with C-detector has poor classification
performance on the high dimensional KDD 99 data set, it could not manage to
detect any anomalies as the dimensionality increases up to six or more. There-
fore, this algorithm is not applicable to the data sets with high dimensionality.
As a specialized machine learning algorithm, the C4.5 decision tree algorithm
produces excellent results, it provides a benchmark showing the ideal results of
the KDD 99 data set.

Due to limitations of the data set, the DCA could not be optimized by either
antigen multiplier or moving time windows. First of all, it is only possible to
generate one unique antigen from each data instance, leading to the insufficient
observations of each antigen type by relative DCs, the problem cannot be solved
with the antigen multiplier. Furthermore, the time stamps of each connection are
unavailable, thus it is impossible to apply tailored window sizes in the system,
and hence the advantage of the moving time windows is not fully utilized. Even
though, both antigen multiplier and moving time windows have the same effect
on the DCA for this particular data set, and hence Hypothesis 2 is accepted.

Some future directions of DCA research can be: first of all, to perform more
rigorous comparisons between the DCA and other AIS algorithms; Secondly, to
apply the DCA to other data sets, to further explore the limits of the DCA and
to understand the antigen multiplier and moving time windows; Thirdly, to add
more features to the DCA, to make the algorithm more adaptive and flexible.
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Abstract. An existing system - AISEC - which categorises email as
interesting or uninteresting using an immune-inspired algorithm is im-
plemented as a plug-in to Outlook to allow seamless user testing. Ex-
periments are performed with a new, large data set to validate previous
published results. We show comparable results can be obtained on differ-
ent data-sets if the system parameters are correctly tuned; the algorithm
is particularly sensitive to certain parameters. Some flaws in the origi-
nal algorithm are identified; a modification is proposed to the learning
process of the algorithm and to the mutation operator. Tests with the
modified algorithm in a number of scenarios in which users’ interests fre-
quently change show the improved algorithm is capable of continuously
adapting to achieve high classification accuracy and can accurately track
changes in user interests. The improvements are statistically significant
when compared to the original system.

1 Introduction

According to a survey carried out by White Collar Productivity Index [9], in
2004 a person spent on average 8.8 hours a week handling email. The survey
showed that even if all spam is removed, a significant amount of time is spent
reading and subsequently ignoring emails that we have no interest in. For exam-
ple, emails from a Faculty administrator regarding timetabling information are
of no interest to a lecturer on sabbatical but are not “spam” in the classical sense.
Users’ interests change continuously change however; at the end of the sabbatical
period, the emails may become of interest again. On the other hand, a lecturer
may lose interest in emails relating to conference during semester due to a busy
teaching timetable. It is important to distinguish the difference between spam
and mail that is simply uninteresting; spam refers to unsolicited mail that at no
time is of interest to the user. Many highly specialised pieces of software exist for
identify and removing spam email — this is not the concern of the application
described in this paper. Indeed, spam filtering necessitates that the false positive
rate1 of a filter must be minimised, as the consequences of mis-classifying and
removing legitimate email from a user’s inbox can be enormous.

In 2003, Secker et al published a system named AISEC which was capable of
classifying emails as interesting or non-interesting and removed un-interesting
1 Incorrectly identifying legitimate mail as spam.
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mail from a user’s inbox. Furthermore, the system was shown to be capable
of continuous learning; following changes in a user’s interest, the system could
adapt to the new interests. Results were published from a single set of 2268
emails of which 32.7% were classified as uninteresting and the remainder inter-
esting. The results were compared to performance on the same data set with a
näıve Bayesian system; although performance was similar overall, AISEC showed
improved performance during certain periods of time. It was postulated that this
was due to the ability of AISEC to adapt to changes in the data, such as a word
used commonly in uninteresting emails suddenly beginning to appear in inter-
esting email. However, this hypothesis was never explicitly tested by examining
the data in detail or by testing specific scenarios in which emails were known to
change in content. Therefore, in this paper we specifically address the following
objectives:

– to validate published results by running system on a completely different
set of test emails - this is partly due to the unavailability of original set,
but furthermore, offers an opportunity to investigate the sensitivity of the
algorithms parameters to different data sets.

– to explicitly test the ability of the algorithm to adapt to changing interests,
by setting up a number of test scenarios in which the users interest in emails
from a particular source changes from interesting to un-interesting (and vice-
versa) over a period of time.

– to provide a number of modifications to the algorithm which improve
the speed at which it adapts and the overall accuracy of the classification
algorithm.

The remainder of the paper is organised as follows. Section 2 gives an overview
of the existing algorithm. Section 3 describes the re-implementation of AISEC
as an Outlook plug-in and the experimental test-bed used to investigate its
performance. Section 4 reports results on experiments designed to validate the
performance of the existing algorithm. This is followed by a description of two
extensions to the existing algorithms in sections 5 and 6, including presentation
of new results. We conclude with some remarks on the use of immune algorithms
in a continual learning scenario and recommendations for future work.

2 AISEC

The algorithm is presented briefly — this description is taken directly from the
original publication of Secker et al. For pseudo-code and implementation details
of the algorithm, the reader is referred to [8].

Essentially, AISEC classifies mail into two classes, semantically labelled as
’interesting’ or ’uninteresting’. The algorithm is inspired by some of the proper-
ties observed in the natural immune system. It uses inspiration from B-cells to
represent one class of data, that of uninteresting emails. A B-cell consists of a
set of words derived from the subject and sender fields of a training set of unin-
teresting emails and occurs in one of two states - those that are näıve potentially
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classify uninteresting mail, those that are mature have received co-stimulation
from a user confirming their classification and are regarded as memory cells.
Gene libraries are used to store words that have been used in uninteresting mail
and are used to mutate existing B-cells. Cells become stimulated via matching
process which matches words in the B-cell against incoming emails. B-cells be-
come stimulated once their stimulation level exceeds a pre-defined threshold.
Cloning of high-affinity existing cells is used to generate new cells - the original
authors note the impractically of generating random detector cells given the size
of the search space, therefore all new naiv̈e cells are mutants of existing cells.
The algorithm is dynamic - user feedback and cloning continuously produce new
cells. In order to prevent unlimited population growth, a cell-death process is
implemented in which cells which do not receive sufficient stimulation over a pe-
riod of time are purged from the system. User feedback is given asynchronously
to aid classification but on a regular basis. As the algorithm is designed to ad-
dress concept drift over long periods, the design of the algorithm ensures that
reasonable pauses in this feedback do not cause an undue drop in classification
accuracy.

A number of other immune-inspired approaches to email classification exist
in the literature. In the main, these relate to the classification of email into
spam and non-spam sets. As noted in the introduction, this task has signifcantly
different requirements from classifying mail as interesting/not-interesting — for
example, while a user’s interest in a particular topic may wax and wane over
time, their interpretation of what is spam email is likely to remain constant.The
reader is referred to the works of Yue [10] and Oda [6] for examples of immune-
inspired spam classification systems and also to [5] for related work in the domain
of adaptive information filtering (using documents rather than emails).

3 Experimental Approach

The AISEC system was converted to .NET using Visual Studio Tools for Office.
New buttons and new folders are added to Microsoft Outlook 2007 using an
add-in project. The add-in allows seamless integration of AISEC with Outlook
such that the system can run in real-time. The new system is referred to as
AISEC-Outlook to distinguish it from the original.

The working of the Microsoft Outlook add-in is shown in 1(a). Whenever a
new email is downloaded from the email server, AISEC-Outlook classifies the
email as interesting or uninteresting for the user and places in an appropriate
folder. As the user reads the email feedback is taken from the user depending on
his/her actions. There are two kinds of feedback that can be given to AISEC-
Outlook, positive, for correct classification of the email and negative, implying
incorrect classification of the email. In the case of positive feedback, the user
is not required to do anything except read the email, upon which Microsoft
Outlook 2007 marks the email as read by assigning the unread property of the
email item to false. AISEC-Outlook identifies such emails and assumes positive
feedback. When AISEC-Outlook has mis-classified an email, the user is required
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(a) Overview (b) Additions to Outlook

Fig. 1. An overview of AISEC used as an add-in Microsoft Outlook, showing the testing
procedure and illustrating the integration of the system into Outlook for testing

to move the email to its correct folder. AISEC-Outlook recognizes the moved
emails and interprets this as negative feedback. Based on this feedback, AISEC-
Outlook rewards the BCells. In the case of positive feedback, all the BCells
with a higher affinity than the affinity threshold for the correctly classified email
are stimulated and the one with the highest affinity is cloned and mutated to
generate new BCells belonging to the next generation. In the case of negative
feedback, all the BCells with an affinity above the affinity threshold for the
mis-classified email are removed, and the words from subject, sender and return
address fields are removed from the repository of words for each field. This avoids
further mis-classification of similar emails. If an email which is uninteresting is
mis-classified as interesting then, the emails words in subject, sender and return
address fields are added to the repository of the words. The email is added to
nave BCells. This avoids further mis-classification of such kind (similar in topic)
of emails. This process is repeated for every incoming email and the system
adapts to the users interests if there has been a change.

Providing feedback for every email in a large test set during testing would be
time consuming and a tedious process. Therefore all the stages in classifying an
email are automated. New buttons and folders are created in Outlook. Identify-
ing a single email which has been read by the user in a folder requires iterating
through the entire set of emails, which is time and processor consuming process.
To avoid this, new folders are added and at each stage in the process of clas-
sifying the email the email is moved between the folders. At any time a particular
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folder only contains the emails that need to be classified or taken feedback from.
Figure 1(b) illustrates the buttons that have been added to facilitate testing and
classification of emails.

3.1 Methodology

A test set of 2412 emails are used gathered during a period of approximately 9
months. The email set consisted of personal email plus emails that were received
after deliberately subscribing to a number IT related sites such as WebProNews
[1], and a set of sites advertising job vacancies, e.g. IT Job Board, Jobsite Va-
cancy etc. Of these emails, 70.81% are classified by hand as interesting and 29.19
% were classified as uninteresting. As in the original paper, the temporal order-
ing of emails within the test was preserved and only the words contained in the
subject and sender fields of the e-mail were used. The sender information also
included the return address, as these fields may differ. The fields were tokenized
using spaces and the characters ., ,, (, ), !, @, ¡, ¿ as delimiters and each token
inserted into a separate element of the correct feature vector. Simulated user
feedback was given to both algorithms after the classification of each e-mail.

The standard measure of classification accuracy was used to evaluate results,
i.e, the percentage of all emails correctly classified. However, as the data set
is unbalanced in terms of the number of samples in each class, a confusion
matrix [7] was also used to examine the recognition rate of each individual class.
We additionally report the precision and recall for each test using standard
definitions of these terms.

Table 1. Comparison of predictive accuracy of AISEC-Outlook with original parame-
ters and optimised parameters (standard deviation given in brackets)

Accuracy Precision Recall

Original Test Set 89.09 (0.97) 82.20 81.13
New Test Set (original parameters) 78.68 (2.00) 99.67 (0.04) 70.43 (2.80)
New Test (optimised parameters) 88.61 (1.27) 99.58 ( 0.07) 84.44 (1.81)

4 Results: Validation

The system was trained with a training set of 25 emails — the first 25 uninterest-
ing ones. The system was first run with the parameters specified by Secker in [8];
as the system is stochastic, 10 runs were performed in order to derive an average
classification accuracy. This however produced disappointing results, reported
in lines 1 and 2 of table 1. A mean classification accuracy of 78.68% ± 0.04 was
obtained, compared to that of 89.09% ± 0.97 reported by Secker. Interestingly
however, the precision obtained on the new dataset is significantly higher than
originally reported; this occurs however, at the expense of recall in the system,
which shows a considerable drop over the figure reported in [8]. Following this,
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extensive experimentation was performed in which the settings of two param-
eters were investigated. The affinity threshold, which determines the minimum
affinity between two compared cells required to cause stimulation of a cell, and
the classification threshold, which determines whether or cell is ultimately clas-
sified as interesting or uninteresting. Lack of space prevents all results being
presented here; however, test results showed that the mean accuracy could be
significantly improved by tuning the parameters. Figure 2(b) shows the results of
one experiment in which the effect of the classification threshold parameter was
investigated; clearly the system is particularly sensitive to this value. The final
classification accuracy obtained with optimised parameters is shown in table 1
- this was obtained with the classification threshold set to 0.3 and the affinity
threshold 0.5. Once again, the precision of the optimised system is very high;
the optimised parameters lead to an increase in recall in the system, and overall
to a classification accuracy similar to that reported in [8].

Optimised parametersPublished parameters
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(a) Classification Accuracy (b) Effect of Classification
threshold

Fig. 2. Tests showed that performance of AISEC on the new data set could be increased
by optimising the parameters. In particular, the classification threshold parameter sig-
nificantly affected the results.

Figure 2(a) shows the trends in accuracy for the original reported parameter
set as the optimised set as emails are presented to the system. At each data-
point, the classification accuracy was measured following presentation of each
email, taking into account all previous classifications. The graph shows that
although both systems stabilise quickly to a high classification accuracy, the
optimised parameters perform significantly better (this has been verified by a
t-test). However, with a dataset which is biased towards one class, the classifica-
tion accuracy does not necessarily reveal the whole picture. Therefore, confusion
matrices are presented in figure 3(a) and 3(b). The matrices clearly show that
AISEC produces a very low false positive rate2 — 0.59% in the original parame-
ters and 1.03% in the optimised set. The false negative rate however is higher in
both cases (26.32% and 13.25% respectively), suggesting that the system has a
2 Uninteresting mail classified as interesting.
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tendency to wrongly classify interesting mail as uninteresting. In an email clas-
sification application, this could lead to interesting mail being ignored by the
user.

Overall, the results serve a useful validation of AISEC published in [8]. Al-
though we are unable to obtain the details of the email set used in [8], it seems
reasonable to assume that the content of the email set used in our experiment is
largely different. Nevertheless, the algorithm performed with comparable accu-
racy, and in fact, provided higher precision than originally described. However,
our results emphasises the perhaps obvious necessity to tune the system to a
particular users inbox. Results are likely to vary widely depending on the pre-
cise nature of the relationship between words in a particular inbox and in the
frequency and nature of the changes in interest. We return to this later in the
paper.

Predicted
Actual uninteresting interesting

uninteresting 675 4
interesting 226 1480

(a) original parameters

Predicted
Actual Uninteresting interesting

uninteresting 672 7
interesting 226 1480

(b) optimised parameters

Fig. 3. Confusion matrices obtained from a single run of the system with the originally
specified parameters and optimised parameters

5 Extension 1: Adaptability of AISEC: Reacting to
Changing Interests

Although results in [8] show that AISEC capable of continuous learning, and
potentially of tracking concept drift, no results have been published in which
explicit changes in user interest are tested. Therefore, we designed tests to ver-
ify whether explicit changes in a user’s interests could be tracked. Two tests
are performed; in the first, emails from the source WebProNews [1], currently
designated as uninteresting, are designated by the user to to be interesting
and therefore moved to the user’s Inbox from the Junk folder. In the second
test, the reverse operation is performed; the user’s interest change once more
and new emails in the Inbox from WebProNews are moved back to the Junk
folder.

Figures 4(a) and 4(b) show the effect on the classification accuracy over time
as emails are classified. Figure 4(a) clearly shows that AISEC adapts quickly
to a change in interest from Junk to Inbox. Figure 5 shows the testing proce-
dure used by the AISEC algorithm: when AISEC classifies the first email from
the changed as uninteresting, the user supplies negative feedback. Based on this
feedback, AISE penalizes all the BCells responsible for the recognition of the
email and removes the BCell with the highest affinity. This has the overall effect
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of reducing the affinity of the BCells with the type of emails in which the user is
now interested. Upon repetition of this process, all the BCells with high affinity
towards the interesting emails are eventually removed. As reflected in the graph,
AISEC adapts to the interests of the user. However, figure 4(b) shows an obvious
decrease in classification accuracy when the reverse process occurs: when the
user’s loses interest in a topic, AISEC fails to react. Further examination of
the algorithm presented in figure 5 reveals the reason: the verification of the
classification by the user only happens when an email has been classified as
uninteresting. Therefore, mails wrongly classified as interesting by AISEC do not
receive user feedback. AISEC was modified accordingly: when the user supplies
negative feedback from mis-classification of an item in the Inbox, the email is
now added to the repository of B-Cells responsible for classifying mails. This new
B-Cell will recognise any further remains of this type, increasing its stimulation
and causing the cell to be cloned.

(a) Junk to Inbox (b) Inbox to Junk

Fig. 4. Ability of AISEC to adapt to changes: the figures show change in classification
accuracy in two scenarios. In the left-hand figure, the user gains interest in a set of
emails - the top most line indicates classification accuracy. In the right-hand figure,
the user now designates a set of emails as uninteresting.

Results of Modified Algorithm. To test the modified algorithm, a further
experiment was run: 265 emails received from the source WebProNews were
moved from the Inbox to Junk after 1200 emails has been classified. At iteration
1600 (i.e after 1600 email classifications), 143 emails that had been received from
WebProNews during this interim period were moved back to the Inbox. Figure
6 shows the classification accuracy against number of emails received obtained
using the modified algorithm; the point at which the emails which undergo a
change in classification are highlighted on the graphs: the figure shows that
the modified version of AISEC is now able to adapt to all changes in the user
preferences, i.e. in both directions.
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Fig. 5. The classification and reward procedure used in the original published version
of AISEC. A flaw exists in that mails classified incorrectly as interesting are never
penalised.

6 Extension 2: Mutation

The original version of AISEC employs a simple mutation operator for mutating
B-cell vectors, which selects a random word in the feature vector and replaces
it with a random word from the gene library store. However, a vast array of
literature is available in the document/text analysis domain, which provides
inspiration for refining this operator to better exploit relationships and semantics
between words in a vector. One simple such suggestion is described here.

Word collocation (e.g. [3]) is a technique used in computational linguistics
and text analysis which utilises the facts that words that are related to each
other are located within a fixed distance of one another in a text. Thus, in a
text about immunology, infection and pathogen are likely to occur in (say) a
distance 10 from each other. B-Cells are created in the first instance by scan-
ning an email’s subject and sender lines, placing words from these fields into
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Fig. 6. The modified system is capable of maintaining classification accuracy as the
user preferences for a particular set of emails change from interesting to uninteresting
(first vertical line) and then back to interesting again some time later (2nd vertical
line)

a vector. The subsequent ordering of words in the vector reflects the order they
were originally encountered in the email; word collocation suggests that words
located next to each other in the resultant vector may be related in subject. For
example, a university administrator sends a mail“timetable for software engi-
neering course” which results (after removal of stop-words) in a vector [timetable
software engineering course] in which the words software and engineering are lo-
cated consecutively. The original mutation operator described in [8] randomly
selects a single word from the vector and replaces it with a random word from a
gene library. However, we propose that the positional bias between words in the
B-cell vector can be exploited during mutation by use of a positionally biased
mutation operator. Therefore, we replace the mutation vector currently used
in AISEC with a position-biased mutation operator proposed by Kelsey and
Timmis in [4] and later analysed theoretically in [2]. This operator, known as
“hot-spot” mutation, selects a position in the vector at random, and then applies
mutation to a contiguous region of the vector starting from this position, thereby
increasing the chance of replacing collocated words. The size of the region is fixed
at 2, and the operator selection a starting position between position 0 and (n-1)
in the vector, with no wrap-around. Although simplistic, we postulate that this
may be particularly useful in speeding up adaptation of the B-cell repertoire
after changes in a user’s interests. For example, following on from the example
given above, the academic in question may stop teaching a particular module
and hence no longer be interested in emails concerning the software engineer-
ing degree. The proposed mutation operator increases the chances of the words
software and engineering being replaced in a single application of the mutation
operator.
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The operator is updated as described. The modified version of AISEC was
again re-run 10 times on the test set, and the classification accuracy recorded as
each new email was classified. The results are shown in figure 7 which compares
the performance of the original algorithm and the hot-spot modified version.
Although the modified operator appears to be less effective when the algorithm
has only been exposed to a small number of email, its effectiveness increases
and it is seen to maintain a more consistent classification accuracy than the
original operator. T-test confirmed that the final classification accuracy after
presentation of the emails was significantly better with the modified algorithm.

Fig. 7. Comparison of modified mutation operator to original operator

7 Conclusion

The paper has presented further experimental evidence that an immune-inspired
learning algorithm, AISEC, is capable of performing continuous learning in a
dynamic environment. Our research firstly provides verification of previously
published results by testing the performance of the algorithm on a new test set of
data; for any algorithm to become acceptable it is crucial that it is benchmarked
on a number of problem data-sets. The context of in which AISEC applied —
a continuous learning environment — renders existing publically available email
datasets unsuitable as traditionally these are designed for use with one-shot
learning algorithms. As personal mailboxes are likely to differ greatly from one
person to another it was reasonable to hypothesise that the parameters of AISEC
would need to be tuned in order to work with a new dataset. Although this did
prove to be the case, AISEC proves to be a relatively robust algorithm, with
many of the parameters robust to changes in them. The key parameter from the
point of view of tuning appears to be the classification threshold. Secondly, we
have explicitly tested the ability of AISEC to adapt to changing interests for
the first time. Results obtained in these scenarios necessitated a modification to
the algorithm to cope with changes from interesting to uninteresting. Finally,
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we have further improved the algorithm to exploit the positional bias present
in the B-cell representation which produced additional increases in classification
accuracy.

Whilst the system is relatively simplistic as a machine learning tool and lacks
the theoretical basis that perhaps make the use of more traditional learning tech-
niques more seductive, the results suggest that the system is worthy of further
exploration. An obvious avenue for future extensions is to investigate using the
body of the mail in the classification - this is likely to require more sophisticated
processing of the body text before including in a B-cell in order to maintain
tractability. More generally, the results suggest that immune-inspired learning
algorithms may have a role to play in tackling continuous learning problems.
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Abstract. When a set of heterogeneous agents is considered to solve different 
kinds of problems, it is very challenging to specify the necessary number of 
elements, which functionally of each one will be used and the schedule of these 
actions in order to solve these problems. To deal with scenarios like this, the 
present article suggests an innovation at the Intelligent Agent Theory, a new 
concept called Dynamic Polymorphic Agent (DPA). This approach implies on 
the dynamic generation of one agent, built from the cooperation of existing 
agents and specific to fulfill the demanding task. To create this new entity, a 
monitor identifies and reads information regarding the functionalities of avail-
able agents present in the scene and, when a new problem is presented, it gener-
ates a task list to solve it. This list and the agents whose functionalities are  
necessary to solve the problem generate the new polymorphic agent. To fulfill 
this approach, two major paradigms are used: Aspect-Oriented Program (AOP) 
and Artificial Immune System (AIS).  

Keywords: Polymorphic Agent, IA Planning, Artificial Immune Systems 
(AIS), multi-agent systems, Aspect-Oriented Program (AOP). 

1   Introduction 

An agent is, in a simple way, a premolded component that, given an input, executes a 
processing and generates a result. From this general concept, the agents’ theory is 
applied to a large spectrum of problems: systems optimization, robotics, and business 
procedures [1]-[2], among others. This success is greatly due to the capacity to effi-
ciently define the input information and the result generated by the processing of the 
agent. This predefinition of variables and functionalities generates, among other bene-
fits, great portability, reliability and modularity to this paradigm. However, the 
agents, even those with the capacity of knowledge analysis and generation, are fixed 
functionality structures. Thus, even if the agents are capable of altering their capacity 
to iterate mutually or with the environment, what each element does is necessarily 
what it has been projected to do. In order to expand this paradigm, this work suggests 
a new methodology named Dynamic Polymorphic Agent (DPA).  

The idea of polymorphism is not a new one. Inside the theory of analysis and  
object-oriented programming, which appeared in the 80’s, polymorphism is a concept 
used to avoid implementation redundancy and to increase the reutilization of nuclear 
elements. In this concept, basic components are implemented and used by more  
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complex elements through inheritance. The new derived elements inherit the proper-
ties and methods of many basic classes, thus making it possible to hold new function-
alities. Even though it is flexible, polymorphism is a static concept, that is, it is only 
implemented during the process of problem modeling, and, once it is operating, the 
derived classes stay static in relation to new properties and methods. 

A more flexible concept, Aspect Oriented Programming [3]-[4], appeared in the 
late 90’s as a necessity to solve problems related to the entanglement of methods and 
functionalities in highly complex systems. The presence of functionalities that cut 
across many classes leaves the system with low reutilization and difficult modulariza-
tion. Thus, the idea of aspect is one more level of abstraction, that is, the visualization 
of parts of the problem as being general, almost to the algorithm level, and that may 
be attributed to a given agent that has a specific signature during run time. Therefore 
this paradigm changes the systems’ structure and associations during run-time, ena-
bling to use new functionalities added into the scenario without any adjust.  

However, to use this paradigm in multi-agents situations, the agents must be built 
over a framework that enables the access to their Hyperdata. The Hyperdata is de-
fined here as a data set that combines the metadata – which is responsible to inform a 
list of all methods with their return data type, input parameters, etc – and PDDL [5] 
scripts that give a full description of how each method must be used, including their 
pre-conditions, needed parameters and consequences.  Having access to the Hyper-
data of a given agent it is possible to know its functionalities, how they work and how 
to invoke them. This structure enables the creation of new calls to different types of 
methods present in different types of agents in run time, without these having been 
previously implemented during the project. Therefore, with hyperdata, it is possible 
for a planner to read the data that a problem supplies as input, check all functionalities 
present in the available agents, and present one or more plans of action. 

After recognizing the required set of agents, it is necessary to execute the plan. For 
that, a new process is open in the monitor agent, which is responsible to invoke, in the 
correct order, the functionalities of each agent. This process and all the involved 
agents incorporates the DPA and it is also responsible to check if each action is cor-
rectly carried out and in negative cases a new action plan must be calculated. 

An important part of this methodology is the planner. It is responsible to provide 
the action plan and, therefore, must be fast and reliable. Most of the planners present 
in literature [6-8] are based on intelligent methodologies; however, most of them just 
provide one possible solution at the end of the search process. By means of a different 
approach, this paper proposes the utilization of a planner based on the Artificial Im-
mune System (AIS).  The AIS is based on the biological principle of bodies’ immune 
systems [9-11]. An immunological system has major characteristics that can be used 
in search and optimization: proliferation, mutation, selection, and memory. While 
proliferation is the capability of generating new individuals making the search process 
dynamic and global, mutation is the ability of searching through the solution space for 
sub-optimum local points. The selection is responsible for eliminating low-affinity 
cells, while memory is responsible for storing high-affinity cells from other solutions 
and using these recollections in new problems intending to reduce the search time. 
The AIS methodology is based on niching process and all the individuals influenced 
by the same attractor (a local optimum) will converge to a unique point. As result the 
final population may holds several different ways of solving a problem forming a 
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repertoire of solutions. This may seem irrelevant, but in real case applications where 
hundreds of agents are present in the scenario, a planner may take several minutes to 
generate a solution. Therefore, if a problem occurs during the execution time, it is 
possible to use this repertoire and check if any other pre-calculated solution fits to the 
new scenario before calculating a new plan.  

This paper is structured as follows: section 2 shows the architecture developed us-
ing Aspect-Oriented Modeling, section 3 shows the Artificial Immune System Plan-
ner, section 4 shows a simulation using an virtual environment and, finally, section 5 
the results are discussed. 

2   Using Aspect-Oriented Modeling in Polymorphic Agents 

AOP is a programming paradigm that has been proposed to address problems with 
high index of entanglement among components. It works decomposing the problem 
into parts for further composition. The great outcome of this paradigm is related with 
the new composition mechanisms that greatly decrease the number of dependencies 
among the components. In AOP, problems are decomposed and modeled following 
the domain knowledge. Some parts of that model compose with the others using OOP 
mechanisms – those, represent agents, are normal components –, but others require 
more advanced composition mechanisms – those are called aspectual components of 
the problem (or aspects, for short). What differentiates an aspect from a regular com-
ponent is its composition with the rest of the system. A regular component represents 
an agent of the system and has access only to its internal functionalities. An aspect 
takes a set of agents present at the model and creates external connections among 
them. The composition of the system is done through a Weaver, an element that has 
access to all functionalities, and is responsible to bind the different agents together.  

The noteworthy property of this methodology is that the agents present on the sys-
tem are variables themselves – they are not known at programming-time, implying 
that if any new agent is added to the system, the Weaver has automatically access to 
its metadata without any extra effort. However, to know the metadata contained in the 
agents present in the system does not implying that the objective of each functionality 
is known, leading to a typical case where data do not generate information. In order to 
transform these data into information it is necessary to develop another set of data, 
called here Hyperdata. Thus, for each method developed in an agent, a hyperdata 
should be developed containing all of the necessary and pertinent information of the 
functionalities. The information contained in hyperdata are related to description, 
overload, parameters, meaning of the output and parameters, preconditions and ef-
fects, but still coherent with the PDDL language, meeting the necessities of the plan-
ner, which will be discussed next.  

With this set of hyperdata, it is possible to know all functionalities associated with 
the agents presented in the system with the respective pre-requirements necessary for 
its execution, as well as the effects obtained with the action execution.  

Using the benefits of the AOP methodology, it is possible to develop a highly flexi-
ble multi-agent system. The idea is to develop regular components representing each 
agent (a given device, robot, sensor or even computational system) independent of the 
problem and scenario that they will work. Each agent has a Hyperdata responsible for 
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informing its actions, variables and predicates. To apply the presented ideas in a multi-
agent system, four sets of agents were designed: Execution Agents, Problem Agents, 
Monitor Agent, and Polymorphic Agent. 

Execution Agents (EA) are components that will solve a problem. They represent 
robots, conveyors, sensors, lifters, computational systems and others. Each one has its 
own Hyperdata responsible to inform how it may be used. The Problem Agents (PA) 
represent PDDL scripts responsible to inform the final desirable state of the system. 
The Monitor Agent (MA) is responsible for seeking all available Execution and Prob-
lem Agents present in the system. It is also responsible to read the agents’ hyperdata, 
plan the task list, and weave the used EA along with the Polymorphic agent resulting 
in the final Dynamic Polymorphic Agent (DPA).   The Polymorphic agent is respon-
sible to bind the actives EA and execute the tasks necessary to accomplish the final 
state designed by the PA. 

An info-graphic exemplifying these ideas is shown in figure 1 where several Exe-
cution and Problem Agents are present in the scenario. The process starts when the 
Monitor Agent recognizes a specific signature present in the agents. After that it 
chooses one given problem to solve, runs the planner procedure and generates a task 
list. This task list is passed to the Polymorphic Agent along with the EAs needed to 
execute the selected problem. The Polymorphic Agent binds all the agents generating 
the Intelligent Dynamic Polymorphic Agent (DPA), responsible to fulfill the task. In 
practical applications, the Polymorphic Agent is a computational system that gener-
ates a specific process, the DPA, which is able to invoke the active agents’ functional-
ities. Another important note is that a given Execution Agent may be present in sev-
eral DPA depending of its availability.  

 

 

Fig. 1. Info-graphic representing the AOP in Multi-Agents Environments 

3   The Artificial Immune System Planner 

AI Planning is an area that studies the automatic generation of a plan to solve a prob-
lem within a particular domain. Basically, a plan is a sequence of actions provided by 
a planner that, given an initial state, tries to find how it is possible to achieve some 
goal conditions. Planners can be domain-dependent or domain-independent. The do-
main-independent planners are not tied to a particular domain - they can solve prob-
lems in a variety of different domains, given a model of that domain in a suitable 
input language. To standardize the input language, and also, to make easier to evalu-
ate the planners performance, the planning community created the PDDL language, 
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which is used by most planners, and so, will be used in this work. There are a lot of 
methodologies used by the planners to reach their goals. Most of them use search 
methods with heuristic functions. The present proposal is to use a methodology based 
on the immune system.  

The natural immune system (NIS) is responsible for defending the body against 
dysfunctions from its own cells, and actions from substances and infectious foreign 
cells, known as non-self elements. The body identifies these non-self elements by 
using two related systems: the innate immune system and the adaptive immune sys-
tem. The innate immune system is inborn and unchanging. It ensures resistance to a 
variety of antigens (Ag’s) during their first exposure to the body by providing a set of 
initial antibodies (Ab’s). This general defense operates mostly during the early phase 
of an immune response. When the body is exposed to a given Ag, the NSI identifies 
the highest affinity Ab (hAb), and starts the proliferation process. This process is 
responsible for dividing the hAb, and then generating clones. Many of these clones 
present somatic mutation from the original cell, generating a new level of affinity to 
the Ag. The new Ab’s, with the highest level of affinity, pass through a process of 
maturation and become either plasma cells, which are responsible for attacking the 
Ag’s, or memory cells, which store characteristics of the successful Ab’s, providing a 
faster immunological response when, later exposure to the same Ag occurs. An im-
portant feature of the NIS is the ability to react against external, harmful agents (non-
self or pathogens), while, most of the time, remaining unresponsive to itself (self 
tolerance). However, the NIS also acts against its own Ab’s in a way to benefit itself. 
In fact, if the number of memory cells increases, the reaction time against a given Ag 
would also increase, because it should meet every single Ab present in the system 
before starting the cloning and differentiation process. Therefore, the NIS only memo-
rizes the Ab’s with a high affinity level and the other memory cells are eliminated. 

The AIS intends to capture some of the principles previously described within a 
computational framework. The main purpose is to use the successful NIS process for 
optimization and learning. As in every intelligent-based method, the AIS is a search 
methodology that uses heuristics to explore only interesting areas in the solution 
space. However, unlike other intelligent-based methods, it provides tools to perform 
simultaneous local and global searches. These tools are based on two concepts: hy-
permutation and receptor edition. While hypermutation is the ability to execute small 
steps towards a higher affinity Ab leading to local optima, receptor edition provides 
large steps through the solution space, which may lead into a region where the search 
for a hAb is more promising.  

The technical literature shows several AIS algorithms with some variants. One that 
has shown good results was the GbCLONALG algorithm presented in [11]. The main 
statement of GbCLONALG is that progressive adaptive changes can be achieved by 
using numerical information of the system, instead of only computational brute-force. 
It will lead to a significant reduction in the number of clones and, consequently, in 
computing effort. The numerical information to be used can be the entropy or just the 
first order derivatives or gradient, also known as the tangent vector (TV). 

The GbCLONALG, however, does not use two powerful characteristics present in 
the NIS:  memory cells and maturation control. By using a memory of results from 
former system states, it may be possible to have a better solution in terms of computa-
tional effort and accuracy. It is also possible to assemble a repertoire of solutions for a 
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given problem, and in case of any marginal change in a system, check if any of the 
existence solutions is valid. This strategy, besides does not provide new local optima, 
enables a quick valid solution, avoiding stop the current solution process. The second 
characteristic is related to the fact that keeping track of the evolution of all artificial 
Ab’s is not a good strategy, because during the hypermutation process several solu-
tions may suffer influence of the same attractor and, therefore, converge to a very 
similar state. Thus, the identification and further elimination of all similar individuals 
but the best one would provide a major speed up on the convergence process. This 
step must be able to correctly identify all attractors present in the system and, for that 
purpose a cluster strategy will be used.  

There are several algorithms for clustering data, and in this work, the MAXMIN 
distance (MMD) method [12] is used. This method presents two major advantages: it 
automatically estimates the number of clusters, which it is an essential feature since 
there is no previously knowledge of the number of local optima present in the system, 
and it demands only one parameter, which can be heuristically adjusted or can be set 
by a simple standard deviation method. The algorithm is presented as follows: 

To demonstrate these concepts, Fig. 2 shows an example of the niching and cluster 
process in function (1). Fig. 2a shows the initial population, in 2b the population is at 
the third interaction and the clusters are defined, and in 2c the maturation control took 
place and all individual, except the best of each cluster, were eliminated. Finally, Fig. 
2d shows the final population over the function mesh. For this particular example, the 
population started with 60 individuals and, at the end of the simulation process, only 
38 remained.  

         144 221121 ++⋅−⋅= )xsin(x)xsin(x)x,x(f  Maximize πππ .                     (1) 

Although the maturation control can provide a major speed-up on the convergence, 
several optimization problems may present dynamic behaviors that change the origi-
nal scenario. Even the slightest change implies a full execution of the optimization 
process, demanding unnecessary computation effort. Thus, the process could still be 
faster if the initial population presents a high level of affinity, which can be achieved 
using memory from previous cases. Using this memory from former states of the 
system, it may be possible to have a better solution in terms of computational re-
sponse and quality.  

Adding these features in the GbCLONALG yields the proposed algorithm shown 
in Fig. 3, named Cluster-Gradient-based AIS (CGbAIS). Each step or block of this 
diagram is detailed as follows: 

CGbAIS Algorithm: 

1. Randomly choose a population p = {Ab1,…,Abi,…,Abn}, with each individual 
defined as Abi = {x1,…,xj…,xnc}, where nc represents the number of control vari-
ables or actions. If there is a memory set present, it must be used as part of the ini-
tial population; 

2. Calculate the value of the objective function for each individual; this result pro-
vides the population affinity for the optimization process; 

3. For each individual Abi, a new subpopulation of hyper-mutated clones qi = 
{Abi,1,…,Abi,j…,Abi,nc} is generated, where Abi,j = {xi,1,…, xi,j + Δxi,j,…, xi,nc}, and nc  
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(a) (b) (c) (d)  

Fig. 2. Niching and maturation control process 

 

Fig. 3. CGbAIS algorithm 

represents the number of hypermutated clones. The hypermutated clones are then 
used to evaluate the numerical information NInf utilized to evolve the population; 

4. A new individual '
iAb  is assessed through (2), where iAbΔ  means a value given 

by the NInf, 

                                          ii
'
i AbAbAb Δ+= ;                     (2) 

5. Calculate the affinity of this new individual '
iAb  and check if it has a higher affin-

ity compared to the original Abi; if it does, the hypermutated clone takes its posi-
tion in the population p; 

6. The bests nb individuals among the original p population are selected to stay for 
the next generation. The remaining individuals are replaced by randomly gener-
ated new Ab’s. This process simulates the receptor edition (re) and helps in 
searching for better solutions in different areas; 

7. Use the MMD algorithm to cluster all individuals that converge to a single attrac-
tor. This step will generate the Cj clusters; 

8. For each cluster, eliminate all the individuals but the best. If it is the end of the 
simulation, generate a memory of these individuals. 

To adapt the principles of CGbAIS to a dynamic search, some initial considerations 
must be taken into account: 

a) In a discrete scenario, a change in the control variables (in this case represented 
by using or not a feature) can lead the system into a complete different operational 
state, making imprecise the idea of small changes around the current state. Thus, 
during the hypermutation the adopted strategy is to keep the nLocalBest clones in-
stead of just one. By using this concept the algorithm allows that a given antibody, 
which is not well classified at first, may evolve and became the best. This concept is 
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the same as other successful algorithms such as the Simulate Annealing and Tabu 
Search. To avoid a combinatorial explosion, at each interaction, all the clones are 
compared and just the nGlobalBest are kept alive by the maturation control.  

b) An antibody represents a partial path over a tree search. It starts at level 1 know-
ing just one node and, as its evolution occurs new nodes are added to the path. This 
implies that the initial population can swaps the entire solution space and during the 
evolutionary process the search starts to be more concentrated in certain areas.  

c) In any application, a membership of an element in a given cluster must obey 
some similarity index. In the case of continuous optimization, the initial population of 
antibodies evolves and the clusters are found using the MAXMIN distance algorithm. 
However, in combinatorial optimization, the path in a tree search contains more valu-
able information than the final result. It indicates the way that an element evolves and 
can be used as a similarity level. Thus, if an element has the same n-first nodes than 
another one, they can be clustered together at level-n.  

d) The clones are responsible for analyzing a given node. Their population expands 
branches from their parents and the numerical information obtained from this process 
indicates the likelihood of finding the best solution following a given path. However, 
the success of this idea depends on the accuracy of the numerical information that 
presents two major problems. The first one is how to correctly evaluate each branch. 
If just the minimum value of a clone is taken in account, it implies that all others are 
disregarded and valuable information may be lost. To avoid this problem, the evalua-
tion function EvalFi used in the present algorithm is shown as follows.  

                                 }u,...,u{uEvalF nlocalbestii 1φ×= .               (3) 

It takes the mean value φ  provided by the nLocalbest individual of each branch, and 

multiplies it by each individual clone value ui.. The second problem is that, if a tree 
search has two or more branches with very similar success likelihoods, the probability 
of not finding the best one at the end of simulation depends on the proximity of these 
branches and how many clones were used to generate the necessary numerical infor-
mation. In scenarios like this, the final solution might be close to the global best and 
may be easily improved through a local search (hypermutation). 

4   Application and Results 

In order to validate the methodology, a didactic manufacturing scenario was built 
using the software VIRTUALMANUFACTURING [13]. The proposed environment 
is shown in Figure 4. Where there is: two conveyor belts (C1,C2) with positions (P1 
and P2), 1 input table (IT), 1 output table (FT), 4 manipulators (R1, R2, R3, R4), 4 
storage magazines (M1, M2, M3, M4) and 4 blocks (B1, B2, B3, B4). Under the pro-
posed methodology taxonomy, each of the described items is an Execution Agent. 
The Monitor Agent, a computational system running in a different computer, uses 
Remote Procedure Call (RPC) to check and read the Hyperdata of available agents.  
Thus, each one of the EA must provide Hyperdata containing PDDL scripts and 
metadata responsible to pass information about how to invoke its functionalities. Back 
to the virtual scenario, the problem is, given a specific ordering of the input blocks, to 
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find a sequence of action capable of putting them in the correct order in the output 
table.  The problem supposes that the initial order is (B1, B2, B3, B4) which should 
be transported to the final table in the order (B4, B3, B2, B1).  

The objective passed to the CGbAIS planner – a functionality of the Monitor 
Agent – is to solve the problem involving the minimum number of execution agents 
as possible. The output provided 4 possible plans, each one involving different sets of 
agents, sequences and steps. The processing time was 210ms. Comparing with an-
other planner, the FF achieved 135ms. However, the CGbAIS found 4 possible solu-
tions against just one provided by the FF – the same as the best found by the CGbAIS. 
An important mention is that, at each action step of each plan, the state of the system 
is informed. This is crucial if a re-planning is necessary. To solve the problem, the 
first and most indicated plan is taken in account. This plan has 28 steps and uses as 
agents R1, R2, R3, C1, M1 and M2. To execute this plan, the MA creates a new proc-
ess, the Polymorph Agent. The PA binds the agents used in the plan forming one new 
entity, the DPA, which is responsible to solve the problem. The PA, using the hyper-
data, is able to invoke the agent’s functionalities and therefore, to fulfill the plan.    

To simulate a fault in the system, in step 6 the R2 agent was set as unavailable. The 
DPA detects the fault, informs the MA that reads the current state of the system and 
check over the 3 other plans if a similar state is present. In this example, the same 
state is present in solution 3 that uses R1, R2, R4, C1, M1 and M3 to complete the 
plan and reach the final state. Then, the MA kills the process of the current DPA and 
starts a new one with this new configuration. An intermediate step of the generated 
plan can be visualized in Figure 4b. 

 

     
                                    (a)                                                                                  (b) 
 

Fig. 4. (a) Application Environment using the VIRTUALMANUFACTURING (b) Intermedi-
ate step 

5   Conclusion 

This paper proposed an innovative architecture of intelligent agents. Using a frame-
work that works through aspect-orientation, it is possible to generate a methodology 
based on hyperdata capable of describing and invoking the functionalities of the 
agents. A Monitor Agent is responsible for identifying available functionalities, plan-
ning the actions and generating a polymorphic entity during run time, dedicated to the 
resolution of a determined problem. The methodology uses open concepts of domain-
free modeling, which provides a high-level of reutilization. A new planner, based on 
Artificial Immune System, is able to provides several local optima and, keeping 
memory of these alternatives solutions, it is possible to check for new solutions if a 
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fault happens. This major advantage avoids the necessity of searching for a new plan. 
To test the method, a virtual scenario using the software VIRTUALMANUFACTUR-
ING was used, however, not only manufacturing problems are applicable to the sys-
tem. Any domain that can be modeled in the PDDL language, can be inserted in the 
system scenario. More complex and real domains are the goal in this work’s next step. 
The results demonstrated that the approach was able to find a plan and quickly re-plan 
the actions and involved agents under the presence of a fault. Therefore the system 
has proven to be extremely flexible and with great applicability power.  

References 

1. Tabuada, P., Pappas, G.J., Lima, P.: Motion Feasibility of Multi-Agent Formations. IEEE 
Transactions on Robotics 21(3) (2005) 

2. Bagnall, A.J., Smith, G.D.: A multiagent Model of the UK Market in Electricity Genera-
tion. IEEE Transactions on Evolutionary Computation 9(5) (2005) 

3. Honorio, L.M., Barbosa, D.A., Souza, A.C.Z., Lopes, C.V.: Intelligent optimal power flow 
system development using aspect-oriented modeling. IEEE Trans. on Power Sys-
tems 22(4), 1826–1834 (2007) 

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V.: Aspect-Oriented Pro-
gramming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241. Springer, 
Heidelberg (1997) 

5. Russel, K., Norvig, P.: Artificial Intelligence, A Modern Aproach. In: Planning, ch. 11, pp. 
337–366. Prentice Hall, Englewood Cliffs 

6. Hoffmann, J.: FF: The Fast-Forward Planning System. AI Magazine 22(3), 57–62 (2001) 
7. Do, M.B., Khambhampati, S.: Solving planning-graph by compiling it into csp. In: Pro-

ceedings of the Fifth International Conference on Artificial Intelligence Planning and 
Scheduling (2000) 

8. Gerevini, A., Serina, I.: LPG: a Planner based on Local Search for Planning Graphs with 
Action Costs. In: Proceedings of the 6th International Conference on Artificial Intelligence 
Planning Systems, AIPS 2002, pp. 13–22 (2002) 

9. Castro, L.N., Zubben, F.J.V.: Learning and optimization using the clonal selection princi-
ple. IEEE Trans. on Evolutionary Computation 6(3), 239–251 (2002) 

10. Honorio, L.M., Leite da Silva, A.M., Barbosa, D.A.: A gradient-based artificial immune 
system applied to optimal power flow problems. In: de Castro, L.N., Von Zuben, F.J., 
Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 1–12. Springer, Heidelberg (2007) 

11. Xu, L., Chow, M.-Y., Timmis, J., Taylor, L.S.: distribution outage cause identification 
with imbalanced data using artificial immune recognition system (AIRS) algorithm. IEEE 
Transactions on Power Systems 22(1), 198–204 (2007) 

12. Friedman, M., Kandel, A.: Introduction to pattern recognition: statistical, structural, neural 
and fuzzy logic approaches. World Scientific Publishing, London (2000) 

13. Honorio, L.M., Dias, W., Freire, M., Souza, L.E.: Virtual Manufacturing System, Program 
and Video Tutorials (in Portuguese), http://www.virtualmanufacturing.unifei.edu.br (Pro-
ject CNPq/CT-Info 400842/2003-3) (online since 2006) 



AIS-Based Bootstrapping of Bayesian Networks

for Identifying Protein Energy Route

Sungwon Jung, Kyu-il Cho, and Doheon Lee

Department of Bio and Brain Engineering
Korea Advanced Institute of Science and Technology

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
{swjung,kicho,dhlee}@biosoft.kaist.ac.kr

Abstract. It is important to identify the mechanism of energy transfer
in protein structures in understanding their functions. Highly enriched
energy in some hot spots of protein structures is transferred to other
residues during some functional activity such as binding. The transferred
energy reaches at various residues and make them to change their three
dimensional structures to make other functional effects. In this paper, we
use Bayesian network learning in identifying the route of energy transfer
from the estimated energy status of residues. Artificial immune systems
(AIS) approach is used for bootstrapping the Bayesian network learning.
The analyzed results give a quantitative map of route for energy transfer
in 1be9 protein.

Keywords: Protein energy transfer, Bayesian network, Hot spot, Arti-
ficial immune systems.

1 Introduction

Proteins are basic building blocks of biological functions in living organisms.
There are many approaches in revealing the functions of specific proteins. Among
various perspectives, the structural characteristics of proteins are considered as
major clues in revealing their functional roles.

In general, genes exist in living cells as sequences of nucleic acids (e.g., DNA
or RNA). For each of specific functional roles, some selected sequences are tran-
scribed and finally compose an amino acid sequence according to the original
sequence of the nucleic acids. The amino acid sequence then folds into some three
dimensional structure according to its chemical characteristics, energy status and
electromagnetic force between those amino acids.

Fig. 1 shows a three dimensional structure of the protein 1be9. Such a three
dimensional structure plays a significant role in interacting with other proteins
or molecules. When a protein binds other proteins or molecules, their three
dimensional structure should match the structural shape of the binding position.
Once binding occurs successfully, the energy levels of the residues in the binding
positions become higher than before. These highly activated energy is transferred
to other residues in the protein according to its structural characteristics. The
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Fig. 1. Three dimensional structure of the protein 1be9. From the Protein Data Bank
(http://www.rcsb.org).

transferred energy then reaches some residues and can change their structural
characteristics. Thus understanding the mechanism of energy transfer in proteins
is very important in understanding their actual functional mechanisms.

There have been various approaches to identify the mechanisms of energy
transfer in protein structures [1] [2]. Popular studies are researches on finding
out binding sites of proteins. Not only the structural shapes of those binding
sites but also energy levels have been significant interests of many researchers.

The initial approach for energy levels in protein structures is identifying the
quantitative energy level of energy-enriched residues in binding sites. Such quan-
titative energy levels were measured by experimental approaches and also ex-
pected from various indirect information such as amino acid sequences [1] [2].
Because it is not easy to quantitatively measure such binding energy levels via
experiments, it has been common approach to expect the energy level of residues
from amino acid sequence conservation information [1]. The intuition in this ap-
proach is that highly conserved amino acid sequences may play important roles
in functioning of the specific protein. Thus it is widely accepted that such highly
conserved regions of protein sequences are possible candidates of binding sites
and can have highly enriched energy levels. Several studies were conducted to
expect the energy levels of protein residues during binding processes. Such ap-
proaches mainly target to identify the specific energy levels and binding sites
which are usually called hot spots.

Another issue related to protein energy is understanding the changing dy-
namics of energy status in protein structures. Chennubhotla and Bahar [2] used
a Markov propagation model [3] [4] [5] of energy transfer in protein structures
to expect the distribution of energy levels after energy transfer dynamics ar-
rived at the stable status in a protein structure. The Markov propagation model
was successful to some extent in expecting the energy status after binding of
proteins. However, the Markov transition matrix, which describes the energy
diffusion process from each residue, is not proper for identifying possible route
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of energy transfer. For this reason, we propose a method to identify the route of
energy transfer, which was initially defined with the Markov transition matrix.
A Bayesian network model which describes the dependencies of energy trans-
fer is built using energy transfer instances from the Markov propagation model.
An artificial immune systems-based bootstrapping approach is used to construct
sub-optimal Bayesian networks to give quantitative information on the route of
energy transfer.

We first present in Sect. 2 the previous Markov propagation model of energy
transfer in a protein structure. Then, Sect. 3 mentions the approach of using
Bayesian networks to describe the route of energy transfer. We also explain how
the Bayesian network model can be a compact description of energy transfer
which was originally defined as a Markov transition matrix. In Sect. 4 we present
artificial immune systems-based bootstrapping approach for learning a number
of sub-optimal Bayesian networks. The learned results on the route of energy
transfer are described in Sect. 5. Lastly, we conclude and give some perspectives
in Sect. 6.

2 Markov Propagation Model of Energy Transfer

In this section, we introduce the previous Markov propagation model of energy
transfer in protein structures. In Chennubhotla and Bahar’s approach, they used
a discrete-time, discrete-state Markov process model for energy transfer between
residue pairs. The Markov process model sets the transfer probability between
residues. The probability of energy transfer between two residues ri and rj can be
defined as their interaction strength, also called affinity. First, the (i, j) element
of the affinity matrix A can be defined as

aij =
Nij√
NiNj

(1)

where Nij is the number of atom-atom contacts between two residues ri and rj

within a given specific cutoff physical distance between centers of residues. Ni

and Nj are the number of heavy atoms in the corresponding residues ri and rj .
This definition comes from the intuition that more contacts between atoms have
larger affinity in composing structures. The affinity of self contact aii can be
defined from this intuition, but we do not consider the self affinity here.

Using this definition of affinity, the local interaction density dj of a residue rj

can be defined as

dj =
n∑

i=1

aij =
n∑

j=1

aji (2)

where n is the number of whole residues in the protein. If we consider dj as a
diagonal element of the diagonal matrix d,
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d = diag{dj} (3)

we can define the conditional probability mij of transferring energy from residue
rj to residue ri in one time step as follows:

mij =
aij

dj
(4)

Because dj works as a normalizing factor, the sum of every conditional proba-
bility of energy transfer becomes 1 at residue rj .

n∑
i=1

mij = 1 (5)

We can define the conditional probability matrix M = {mij}, also called the
Markov transition matrix as follows:

M = Ad−1 (6)

Now let us denote the initial energy level at some residue rj is p0
j . If we use the

conditional probability of energy transfer mij , the amount of energy transferred
from rj to ri is mijp

0
j . Assuming linear summation of such transferred energy

to ri from every residue, we can use the following matrix notation of energy
distribution after one time step:

p1 = Mp0 (7)

where pk = [pk
1 , ..., p

k
n]. This propagation process can be iterated. After β steps,

the distribution of energy on residues can be represented as:

pβ = Mβp0 (8)

As β →∞, pβ converges to a stationary distribution, given by πi =di/
∑n

k=1 dk.
Chennubhotla and Bahar analyzed these stationary distribution for their inter-
ested proteins and their results showed patterns of energy distribution in protein
structures in the binding processes. Their results showed that such a method for
identifying energy distribution pattern can be predictive in finding out energet-
ically related residues.

The Markov transition matrix represents information on how the energy is
transferred between residues in a protein. It is a proper approach when we want
to see the global patterns of energy distribution on the residues. However, we
need to make an abstracted energy transfer route for finding out residues which
are significantly involved in the whole energy transfer process.

3 Using Bayesian Network Learning for Route
Identification

Previous studies [2] showed patterns of energy distribution in protein struc-
tures. The Markov propagation model can describe local characteristics of energy
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transfer from each residue. However, the Markov transition matrix used in the
Markov propagation model may not be proper in identifying the route of en-
ergy transfer in the protein structure. Basically, the transfer of energy from any
residue in the structure can be directed all directions toward other residues. Even
though such entire information of energy flow can be important, the abstraction
of the energy flow in the protein structure can be very helpful in compactly de-
scribing and understanding such dynamic flow of energy in the protein structure.

The Bayesian network model is the graphical representation of a joint condi-
tional probability distribution [6]. A Bayesian network B is represented as (G, Θ),
where G is a directed acyclic graph and Θ is the set of probabilistic parameters.
Each node in G corresponds to a probabilistic random variable and each edge
represents conditional dependency between two random variables. Representing
the whole joint probability distribution of a set of random variables is infeasible.
By assuming Markov condition, where a random variable is independent of its
nondescendents given its parents, a Bayesian network can represent the target
joint conditional probability distribution in a very compact way.

There are many ways in learning an optimal Bayesian network B from ob-
served data D [8] [9] [11] [12] [10] [7]. Because B is composed of G and Θ, learning
Bayesian networks is composed of two parts - learning the dependency structure
G and learning the probabilistic parameters Θ. Learning Θ is easier than learn-
ing G in general because once we have some dependency structure G, then we
can find out corresponding probability values to the dependency structure from
the observed data D. Further, our interests is much more in learning the struc-
ture G because the dependency structure between the residues in a protein can
represent possible major route of energy transfer. Learning the structure G from
the given observed data D is to find out G which maximizes P (G|D). This can
be considered as a conventional search problem for optimal solution and several
scoring schemes have been proposed.

In this paper, we focus on the ability of Bayesian networks where some prob-
abilistic distribution can be compactly represented in the graphical form. For
applying the Bayesian network model to our problem, we need to consider each
residue in a protein as a probabilistic random variable which has some proba-
bility values for possible values of energy level. Let us assume that each residue
ri is a probabilistic random variable where specific probability value exists for
each possible energy status of ri. One instance of observation for the set of ran-
dom variables R = {r1, r2, ..., rn} now corresponds to one observation of energy
distribution for those residues, and we denote it as xk. If we observe the differ-
ent energy distribution on the residues in a protein m times, an observed set of
data instances D = {x1, x2, ..., xm} can be constructed. By learning an optimal
Bayesian network B = (G, Θ) from D, we can get a graphical representation of
conditional dependencies between protein residues. Because the conditional de-
pendencies in a learned Bayesian network represent the probabilistic dependen-
cies between energy levels of different residues, we can interpret the dependency
structure G of B as a route of energy transfer of the protein.
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We should observe the distribution of energy level in a protein structure ex-
perimentally to build the observed data instances D. However, experimental
observation of energy level for certain protein can be very difficult. Instead, we
use the Markov propagation model to generate a set of observations on the en-
ergy distribution. Suppose that we have a set of s initial energy distribution
P0 = {p0

1,p
0
2, ...,p

0
s}. For each p0

k, we can get p1
k, p2

k, ..., pβ
k by iteratively mul-

tiplying the Markov transition matrix M until convergence. Then we can make
D as follows:

D = {p1
1, ...,p

α
1 ,p1

2, ...,p
β
2 , ...,p1

s, ...,p
γ
s} (9)

By the way, the number of observed data instances |D| is usually insufficient to
learn an optimal Bayesian network. The number of residues in our target pro-
tein 1be9 is 115. Learning an optimal Bayesian network for 115 random variables
may require tremendous amount of observations. Note that more than 30,000
observations were used to learn Bayesian networks of 37 random variables with
around 95% of structural accuracy in previous studies. Because searching an op-
timal directed acyclic graph (G of the optimal B) is an NP-hard complexity, the
required number of observation data grows super exponentially for 115 random
variables. For this reason, we use artificial immune systems-based bootstrapping
approach for learning several sub-optimal Bayesian networks. The approach of
learning Bayesian networks using artificial immune systems-based bootstrapping
will be discussed in the following section.

4 AIS-Based Bootstrapping of Bayesian Networks

In this section, we present our AIS-based bootstrapping approach for learning
several sub-optimal Bayesian networks. We use the clonal selection algorithm.
The benefit of using clonal selection algorithm for Bayesian network analysis
is that learning Bayesian network structures and the bootstrapping procedure
is handled simultaneously. In conventional bootstrapping methods, any selected
learning algorithm should be used for each subset of given training data. Be-
cause learning Bayesian network structures is a very complex problem (NP-
hard), greedy algorithms are widely used in for the learning method in the case
of bootstrapping where not just one but k(>> 1) structures should be learned.
The use of clonal selection algorithm for Bayesian network structure bootstrap-
ping provides population-based learning algorithm for subsets of given training
data. Thus incorporating the clonal selection algorithm for bootstrapping let us
avoid local minimum with more chances and capture more true patterns of the
solution space. The conventional structure of the clonal selection algorithms is
described in Algorithm 1.

For our case, an antibody abj corresponds to a Bayesian network struc-
ture Gj . Antigens are constructed from the observed energy distributions D =
{p1

1, ...,p
α
1 ,p1

2, ...,p
β
2 , ...,p1

s, ...,p
γ
s}. We define an antigen agi as a subset of D

and make every agi has the same size. As mentioned in the previous section,
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Algorithm 1. ClonalSelection
1: Randomly initialize a population of n antibodies Ab
2:
3: while Stopping criteria do
4: for each antigen agi in Ag do
5: Determine affinity to each antibody abj in Ab
6: Select m(< n) antibodies of highest affinity from Ab
7: Clone and mutate the selected antibodies
8: end for
9:

10: Select l(< n) antibodies of highest affinity from Ab to make new Ab′

11: Add random n − l antibodies to Ab′

12: Replace Ab with Ab′

13: end while

D is constructed using the Markov propagation model. Then each antigen agi

is generated by randomly selecting the predetermined number of instances from
D. The affinity between an antibody abj and an antigen agi should represent
how well the antibody(Gj) matches to the antigen(a subset of observed data
instances D). Thus we can use one of existing scoring schemes for Bayesian net-
work structures given data instances as an affinity measure, such as BDeu score
Gj given agi [13]. The BDeu score evaluates P (G|D) for a graph structure G
given observed set of data instances D. Mutation of an antibody abj(a Bayesian
network structure Gj) can be done by using one of following structure modifica-
tion operations - edge addition, edge deletion and edge reversion. By replacing
corresponding terms and operations in Algorithm 1 with those for Bayesian net-
works given above, we can define an algorithm ClonalBootstrapping for learning
several sub-optimal Bayesian network structures as follows:

5 Results and Analysis

5.1 Environments

We analyze the route of energy transfer in the structure of protein 1be9. 1be9
protein is one of the PDZ domain family. There are total 115 residues (from
r301 to r415. Indexes are given from number 301.) in 1be9. 15 residues among
those 115 are selected as hot spots by conservation score analysis, which are
energetically enriched during the binding processes. The conservation score anal-
ysis evaluates the degree of conservation during evolution for a given gene se-
quence by comparing gene sequences of many different kinds of species. Selected
15 residues have higher evolutionary conservation scores than other residues.
Higher evolutionary conservation score means that the sequence of the residue
have been conserved more during the evolution process of species. This supports
a widely accepted hypothesis that well conserved regions of a protein do im-
portant roles in the biological processes. By interpreting the conservation score
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Algorithm 2. ClonalBootstrapping
1: Randomly initialize a population of n graph structures Ab
2:
3: while There is improvement larger than θ in average BDeu(Gj |agi) do
4: for each antigen agi in Ag do
5: Evaluate BDeu(Gj |agi) for each antibody Gj in Ab
6: Select m(< n) graph structures of highest score from Ab
7: Clone and mutate the selected structures
8: end for
9:

10: Select l(< n) structures of highest score from Ab to make new Ab′

11: Add random n − l structures to Ab′

12: Replace Ab with Ab′

13: end while
14:
15: Return k structures of highest score from Ab

of a residue as a degree of being a hot spot and thus as an enriched amount
energy for that residue, we assigned following initial energy level to 15 residues
in Table 1.

Table 1. Initial energy levels of hot spot residues

Residue Energy (kT ∗)

r318 0.3
r322 0.2
r323 2.3
r324 2.7
r325 6.4
r326 2.2
r327 1.5
r328 2.0
r329 0.5
r331 2.0
r339 0.5
r372 5.7
r376 2.0
r379 2.3
r380 1.9

When 1be9 binds to another protein or molecule, every hot spot residue may
not be bind to its counterpart. For example, binding proteins to 1be9 may have
different mutated sequences in some part of their binding residues and thus some
of those 15 hot spots may not bind to their counterparts. Then the energy enrich-
ment may occur only subset of those 15 hot spots where the counterpart protein
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binds successfully. This means that there are 215 = 32768 sets of combination
of the initial energy distribution for those 15 residues. We constructed P0 with
1,820 p0

ks by randomly selecting 1,820 combinations of initial energy distribution
among 215 combinations for 15 residues and setting the energy level of other 100
residues as 0. By iteratively multiplying the pre-computed Markov transition
matrix M to each of 1,820 p0

ks, D of 32,760 instances of energy distribution for
protein 1be9 is finally constructed.

The ClonalBootstrapping of Algorithm 2 was applied to D for learning k =
100 suboptimal Bayesian network structures. The number of antibodies in the
population was 1,000, the number of antigens was 100, m = 200 antibodies were
selected during the processes, and l = 950 antibodies were survived at each
epoch.

As a result, we have got 100 suboptimal Bayesian network structures. A con-
fidence value was evaluated for each possible connection between two residues ri

and rj in the structure as follows:

Conf(ri → rj) =

∑
Gs including ri→rj

BDeu(Gs|D)∑
All 100 G BDeu(G|D)

(10)

With enough convergence, the 100 suboptimal structures have very similar scores
each other while they can have different topologies. Thus the confidence value
for an edge can be approximated in easier way as follows:

Conf(ri → rj) ≈ The number of Gs including an edge ri → rj

100
(11)

5.2 Results

Figure 2 shows the result of our analysis. Nodes correspond to residues and
edges correspond to conditional dependencies between residues. Those condi-
tional dependencies can be interpreted as major routes of energy transfer be-
tween residues. Edges with confidence less than 0.5 (edges which were shown
less than half of 100) were omitted. Nodes with no connected edges of confi-
dence larger than 0.5 were omitted also in the figure. Gray colored nodes are 15
hot spot residues in Table 1. The thickness of edges linearly corresponds to the
confidence value, where confidence of 0.5 corresponds to the thickness of 0.5pt
and confidence of 1 corresponds to the thickness of 12pt.

From this result, we can identify in which route the energy is transferred
between residues. Even though the direction of edges in Bayesian networks do
not mean causality, it is known that the order in the Bayesian networks has
some correlation with causality. Thus we can consider the direction of edges as a
direction of energy flow to some extent. This can be useful because we can find
the destination residues of energy flow from selected starting residues, such as
binding residues.

In Figure 2, we can find that the map of route is disconnected into several
sub-networks. This may represent that there may exist several different valleys
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Fig. 2. Estimated route of energy transfer in protein 1be9

of energy flow even in a single protein. Even though there is little experimental
evidence which can support this hypothesis, this analysis of identifying energy
route can give some clue about it. Identifying several valleys of energy transfer
in a protein can give a blue print for modifying the protein structure with our
preferences. Suppose that there is a starting residue and a target residue of en-
ergy transfer in a protein. The energy transfer may alter the structural shape or
molecular status of the target residue. If we want to block the energy transfer
to the target residue, we may need to change the structure of some residues
included in the energy transfer. Now assume that there are two energy transfer
routes between starting and target residues. If it is hard to change the structures
of residues in one of the routes, we can take another as our experimental target
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route. This is just an example with a hypothesis on the energy route but can
give intuition on the impact of our method.

6 Conclusion

In this paper, we have presented the AIS-based bootstrapping of learning
Bayesian networks. The proposed approach has been applied to the identifi-
cation of energy transfer route in a 1be9 protein. The result can be interpreted
as a map of major energy transfer route between residues.

A bootstrapped learning algorithm of Bayesian networks has been proposed
based on the clonal selection algorithm. The proposed algorithm incorporates
several schemes which are needed in learning Bayesian networks. A lot of analysis
problems suffer the lack of data situation. Besides the conventional bootstrap-
ping and Monte Carlo methods, this clonal selection-based bootstrapping can be
another choice. We have learned the Bayesian network model in this paper, but
that approach can be adapted to any other models where bootstrapping can be
applied.

Further works may include the experimental or theoretical validation of the
learned energy transfer route in the protein. The relationships between initial
residues of energy transfer and the destination residues needed to be studied.
During the works given in this paper, we did not set those hot spot residues
to become the topmost nodes in the route. If we have some knowledge on the
initial location of energy diffusion or the order of the energy transfer, we can
adapt that information in maintaining the population of antibodies. Addition of
such a prior knowledge can improve the quality of this route analysis.

The comparison of the presented AIS-based bootstrapping method was not
compared to conventional bootstrapping methods. Further, the power of learning
Bayesian networks with the proposed method can be compared with Markov
Chain Monte Carlo method for learning Bayesian networks. This future work
will show the actual characteristics, pros and cons of the clonal selection-based
bootstrapping of Bayesian network learning.
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Abstract. We present a novel Neuro-Immune inspired real-time track-
ing system that is capable of tracking morphing moving targets over non-
benign backgrounds. We have employed ideas from antigen-presenting
cells, T-cell interaction, together with cytokine interaction with neural
systems. Our experiments show that the neuro-immune tracking system
has the ability to maintain tracking a target even if the target changes
shape, or is covered for periods of time by other objects.

Keywords: Neuro-Immune inspired, Visual tracking, Morphing target,
Non-benign background, Cellular Immune Network (CIN).

1 Introduction

This paper proposes a real-time visual tracking system that is capable of tracking
objects whose aspect, shape and/or size change whilst they transit across a
background that is likely to confuse the tracking process due to a transient
similarity to the object being tracked. We define this type of deformable object
a morphing target and we define the background against which it moves as non-
benign. Real time tracking is an important subject in machine vision applications,
and accuracy, robustness and speed are the primary concerns for a reliable real
time tracker. There are two major approaches in designing a visual tracker,
model-driven and data-driven.

The model-driven approach, also known as a top-down process, has its roots
in control theory. Visual information is abstracted into a state space and tracked
by applying Bayesian filtering techniques. The essence of Bayesian filtering the-
ory is a recursive process of prediction and correction, given a priori knowledge
and proofs. With this knowledge, we could clearly (though not easily) track
the target and outline its profile in the image even if the background is clut-
tered. Many ad-hoc Bayesian filters for visual tracking have been developed,
such as Extended Kalman Filters [1]. Unfortunately, many problems occur when
applying these filters to practical applications. Firstly, there may be limited a
priori knowledge about the object, i.e. the exact motion model and morphing
laws. Secondly, abstracting the feature vector from a deformable target is com-
putationally expensive, since deformable targets suffer from a more complicated
representation compared to rigidly-shaped objects. Two alternative solutions are
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either to enhance conventional computing capabilities and structures to satisfy
such algorithms, or, alter the algorithms to fit current hardware conditions many
of which are still slow and cumbersome.

Data-driven approaches are generally bottom-up processes, and derive from
the area of image processing. It is often preferable to use the actual image data
from the camera rather than an estimation from a Bayesian filter. Some sim-
ple visual tracking systems, not exploiting filtering techniques, turn to image
segmentations. There are many image segmentation algorithms: some e.g. [2]
are simple histogram based, edge detection and region growing; and others are
more sophisticated like level-set [3]. Compared with model-driven methods, data-
driven ones do not need a predefined model, and significantly, they are much
faster especially when supported by a dedicated pixel processing hardware plat-
form such as a Field Programmable Gate Array (FPGA). However, data-driven
methods are not so robust at dealing with a cluttered environment. The advan-
tages and shortcomings of the two approaches are mutually exclusive that many
researchers [4] in the machine vision community often attempt to combine them
and make them operate complementarily. Motivated by these characteristics,
in this paper, a novel visual tracking method is introduced, which is inspired
by biological, neuro-immune interactions. It has features of both model-driven
and data-driven approaches, and exploits their individual advantages to provide
robust and fast tracking of morphing targets against non-benign backgrounds.

The paper is structured as follows: Section 2 introduces a novel immune-
inspired 2-D planar array platform ready for image segmentation, Section 3
presents the neuro-immune inspired tracking model, Section 4 analyse the sys-
tem performance when applied to a representative test scenario and Section 5
summarises the tracking system.

2 A Cellular Immune Network Platform

In this section we outline a novel image segmentation approach, based on ideas
taken from the immune system, that is capable of visual representing a object
of interest in the image and track morphing, moving targets over non-begin
backgrounds.

2.1 The Structure and Representation of CIN

In order to quickly and robustly represent an object of interest, a system should
provide a reliable image segmentation ability and parallel computation features.
2-D cellular computing platforms are widely used in image processing literature
due to their 2-D planar array structure. On these platforms, a single cellular unit
corresponds to a pixel in the image. The image processing function on a pixel
level is equal to the state updating rule of the cellular units. There are many
examples of applications that have provided good image processing results of
applying such a structure, for example work using cellular automata (CA) [5],
cellular neural network (CNN) [6] and pulse coupled neural network (PCNN)
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[7]. However in these examples, algorithms on CAs are typically employed for
noise filtering and algorithms on CNN are typically employed for edge detecting;
they are not used in general for object representation. Although PCNN performs
well at image segmentation, the output is a series of pulse-codes which is not
convenient to present to an object before an extra frequency processing module.
What is required is a new mechanism dedicated for simple image segmentation,
i.e. distinguishing the object of interest from the background. In this section, a
cellular immune network (CIN) platform is proposed to visually represent the
target. The final output of CIN is binarised (1 and 0) to indicate the membership
of a pixel being part of the target or not.

Fig. 1. The structure of CIN

In our CIN, T-cells are classified by the types of cytokines they produce. We
define each type of T-cell as being able to secrete several kinds of cytokines,
with different types of T-cells being able to secrete the same kinds of cytokines.
However, in our case each type of T-cell is affected only by a single type of cy-
tokine. Therefore, the number of cytokine types that a certain type of T-cells
is able to secrete is equal to the number of T-cells types that this concerned
type is able to act on. We map all types of T-cells into the CIN planar array.
Figure 1 illustrate the 2-D array structure of CIN. T-cells and the kind of cy-
tokines exclusively acting on it are coupled and represented by a cellular unit.
This mapping mechanism means that the distance between 2 cellular units does
not represent the physical distance between two T-cells, but represents the dif-
ference between two types of T-cells according to their cytokine secretion ability
i.e. the type of cytokines they secrete.

In the context of image processing, each pixel is represented by such a cellular
unit with each unit having two non-negative state variables Cel and Cyt, rep-
resenting a T-cell concentration and the coupled cytokines concentration, with
respect to the planar position (i, j). For instance, Cel(i, j)=0 means the con-
centration of T-cells of type (i, j) are zero. Seg is defined as the CIN output
which is the binarised Cyt value by a threshold (see figure 2, block “activation
threshold”) and represents the segmentation result: 1 means part of the object
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and 0 means that it is not part of the object. Each cellular unit has two inputs
Env and Apc. Env is the environmental factor which is defined as the inverse
of gradient value at each pixel. This value is always less than 1 and designed to
decrease the cytokine concentration at various areas. Apc has 3 states: absent,
inactivated and activated. Any unit with Seg value of 1, is with the Apc state
of absent; otherwise, it is inactivated if did not find the SIBO pixels (took as
antigens), and if found, the Apc state turns to be activated. This mechanism is
for anti-interference in visual tracking.

2.2 The Interactions of the Cellular Units

In our CIN, the closer the 2 cellular units are, the more the same kinds of cy-
tokines they are able to secrete, which means they have similar cytokine secretion
ability. We establish the rule that each kind of T-cells secretes certain kinds of
cytokines only to affect the units in it’s neighbourhood (including itself) and
define the cytokine secretion ability of each type of T-cells as:

M(x, y) = exp(−x2 + y2

r2
) x, y ∈ [−n, n] (1)

Where (x, y) is the relative position according to the concerned cellular unit
and r is a nonlinear scaling parameter of the amplitude of M , and therefore
the cytokine secretion ability decreases as the distance increases. n is the radius
of the cytokine secretion area, and reflects the cytokine secretion ability. If it
is mostly one, then this means that the cytokine secretion area for a cellular
unit is in the closest neighbourhood, including it’s eight closest neighbours and
itself. So M(x, y) is also expressed as a 3x3 matrix, as figure 2, block “Secretion
matrix” shows. In the figure, colour represents the value of coefficient in M : the
brighter the unit’s colour, the higher the coefficient value.

At each pixel, e.g. at position (i, j), the Cyt value is defined as equation 2.
This means at each grid the cytokines concentration is the summation of all
amount of cytokines secreted from the neighbourhood. Since an image usually is
considered as a 2-D matrix, this equation is also expressed in a 2-D convolution
form by equation 3, where Conv2(, ) is the 2-D convolution function, opera-
tor ‘•’ is the element-by-element multiplication of two matrices. In this form,
cytokine secretion matrix M is the convolution kernel. Equation 2 and 3 are
mathematically equivalent.

Cyt(i, j) = Env(i, j) ∗
n∑

x=−n

n∑
y=−n

(Cel(i + x, i + y) ∗ M(x, y)) (2)

Cyt = Env • Conv2(Cel, M) (3)

For any time step, the Cel value is updated by equation 4 and 5. The pro-
liferation rate ΔCel in a cellular unit is decided by a proliferation function f(·)
with respect to its corresponding Cyt value. The bell-shaped function of f(·) is
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shown in figure 2, by the block “proliferation function”. Looking at the func-
tion diagram, there are two limits value along the Cyt axis, a lower limit and
a higher limit. Where the Cyt value is below the lower limit or over the up-
per limit, ΔCel value is zero. t is the time step, k is the natural death rate,
and c is the proliferation rate which mimics the process of T-cells encountering
antigen presenting cells (APC) in an activated state. These input states of Apc
is for anti-interference in visual tracking system and will be discussed later in
section 3.1.

ΔCel(t) = f( Cyt(t) ) (4)

Cel(t + 1) = ΔCel(t) + Cel(t) − k + c (5)

2.3 The Image Segmentation Process

Our image segmentation algorithm can be likened to a diffusion process. The
Cel and Cyt are all initialised at zero, and then an area is selected as a seed
area (a small group of conjunctive pixels) in the object area, we set their Cel
and the system begins operation. First of all at their close neighbour pixels, the
Cel value will increase from zero, if their Cyt value at a moderate level. Over a
certain threshold Cyt, the pixel in question is considered as part of the object.

As the recognised area expands, the environment parameters act as a stoping
force to inhibit it at the object edge area. Edges are generally the pixels with high
intensity gradient value. Intensity gradient is the local intensity changes between
conjunctive pixels and usually calculated by edge detectors [2]. As previously
mentioned, the inverse of gradient value at each pixel works as the environment
parameter, we know from equation 2 that a very small value of environment pa-
rameter decreases, or dilutes, the cytokine’s concentration, and the proliferation
function shows that a very low cytokine concentration inhibits the cell’s prolifer-
ation. Therefore, the intensity gradient value could limit the T-cells expanding
across the edge. After several iterations, the output should cover the whole visual
object in the image and maintain the shape the same as the object’s.

This section has introduced the immune-inspired image processing platform
CIN. Segmenting the object of interest is the preliminary work for a visual
tracking system. The whole tracking model is to be discussed in the next section,
where the CIN platform is employed by a a neuro-immune inspired visual tracker.

3 Neuro-Immune Inspired Tracking Method

The immune and nervous systems were considered to be two independent sys-
tems until the second half of 20th century. Since then, biologists have found
significant evidence to show that these two systems interact at many levels us-
ing a variety of signalling materials [8]. From an immune system perspective,
T-cells secrete different kinds of cytokines which regulate the immune response
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and affect neural behaviours. From the neural perspective neurons secrete hor-
mones, neuropeptides and neurotransmitters to regulate the immune response.

Such interactions between the two systems did not attract a great deal of in-
terests from computer scientists or engineers until [9]. In that paper, the authors
describe each function of the immune, nervous and endocrine system and their
interactions and propose an artificial homeostasis system (AHS) which attempts
to maintain the system’s internal stability. However, in terms of implementation
the authors concentrate on the interactions of the neural and endocrine system:
that work has in part inspired work presented in this paper. Other influential
work for our system was proposed in [10] where the authors develop a simple
innate artificial immune system integrated with a self organising map (neural
network). In our work, we make use of standard feedforward neural networks
and have taken inspiration from the adaptive (rather than the innate) compo-
nent of the immune system.

In this section we outline a novel tracking system inspired by immune and
nervous systems interactions. The immune-inspired system is to visually present
a object of interest using CIN, and the neural-inspired system is to track the
target and dynamically learn the hidden motion rules.

Fig. 2. Neuro-immune inspired tracking system framework

3.1 Immune-Neural Framework

Our framework is illustrated in Figure 2, and is composed of a CIN component
and a ANN component in dashed box. The ANN is a combination of an artificial
perceptron and a back propagation (BP) network. In figure 2 blocks represent
system elements and arrows show functions with one element acting on another.
Within the CIN block, there are elements responsible for T-cell concentration
Cel of a cellular unit: current T-cells concentration, T-cell proliferation function
f(·) and cytokine secretion matrix M , environment parameters input Env, and
high proliferation when Apc is activated. For instance, the T-cell block convolv-
ing by the cytokine secretion matrix acts on the cytokine block and backwards
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is affected by through the T-cell proliferation function. These are graphical rep-
resentations of equation 2, 4, and 5.

In our tracking system there are four functional modules for robust segmen-
tation, fast segmentation, adaptive tracking and anti-interference, respectively.
The four modules are divided by their specific functions and each is composed
of several elements and functions.

Robust segmentation. In this module, the neural-inspired global information
analysis mechanism helps the immune-inspired local pixel processing platform,
CIN, to iteratively segment an object from the background. This is the first and
most important module in the visual tracking system. This module is composed
of 4 actions represented by arrows 2, 3, 4 and 7.

Arrow 2, from block “environment” to block “cytokine”, represents the effect
of environment parameters Env onto the Cyt values in equation 2. Env is defined
as the inverse of gradient value at each pixel. However the gradient information
is not always sufficient. If the image’s contrast is very low, the gradient values
will be very small and thus the environment parameters will not be small enough
to inhibit the recognised area.

With further consideration, it is known that the gradient information is the
local information, that only depends on a few continuous pixels’ intensities.
Besides the local information, analysing the global information from the whole
image is more helpful. The pixels’ intensities are the inputs of the perceptron
(see figure 2 arrow 7), so the size and number of the perceptron’s inputs are as
the same as the image’s resolution and also as the units of the CIN. Once the
Seg value of a CIN unit is 1, i.e. the Cyt value on a pixel is above the threshold,
the corresponding neural synapse is activated and will pass the pixel’s intensity
value to the perceptron (see figure 2 arrow 3). At every iteration, the perceptron
collects the intensities and positions information from all pixels in the “cytokines
activated” area, and calculates the intensity and position distribution, e.g. the
mean value and the standard deviation. The outputs of the perceptron are the
membership probabilities of these concerned pixels, as equation 6 defined,

Pr(i, j) = exp(− (I(i, j) − μt)
2

2σt
2

) (6)

where Pr(, ) is the perceptron output to the concerned pixel, I(, ) is the intensity
value of the concerned pixel’s; μt and σt represent the current mean value and
standard deviation respectively. This is the effect as figure 2 arrow 4 shows, from
the perceptron output to act on the proliferation fucntion. The new proliferation
function is expressed as equation 7, and the proliferation rate in equation 4 will
be recalculated by replacing f(·) with fnew(·).

fnew(·) = f(·) ∗ Pr(i, j) (7)

Equation 6 and 7 show that if a pixel with lower membership probability value,
even if the gradient value is small, the Cyt value could also be very small. Thus
this pixel will be considered not being part of the object. With the feedback from
perceptron unit, the CIN is able to right segment an image with low contrast.
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Fast segmentation. This module is concerned with accelerating the segmenta-
tion process via modulating the cytokine secretion matrix M by the perceptron
output, as figure 2 arrow 5 indicates. The secretion matrix M represents the
T-cell’s cytokine secretion ability and is symmetric (see equation 1). Since the
recognised area is changing, in most cases enlarged, the mean value of the po-
sition distribution, which is the centre position of the recognised area, is also
changing. If the centre position is moving, this means that along a certain di-
rection the recognised area is “growing” faster than along others. Therefore,
by biasing the matrix with the centre’s moving speed, the cytokine secretion
ability will be stronger along the centre’s moving direction. Therefore the cells
expansion will be anisotropic, faster along some directions and slower along some
others. This will provide faster segmentation ability.

The centre position of currently recognised area is defined as Pt which is
composed of x and y coordinates. Along the iterative segmentation process, Pt

is moving towards the actual centre of the object, and will finally reach and stop
there once the recognised area covers the whole object. The error of the centre
positions in two continuous iterations is considered as the moving speed Vt. It is
defined as equation 8, where (t) is current iteration time step.

Vt(t) = Pt(t) − Pt(t − 1) (8)

Vt and Pt are different from Vf and Pf respectively, which are the speed and
centre position of the a frame rather than a iteration, and will be introduced
latter. The biased secretion matrix Mnew(, ) is defined as equation 9, where
Mv(, ) is the bias matrix describing the moving centre speed and as the same
size as M .

Mnew(x, y) = M(x, y) + MV (x, y) (9)

Having a biased cytokine secretion matrix affords the CIN with a faster seg-
mentation ability. This is also provided by the perceptron output. The artificial
perceptron provides the membership probability to affect the proliferation ratio
of each cellular unit, and the centre of recognised area to affect the cytokine
secretion matrix.

Adaptive tracking. In a reliable visual system, the observation from the image
is usually used instead of the estimation from a Bayesian filter since the error
between them is very small. Although the motion model of the tracking target
is unknown, the model could be updated by the error of previous prediction and
current observation (EPO) defined as equation 10,

EPO(f) = Vf (f) + V ∗
f (f) (10)

In our real time tracking system, a BP neural network is introduced as the
time series predictor, in a similar vein to [11]. The network input is the observed
speed Vf (f) in the current frame and output is the predicted speed V ∗

f (f +1) for
the next frame, where (f) is the sequential number of current frame. Use the EPO
to regulate the neural synapse weights on the fly, figure 3. In a discrete system,
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Fig. 3. BP network as a time series predictor

the term “speed” is actually the position difference between two continuous
frame, so after each frame processed, the BP network shifts all the T-cells to the
predicted position P ∗

f (f + 1). This is the function of figure 2 arrow 6 represents.
The predicted position is defined as equation 11. Pf (f) is the current position.

P ∗
f (f + 1) = Pf (f) + V ∗

f (f + 1) (11)

Anti-interference. After the BP network shifted the recognised area to the
predicted position, the next video frame is taken. The CIN will perform the
segmentation process again for the new frame, and self-adapt to the new shape
of the morphing target. If the target encounters a SIBO, the tracker may l be
confused and take the SIBO as part of the target. In the CIN platform, if there is
no discrimination mechanism, the recognised area will keep expanding into the
SIBO. In order to avoid such a situation we have developed an anti-interference
mechanism.

Equation 4 indicates that when the Apc state is activated at the concerned
cellular unit, the Cel value is raised to a very high level. This is also the effect
that figure 2 arrow 1 indicates. From the proliferation function, it shows that not
only could low cytokine concentration inhibit T-cell’s proliferation and the aggre-
gation’s expansion, the high cytokine concentration would have the same effect.
This feature provides good anti-interference potential to restrain the recognised
area from leaking into the SIBO area. The Apc state only has local impact on
the target-SIBO-overlapped area, and on any other areas recognised area are
free to expand. That means the tracker is able to track a morphing target and
well define its contour even when it’s passing through a SIBO. The function of
Apc state is like a lever to balance the predication and observation.

4 Performance Analysis

This algorithm has been simulated and tested in the MatLab 2006a environment
and is available from the authors on request. It consists of two independent
tests, for image segmentation and visual tracking. All testing images are 256
gray scales, by 160x120 pixels and applied Gaussian noises on. For space, we
report only a single example run of the system, but extensive experiments have
been undertaken but are not reported here.
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4.1 Image Segmentation

In this test, we focus on the system’s robust and fast segmentation abilities.
Figure 4(a) is a raw image. The heart-shaped object in the middle is the target
to be segmented. Picture (a), is the gradient of the raw image and (b) shows
the failed segmentation when using the CIN in its own; and (c), (d) are the
segmentation results (after 50 iterations) when using the CIN with an artificial
perceptron, where the left is slower and the right is faster.

Figure 4(b) (b) shows that without the help of artificial perceptron, the CIN
image segmentation fails: the recognised area “leaks” outwards from the gaps
(lower gradient value area) in the contour. Picture (a) is the corresponding edge
detecting result, which can’t provide a continuous contour of the object. The
successful segmentation is shown in picture (d), and when compared with picture
(b), we deduce that our system provides significant robustness.

(a) The raw image (b) Segmentation Results

Fig. 4. Visual Representation of the Segmentation Process

It is necessary to clarify that the algorithm applied in picture (c) is also as
robust as the algorithm in picture (c), only slower. The difference between two
algorithms employed in picture (c) and (d) is that the faster of the two employs
the biased matrix mechanism, whilst the slower algorithm does not. Given the
same time length, in this experiment 50 iterations, we can see in picture (c) the
work has is approximately half completed (without leaking), while in picture (d),
the process is complete. The starting point is at the top-left of the object, the
centre of recognised area is moving towards the bottom-right corner along with
recognised area expanding. The dark thine line in the object is the trajectory of
the moving centre.

4.2 Visual Tracking

In this experiment we are testing the visual tracking ability. Figure 5, column (a)
is a series of frames from a simulated video clip at number 0,5,10,15,20 and 25,
where a morphing target is passing through a SIBO. In column (b) we observe
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Fig. 5. Images taken over time showing the tracking of a morphing target

that without the immune-inspired anti-interference mechanism, the recognised
area expands into the SIBO. The black dot in the recognised target represents
the centre coordinates. We see the centre of our target is surely aberrant like
being attracted by the SIBO, and after frame 15 it is out of the object, which
implies that the target has been lost. However, in column (c), although there is
some distortion in the SIBO overlapped region, the algorithm is able to maintain
the centre position inside the target area. The slight distortion is a compromise
between the prediction and observation. When the algorithm is tracking nor-
mally, the algorithm relies on the observation of the actual pixel information
from the image, but once the SIBO appears, this tracker relies on the prediction
more than the current observation.

5 Summary and Conclusion

In this paper we have proposed a novel visual tracking system which is inspired
by neuro-immune interaction. After identifying a seed point in the object of
interest in the first image frame, the system will segment the object from the
background and will successfully track the object despite the fact that the object
is changing its aspect and passing through a cluttered background. There are
two tightly coupled decision making mechanisms for visual tracking: the CIN
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makes decisions on which pixel belongs to the target object, and the ANN makes
decisions on where the recognised area is moving. The two systems are pixel-
driven and model-driven respectively. Both of them mutually act on each other
via their outputs, to regulate the behaviours of each other’s. Benefited by the
two features of pixel-driven and model-driven, this system provides robust and
fast tracking abilities.
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Abstract. One of the major challenges for negative selection is to efficiently 
generate effective detectors. The experiment in the past shows that random gen-
eration fails to generate useful detectors within acceptable time duration. In this 
paper, we propose an antigen feedback mechanism for generating the detectors. 
For an unmatched antigen, we make a copy of the antigen and treat it the same 
as a newly randomly generated antibody: it goes through the same maturing 
process and is subject to elimination due to self matching. If it survives and is 
then activated by more antigens, it becomes a legitimate detector. Our experi-
ment demonstrates that the antigen feedback mechanism provides an efficient 
way to generate enough effective detectors within a very short period of time. 
With the antigen feedback mechanism, we achieved 95.21% detection rate on 
attack strings, with 4.79% false negative rate, and 99.21% detection rate on 
normal strings, 0.79% false positive. In this paper, we also introduce Arisytis – 
Artificial Immune System Tool Kits – a project we are undertaking for not only 
our own experiment, but also the research communities in the same area  
to avoid the waste on repeatedly developing similar software. Arisytis is avail-
able on the public domain. Finally, we also discuss the effectiveness of the  
r-continuous bits match and its impact on data presentation. 

Keywords: Artificial Immune System, Negative Selection, Intrusion Detection 
System. 

1   Introduction 

Artificial Immune System (AIS) is a branch of computational intelligence, inspired by 
biologic immune systems. It was first proposed by Forrest et al [1] and has attracted 
increasing interest from the research communities in the last 20 years [2-5]. Like the 
other biologically inspired models, such as Artificial Neural Networks, Evolution 
Algorithms, and Ant Colony etc., AIS is based on the observation of the behaviors 
and the interaction of antibodies and antigens in a biological system [6, 7]. Negative 
selection, clonal selection, and immune network theory are the three most popular 
theories of the current AIS research [3, 8]. 

Negative selection [9-11] mimics the way a human body detects and destroys 
harmful antigens. A human body constantly produces lymphocytes, with randomly 
mutated surface peptides, from born marrow. A lymphocyte is recognized by its  
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surface peptides, because these peptides are used to match against other cells. All 
newly generated lymphocytes are sent to thymus to mature. The thymus has almost all 
types and shapes of self cells. During this period of maturing time, if a lymphocyte 
matches any cell in the thymus, the lymphocyte is just a copy of a self cell and is then 
destroyed. Only these which do not match any self cell in the thymus are sent to the 
body to match, or detect, antigens (also called pathogens), which are invasion cells. 
The lymphocytes keep trying to match all the cells, including both self cells and anti-
gens, in the body. If a match happens, it basically means that a non-self cell (antigen) 
is just detected. An alarm might be raised, and immune actions may follow. The lym-
phocyte which matches the antigen may become a memory lymphocyte and stays in 
the body to quickly respond to the same invasion in the future. If for a period of time, 
a lymphocyte does not make any match, it will age and die. New lymphocytes with 
random peptide mutations are being generated to replace the dead ones. For the de-
tailed explanation on how the immune system works, under the context of AIS, we 
refer the readers to [12, Chapter 2]. 

The terms used in AIS literature are yet to be standardized. In this paper, we use 
the terms antibody and detector interchangeably. We also use a memory antibody (or 
detector) to mean that the antibody has been successfully activated and also matched 
the incoming antigens many times. Finally, we view the data to be verified, i.e., to be 
matched by the antibodies, as a stream of antigens. For the purpose of simplicity, we 
call all data items to be verified as antigens, regardless of being attacks or self. 

Negative selection, due to its ability of discriminating self and non-self, fits natu-
rally into the area of intrusion detection. There are a few proposals of using negative 
selection for intrusion detection purpose. The first, and perhaps the most cited system, 
is LISYS by Hofmeyr etc. [7, 11]. In [13], Balthrop reported comprehensive results of 
different parameter settings of LISYS. In LISYS, detectors and antigens are repre-
sented as the strings of 49 bits long. Gabrielli and Rigodanzo [14] proposed a similar 
intrusion detection system but restricted their experiment on the HTTP requests to a 
web server. Gonzalez and Dasgupta proposed a real-valued negative selection (RNS) 
algorithm [15], where detectors and antigens are represented as real valued vectors. 
They tested the algorithm on MIT Lincoln Lab DARPA 99 dataset and achieved 95%-
98% detection rates (with different false alarm rates). Ji and Dasgupta had a compre-
hensive survey paper on the development in negative selection [16]. 

The success of negative selection depends on the success of generating detectors. 
In [17], Kim and Bentley reported the difficulties in generating useful detectors within 
an acceptable time window. They concluded that negative selection suffers from scal-
ability problem. Our experiment also repeated their observations; however, we do not 
share their conclusion. The problem is not on negative selection itself, and the solu-
tion is on finding a means to efficiently generate effective detectors. 

In this paper, we propose an antigen feedback mechanism to efficiently generate 
effective detectors. In addition to the randomly generated detectors, for an unmatched 
antigen, we copy it into the detector space and treat it the same as a randomly gener-
ated detector. The detector is called a feedback detector (or a feedback antibody). This 
new detector goes through the same maturing process and is subject to elimination if 
it matches any of the self strings. If it survives, it is used to match further incoming 
antigens. If it can be activated, by exceeding the pre-set activation threshold, it be-
comes a legitimate detector.  
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The antigen feedback mechanism is justified. The goal of randomly generating de-
tectors is not the randomization, but to generate effective detectors. The ideal situa-
tion is that every randomly generated detector matches a type of incoming antigens. 
Therefore, there is no waste on the generated detectors. This is the ideal situation, 
which has maximum efficiency, but unachievable in reality. Keeping the goal of ran-
domly generating detectors in mind, it is acceptable to copy an unmatched antigen 
into the detector space, as it is the same as any one of these many randomly generated 
detectors. However, this simple antigen feedback mechanism has great impact on  
the quality of detectors. It makes the detector generating almost close to maximum 
efficiency. 

We employ a similar implementation as LISYS but use KDD CUP 1999 dataset 
[18] to conduct our experiment on the antigen feedback mechanism. The experiment 
is conducted on an in-house developed system called Arisytis. Arisytis (Artificial 
Immune System Tool Kits) is a project we are undertaking in the attempt to imple-
ment the up to date AIS algorithms. It does not just provide a test bed for our own 
research, but is also available in the public domain for the other research communities 
to avoid the waste of time in repeatedly developing similar software (http:// staff.ise. 
canberra.edu.au/dtran/).  

In this paper, we will also discuss the impact of r-contiguous bits match method [7, 
11] on the presentation format of antibodies and antigens. 

The rest of the paper is as follows. In Section 2, we briefly introduce Arisytis. Sec-
tion 3 provides the details of preparing KDD CUP 1999 dataset for our experiment. 
Section 4 discusses the generating of detectors. Section 5 gives the experiment results, 
with the discussion on the r-contiguous bits match method and its impact on data 
presentation. We conclude the paper with future work in Section 6. 

2   Arisytis 

Arisytis is a project we are currently undertaking, through which we are trying to 
integrate the up-to-date AIS algorithms into a single program. Arisytis is designed for 
research experimenting and educational purposes. It is highly configurable and also 
provides real time updates on its run-time activities. The real-time updates make it 
less efficient, but it is justified for its purposes. Changing Arisytis parameters is just a 
matter of filling forms and ticking boxes. Arisytis is developed on Microsoft C#.NET 
environment and has an intuitive graphic user interface, Fig 1. 

The top region of Arisytis window has 4 groups: Global Parameters, Antibodies, 4 
buttons (OpenTrain, OpenTest, Run/Rerun, and Quit), and Running Environment. The 
elements in Global Parameters group are used to change system wide parameters, 
such as, the number of allowed antibodies, effective length of an antibody, the dura-
tion of a clock cycle, and the time to live for a newly generated antibody etc. The 
elements in Antibodies group have the parameters related to antibodies, for example, 
the value R for r-continuous bits match and if antigen feedback is turned on etc. The 4 
buttons are used to open relevant files and start an experiment run. The elements  
in Running Environment group are updated in real time manner to report system  
activities. 
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Fig. 1. Arisytis user interface 

The lower region of Arisytis window has four panels to display the self strings, an-
tibodies, and antigens. Self panel displays self strings, one dot per string. Transient 
Antibodies Panel contains generated antibodies, one dot per antibody. A green dot 
means that the corresponding antibody is newly generated and hasn’t gone through 
the maturing process yet. An orange dot means that the corresponding antibody sur-
vives the maturing process and is ready to match against incoming antigens. After the 
number of the matches exceeds the predefined matching threshold, which can be 
adjusted in Global Parameters group, this antibody is promoted into a memory anti-
body and thus moved to Memory Antibody panel. Antigens panel displays all the anti-
gens, one dot per antigen, as usual. Although we view antigens as a flow of antigens 
coming from outside, for displaying purpose, we display all antigens in this panel 
without the order. An orange dot means that the corresponding antigen has been 
matched by a memory antibody, i.e., is recognized or detected. A black dot means that 
the corresponding antigen is either not recognizable by the memory antibodies or yet 
to be processed. While the display of the antigens ignores the order of the antigens in 
the antigen flow, the program processes the antigens one by one in order through its 
flow. The order of the antigens being processed is important, especially when the 
antigen feedback mechanism is turned on. 

3   Preparing the Dataset 

KDD CUP 1999 dataset was based on MIT Lincoln Lab intrusion detection dataset, 
also known as DARPA dataset [19]. The data was produced for “The Third Interna-
tional Knowledge Discovery and Data Mining Tools Competition, which was held in 
conjunction with KDD-99 The Fifth International Conference on Knowledge Discov-
ery and Data Mining” [18]. The raw network traffic records have already been con-
verted into vector format. Each vector has 41 fields (features). We refer the readers to 
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[18] and [20] for the meanings of these fields. If we ignore the fields with symbolic 
values, the rest of the fields can be classified into 4 categories: 

• Group I: fields 0, 4, 5, and 7, these fields are the basic characteristics of a con-
nection. They are the durations, the octets transferred, and wrong fragmenta-
tion flags of the connection. We ignore the fields with symbolic values, field 1, 
2, 3, and 6, in this paper. 

• Group II: fields 10-19, these fields are actually not traffic features. The values 
cannot be obtained by looking at the traffic records alone. The help from host 
based logs is needed. 

• Group III: fields 22-30, these fields are time based traffic features. They are 
the statistics of traffic features in the previous 2 second time window. The cal-
culation is based on the source IP address. 

• Group IV: fields 31-40: the same as Group III, except that the calculation is 
destination IP address oriented. 

Among the 4 groups, either Group III or Group IV contributes most to the detec-
tion rate, and combining the groups won’t increase the detection rate [21]. Therefore, 
we primarily choose Group III fields for our experiment. In addition, we also choose 
Field 1, 2, and 3. We convert these fields into a string of 50 bits, which has 10 seg-
ments as follows: 

• Segment 1: 1 bit for Field 24. The value range for the field is 0-0.94 with pre-
dominately 0s. If the value is 0, we set the segment 0; otherwise 1. 

• Segment 2: 1 bit for Field 25. The value range for the field is 0-1 with pre-
dominately 0s. If the value is 0, we set the segment 0; otherwise 1. 

• Segment 3: 9 bits for Field 22. The value range for the field is 1-511. We con-
vert the value into its binary format. 

• Segment 4: 9 bits for Field 23, the same as Segment 3. 
• Segment 5: 3 bits for Field 1. There are only 3 different values for this field: 

TCP, UDP, and ICMP; therefore, 100 for TCP, 010 for UDP, and 001 for 
ICMP. 

• Segment 6: 7 bits for Field 2. There are 70 different services for this field, for 
example, auth, ftp, http, and telnet etc. We order the 70 services, in alphabet 
order, from 1 to 70, e.g. auth ordered as No. 2, ftp No. 17, http No. 22, and 
telnet No. 59. We then convert the order value into its binary format. 

• Segment 7: 11 bits for Fields 3. There are 11 distinct flags for the fields. They 
are OTH, REJ, RSTO, RSTOS0, RSTR, S0, S1, S2, S3, SF, and SH. We 
set 1 bit of the 11 bits to 1 for one of the flags, the same as Segment 5. 

• Segment 8: 1 bit for Filed 28. The value range for the field is 0-1 with almost 
all values as 1s. If the value is 1, we set the segment 1; otherwise 0. 

• Segment 9: 1 bit for Field 29. The value range for the field is 0-1 with almost 
all values as 0s. If the value is 0, we set the segment 0; otherwise 1. 

• Segment 10: 7 bits for Field 30. The value range for the field is 0-1 with even 
distribution. We first times the value with 100 (range: 0-100) and then convert 
the product into its binary format. 
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We use the file “kddcup.data” to generate self strings. We pick up all the vectors 
with the label “normal” and then convert them into the bit strings as described. The 
file contains 972,781 vectors with the “normal” label. After being converted into bit 
strings, we obtain 23,587 unique strings. With these 23,587 unique strings, most of 
them are just a one off string, and only 558 strings have each individual string being 
repeated for more than 100 times. We keep these 558 strings as self strings. 

We use the file “corrected” to generate the testing strings. The file contains 
311,029 vectors, among which 60,593 are labeled as “normal”, and the rest 250,436 
are labeled with verities of attacks. For our experiment purpose, we pick up the first 
10,000 of “normal” labeled vectors and attack labeled vectors respectively and con-
vert them into bit strings. 

4   Generating Detectors 

The efficiency and the accuracy of the detection are decided by how well the detectors 
are generated. We encountered the same difficulty as report by Kim and Bentley [17] 
– we cannot generate even a single useful detector in a period of time which is even 
far beyond the time required to process all antigens. A simple analysis reveals that the 
difficulty is actually expected.  

We use a 50 bits string to represent an antibody or an antigen. It means that the 

number of all possible strings is 502 , which is about 1510 . As discussed before, from 
the 250,436 vectors with attack labels, we only obtain 12,351 unique strings. If we 
generate the detectors completely randomly, and assume that the random numbers are 

evenly distributed, the chance for us to generate a useful detector is 11

10

351,12 1015

−≈ , 

which is fundamentally impossible. 
To overcome the problem, we introduce the antigen feedback mechanism. For any 

unmatched antigen, we copy it into the antibody repository. It is then treated the same 
as a randomly generated detector and is subject to the same maturing, eliminating, and 
activating processes. If it survives, it becomes a legitimate detector.  

5   Experiment Results and Discussions 

With the data described in Section 3 and the antigen feedback mechanism, we run a 
number of experiments on the 10,000 attack strings and 10,000 normal strings, with 
the different combinations of R for r-continuous bits match and T for the number of 
matches to activate an antibody. Table 1 lists some sample results. In the table, R is 
the value of r-continuous bits match, T is the activation threshold, “D Rate” means 
detection rate, “M ATB” lists the number of memory antibodies obtained during this 
run. 

For the attack strings, we have 3 types of results. When R is small ( 32≤R ), the 
results are random, as the match is too general to produce any meaningful results. The 
larger the value R is, the more specific the match is. When lR = , where l  is the full 
length of a string, any two strings have to be exactly the same to make a match; while  
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Table 1. Some sample results of different combinations of R and T 

Attacks Normal R T 
D Rate M ATB D Rate M ATB 

3 94.96% 8 98.50% 3 
5 93.95% 4 98.92% 2 49 
10 90.67% 3 99.45% 1 
3 94.99% 8 98.51% 2 
5 93.99% 4 98.81% 2 40 
10 90.43% 3 99.60% 1 
3 65.65% 41 98.41% 5 
5 65.59% 37 98.73% 4 32 
10 61.31% 25 99.60% 1 

 
at the other extreme 0=R  means that any two strings will always match. When R is 

close to the full string length ( 35≥R ), the detection rates are around 94%, when the 
activation matching threshold was set at 5. The error rates 6% (from the detection rate 
94%) were mainly caused by the initial learning process. The system has to learn, 
from the feedback antigens, and then activated the detectors. The higher the activation 
matching threshold we set, the higher the error rate. If we keep the memory detectors 
of the last run and insert them into the next run, we can achieve almost 100% detec-
tion rate. The insertion of memory detectors can be viewed as immunization injection. 
When 33=R  or 34=R , we achieved the best results, 95.19% and 95.21%, re-
spectively, when the activation threshold was set at 5. In these 2 cases, R is large 
enough to avoid mistakenly matching the self strings and also is not yet specific 
enough (i.e., even larger) to exclude similar attacking strings. For all the experiments 
we conducted, the useful detectors were actually all obtained from antigen feedback, 
and none of them were generated randomly. 

For normal strings, when R is small ( 31≤R ), we achieved 100% detection rate 
persistently. This is understandable. The randomly generated detectors rarely match 
the incoming antigens, while any feedback antibody always matches the self strings 
and thus is eliminated. Therefore, no match against the incoming antigens can be 
made. When R is large enough ( 32≥R ), the match against self strings becomes 
more specific, and some feedback antibodies cannot match the self strings. As the 
result, some detectors were built up. They made some matches against the incoming 
antigens, and the detection rates dropped to around 99%. The best result was achieved 
when 35=R , the detection rate was 99.21%, with error rate 0.79%. 

Combining both attack strings and normal strings together, the best results were 
under the setting of either 33=R  or 34=R , when the activation matching thresh-
old was set at 5, Fig 2.  

These results are surprisingly good for the antigen feedback mechanism. They 
prove its effectiveness. With the feedback, the system can quickly establish useful 
detectors and then use them to discover similar patterns from further incoming  
antigens. 
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Fig. 2. The detection rates for R from 31 to 50 with the activation matching threshold 5 

The matching method, r-continuous bits match, was inspired by real immune sys-
tems [7, 11]. We believe that it can accurately measure the similarity of two strings, 
because it measures the degree of resembleness instead of distance, such as Euclidean 
distance or Hamming distance. For example, the Euclidean distance distances for the 
two pairs (i) “10101” and “00100” and (ii) “10101” and “11111” are the same 

( 2 ), but the two strings in the first pair resembles each better than the second pair, 
as the 3 continuous bits in the middle are the same (010). 

Given the good detection rates we achieved under the antigen feedback mecha-
nism, we still have some concerns on using segmented string format to represent 
antibodies and antigens for r-continuous bits match method. Suppose that the length 

of antibodies and antigens is l , and a string has n segments from 1s  to ns . If lR = , 

we have full matching, where a detector can only detect the antigens which are ex-

actly the same as itself. If lR
l <<
2

, r-continuous bits match just ignores the lead-

ing or the ending, or both, segments, e.g., 1s , 2s , 1−ns , and ns  etc., depending on the 

value of R  and the lengths of the leading and the ending segments. Therefore, the 
method makes the segments in the middle weight more than these at the both ends. If 
a match happens, these in the middle have to have exact match. In other words, a 
match involves all the segments in the middle and some from either end of the string. 
Therefore, a match is achieved by completely and also consistently ignored some 
segments at either ends. This is the reason responsible for our string format as de-
scribed in Section 3. 

This effect is not desirable. However, the problem is not the matching method, but 
the way we present the data. We are seeking a better way to represent antibodies and 
antigens by homogenizing the information carried by each segment. 

6   Conclusion and Future Work 

This paper presents our experiment on negative selection in intrusion detection by 
using KDD CUP 1999 dataset. In order to solve the problem of efficiently generating 
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effective detectors, we propose an antigen feedback mechanism. Under the mecha-
nism, we can achieve 95.21% detection rate for attack strings, with false negative rate 
4.79%, and 99.21% detection rate for normal strings, with false positive rate 0.79%. 

The surprisingly good results by such a simple mechanism were achieved on the 
KDD CUP 1999 dataset. More experiment on other datasets, and perhaps the datasets 
from different domains, is needed to verify if the results are just coincident or persis-
tent. We are arranging more experiment. Given the good results achieved by the anti-
gen feedback mechanism and the fact that randomly generated antibodies hardly 
match the incoming antigens, we have a bold conjecture that negative selection may 
not need randomly generated antibodies at all but just rely on the feedback antigens. If 
the conjecture can be proven to be true in general cases, we avoid the scaling problem 
of negative selection.  

This paper also introduces Arisytis, the test bed we used for our experiment. It is 
available to the other researchers in the field to avoid the waste of the effort to write 
similar program. Arisytis can also be used as an educational tool. 

Finally, we believe that negative selection with the antigen feedback mechanism 
has the ability to quickly discover unknown patterns. The ability can be applied to 
other domains for pattern detection than just self/non-self discrimination, for example, 
spam email recognition, faulty parts detection, and finance fraud discovery etc. An-
other future task of ours is to find out a way to homogenously blend the information 
carried by the characters of the antibody and antigen strings and then study the differ-
ences of r-continuous bits match on the new string format. Last but not least, we will 
further expand Arisytis with other up to date AIS algorithms. 
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Abstract. Some features of a large number of combinatorial optimization prob-
lems prevent the use of exact solution methods, thus requiring the application of 
heuristic techniques to find good solutions, not always the optimal ones, in a fea-
sible amount of time. This paper describes a heuristic approach, which is a hy-
brid between artificial neural networks and artificial immune systems, to solve 
the capacitated vehicle routing problem. This algorithm is based on a competi-
tive model, which does not use a cost or evaluation function to determine the 
quality of the solution proposed. Despite this apparent drawback, the set of tests 
conducted with the proposed approach indicates a good performance of the algo-
rithm when compared with similar works from the literature and the known best 
solutions available. 

Keywords: Artificial Neural Networks, Artificial Immune Systems, Self-
Organizing Maps, Combinatorial Optimization, Capacitated Vehicle Routing 
Problem. 

1   Introduction 

Natural Computing has played an important role in combinatorial optimization by 
providing good heuristic approaches [1]. One of these methods is based on Artificial 
Neural Networks that, for combinatorial optimization tasks, can be divided into two 
types: 1) networks based on the optimization of an error surface, such as the Hopfield 
Networks [2]; and 2) self-organized networks, such as the Elastic Net [3] and Self-
Organizing Feature Maps [4]. The second type of networks is the one with the best 
results in the literature [5]. 

The work of Hopfield & Tank [2] was pioneer in using artificial neural networks to 
solve combinatorial problems, in particular the traveling salesman problem (TSP), 
using a Hopfield Network. Concerning self-organizing networks, a pioneer work was 
presented by Durbin & Willshaw [3] with the Elastic Net, and then Fort [6] and 
Angeniol et al. [7] with the use of self-organizing maps (SOM), all applied to solving 
the Traveling Salesman Problem (TSP). Although many works from the literature 
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discuss the application of self-organizing networks to solve the TSP [8], [9], little 
attention has been paid to more complex problems, such as the Capacitated Vehicle 
Routing Problem (CVRP). 

The CVRP is described as follows. A fixed number k of identical vehicles, each 
with capacity Q, is available at the depot. There are M customers (plus the depot), 
each with a demand qi (i = 1, 2, 3, ..., M), to be served. The CVRP consists of 
determining k routes with minimum costs, so that: 1) each route starts and ends at the 
depot; 2) each client is visited once by a single vehicle; and 3) the demand of the 
customers served by a vehicle does not exceed the capacity of the vehicle. The CVRP 
is an NP-complete problem [10], preventing the use of exact algorithms for certain 
instances of the problem, and thus requiring the use of heuristic approaches. 

This paper proposes one such heuristic based on artificial immune systems and 
self-organizing maps to solve the CVRP, named RABNET-CVRP. This algorithm is 
an extension of [11], which solves the TSP. Concepts from SOM and artificial 
immune systems are used to generate several sub-networks to compose a feasible 
solution to the problem. Several tests are conducted with instances commonly used in 
the literature and a comparison is performed with other algorithms based on self-
organizing networks. The RABNET-CVRP is an algorithm with unsupervised 
learning, that is, it does not use a cost or evaluation function to determine the quality 
of the solution. Although this may look like a limitation, the results achieved show a 
good performance of the proposed method. 

The remainder of this paper is organized as follows. Section 2 presents an 
overview of a few works relating self-organizing networks to solve the CVRP; in 
Section 3 the proposed algorithm, RABNET-CVRP, is detailed; the computational 
results are presented in Section 4; and the paper is concluded in Section 5 with a brief 
discussion about the current and further works. 

2   Related Works 

Few works based on self-organizing networks were proposed to solve the CVRP. This 
section makes a brief review of these works, emphasizing those that will be used for 
performance comparisons with the proposed algorithm. 

In the work of Vakhutinsky & Golden [12], the authors propose an extended 
version of the Elastic Net [3] to solve the CVRP. In this algorithm, several sub-
networks, each one representing a vehicle, are expanded in the direction of the cities. 
The number of neurons is predetermined and their weights are iteratively updated 
according to two rules: 1) one that moves a neuron in the direction of the closest city, 
avoiding the violation of the vehicle’s capacity; and 2) a rule that moves a neuron in 
the direction of its nearest neighbors, aiming at minimizing the length (tour) of the 
network. The performance of the algorithm is evaluated with a set of 5 instances 
ranging in size from 22 to 51 cities. The best solutions found do not violate the 
capacity constraints and they are compared with the best known solution for each  
 



212 T.A.S. Masutti and L.N. de Castro 

instance. The authors argue that the results are not as good as those of the best 
techniques from operations research, but even so they are satisfactory. 

In [13] the authors propose an algorithm based on self-organizing maps to solve 
the CVRP. In the proposed algorithm, several sub-networks stretch from the depot 
into the direction of the customers, where each sub-network represents the route of a 
vehicle. For the algorithm to be able to solve a CVRP instance there is a bias term for 
each network, which reflects the demand covered by the represented vehicle and it is 
used along the competition process avoiding the construction of routes that exceed the 
vehicle’s capacity. In the proposed approach, the number of neurons is fixed as three 
times the number of customers to be served. To assess the performance of the 
proposed algorithm, a set of 10 instances ranging in size from 22 to 200 cities was 
used and the results compared with the best known solution for each instance and to 
the results presented in [12]. According to the results, the proposed algorithm 
outperformed the proposal of [12]. 

In the work of Gomes & Von Zuben [14], the authors propose a hybrid algorithm 
based on self-organizing maps and fuzzy systems to solve the CVRP. The sub-
networks’ architecture is modified along the training phase according to a mechanism 
of insertion and pruning neurons based on the algorithm of Angeniol et al. [7]. A 
fuzzy module that acts upon the competition rule provides the construction of low 
cost routes handling the other constraints of the problems, such as the vehicle’s capac-
ity. To assess the performance of the proposed algorithm, it was used a set of 7 in-
stances ranging in size from 22 to 101 cities. The results are compared with the best 
known solution for each instance and with an algorithm without the fuzzy module 
based on [13]. According to the results presented, the proposed algorithm outper-
formed the one without the fuzzy module. 

3   RABNET-CVRP 

The RABNET-CVRP (real-valued antibody network to solve the capacitated vehicle 
routing problem) is a heuristic approach that combines concepts from artificial im-
mune systems [15] and self-organizing maps [4] to solve the CVRP. This algorithm is 
an extended version of [11] and [16], which solve the TSP, and of [17], which solves 
the MTSP. The main characteristics of the RABNET-CVRP are: 1) feedforward neu-
ral network with no hidden layer; 2) competitive network with unsupervised learning; 
3) constructive architecture with growing and pruning phases; and 4) pre-defined 
circular neighborhood. 

The goal of RABNET-CVRP is, throughout the learning phase, to position one 
network cell near enough each city of the CVRP instance to be solved. In RABNET-
CVRP, there are several sub-networks, each one representing the route of a vehicle. 
Thus, at the end of the learning phase, the pre-defined neighborhood of each sub-
network will denote the sequence of cities to be covered by the vehicles. The main 
steps of RABNET-CVRP are described in the following. 
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3.1   Sub-networks Initialization 

As each sub-network represents one vehicle, k sub-networks are initialized. In each 
network, there is a number of antibodies (in artificial neural networks, the analogue 
for an antibody is a neuron) equal to round(M/k) where one antibody (the antibody 
related to the depot) has an attribute vector (weight vector in the neural network lit-
erature) equal to the coordinate vector of the depot and the other antibodies are ran-
domly distributed on the Euclidean plane. In order to facilitate the implementation, 
the antibody related to the depot, at each sub-network, has index one. 

3.2   Presentation of Antigens (Cities) 

During the immune system evolution, an organism can meet a certain antigen several 
times [15]. As the problem to be solved by the self-organizing network is the CVRP, 
each city corresponds to one antigen (input pattern in artificial neural networks) and 
they are iteratively presented to the antibody network, simulating the meeting be-
tween the organism and an antigen. Prior to each epoch, the order of the cities is ran-
domized so as to avoid that this order influences the network adaptation. 

3.3   Competition 

This step consists of determining the winner antibody (city) to the presented antigen 
according to the following equation: 
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where ag is the coordinate vector of the presented antigen, Abi
j is the attribute vector 

of antibody i belonging to sub-network j, qt is the sum of the presented city’s demand 
with the demand covered by vehicle j, and I is the index of the winner antibody be-
longing to the sub-network J. One can observe that the competition rule depends on 
two terms: 1) the (Euclidean) distance between the presented antigen and the attribute 
vector of an antibody; and 2) the current demand covered by a given vehicle. The 
main objective of this second term is to penalize vehicles that cover a high demand 
(0.8 < qtj ≤ Q) and to inhibit vehicles that cover a demand higher than their capacities 
(qtj > Q). 

An antibody can be a winner for zero, one or more antigens. A vector ρj stores, for 
each sub-network, the number of antigens related to each antibody. This information 
is reinitialized at each epoch and is used in other steps, such as the Growing Phase. 
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If the antigen presented represents the depot, there is no competition. The antibod-
ies of index one, for each sub-network, will be used in the next steps. Thus, one can 
say that for the depot, there are k winners. 

3.4   Cooperation 

The cooperation step is based on self-organizing maps [4]. At this step, the stimulus 
to the winner antibody is propagated to its neighbors, but with a smaller intensity. In 
RABNET-CVRP, there is no connection between the sub-networks, so the 
neighborhood of the winner antibody is restricted to the sub-network to which it 
belongs. 

This stimulus’ intensity hiI for antibody i belonging to sub-network J is computed 
by the following equation: 
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where σ(t) is the parameter that controls the influence of the neighborhood, t is the 
current epoch and diI is the neighborhood degree between the winner antibody I and 
antibody i given by the following equation, which defines a circular neighborhood: 

( ) JiIiNIidiI ∈−−−= ,;min  (3) 

where N is the number of antibodies in sub-network J. 
The second term of Equation (2) ensures that the attribute vector of the antibody 

related to the depot will not change, being always equal to the coordinates of the 
depot. 

The influence of the neighborhood has to be large at the beginning of the learning 
phase and be reduced throughout the epochs [4]. In RABNET-CVRP this is done by 
updating σ(t) according to the following equation: 

σ(t) = σ(0)·exp(–t/τ1), (4) 

where σ(0) is its initial value and τ1 = 100. 

3.5   Adaptation 

To present an effective response to pathogenic agents, the immune system counts with 
a learning process that involves the increasing of the antigen-antibody affinity at each 
meeting of the organism with a determined antigen. In RABNET-CVRP, the 
adaptation phase performs this increase in antigen-antibody affinity by moving the 
winner antibody and its neighbors in the direction of the antigen presented to the 
network according to the following equation: 

( ) ( ) ( ) ( )[ ]
( )⎪⎩

⎪
⎨
⎧ >−⋅⋅+

=+
otherwise

1
t

hthtt
t

J
i

iI
J
iiI

J
iJ

i
Ab

AbagAb
Ab

κα , (5) 



 A Neuro-Immune Algorithm to Solve the Capacitated Vehicle Routing Problem 215 

where κ is a threshold for hiI and α(t) is the learning rate, redefined at each epoch by 
the following equation: 

α(t) = α(0)·exp(–t/τ2), (6) 

where α(0) is its initial value and τ2 = 300. 
The threshold κ in Equation (5) defines a minimum value for hiI to antibody i to be 

updated. This restriction limits the effective neighborhood of an antibody, allowing 
only significant updates. According to preliminary tests, this restriction does not af-
fect significantly the quality of the solutions, but saves a reasonable amount of proc-
essing time. 

3.6   Sub-networks Growing 

In this step, the most stimulated antibody from each sub-network along one epoch is 
selected for cloning. The most stimulated antibody is the one recognizing the higher 
concentration of antigens, defined by the following equation: 

Cj = argmax(ρj), (7) 

where Cj is the index of the most stimulated antibody from sub-network j, and ρj is the 
concentration vector of this sub-network. 

With a selected antibody for cloning, among all antigens related to it, that with the 
highest Euclidean distance is selected. If this distance is greater than a predefined 
threshold ε, then this antibody is cloned. Otherwise, no change occurs in this sub-
network architecture. The attribute vector of the newly created antibody is the same as 
the one from its parent antibody, and its neighborhood is of degree one in relation to 
its parent. 

3.7   Convergence Criteria 

Two criteria define the convergence of the algorithm to a solution of the selected 
problem: 1) the antibodies of all sub-networks must be related to at most one antigen; 
and 2) each antigen u (u = 1, 2, …, M) must have one antibody related to it at a mini-
mum distance λ, and this antibody must be the current winner for antigen u. If these 
conditions are satisfied, the learning process is finished. It is not necessary to test the 
second criterion with the depot, since there is always one antibody from each sub-
network related to it and those antibodies have attribute vectors equal to the depot’s 
coordinates. 

3.8   Pruning 

At the end of the learning process, every antibody not related to any antigen is 
removed from the sub-networks. It makes the number of antibodies equal to M + k. 

Fig. 1 illustrates the flowchart for RABNET-CVRP. 
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Fig. 1. Flowchart for the RABNET-CVRP 
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4   Computational Results 

To assess the performance of the algorithm, several experiments were conducted with 
instances commonly used in literature. These instances were taken from [18] and are 
available at http://www.branchandcut.org/VRP/data/. The algorithm was coded in 
MATLAB and run in a PIV 3,0 GHz with 1GB RAM. 

The proposed algorithm has a set of parameters to be tuned before being applied to 
a CVRP instance. The parameters α(0) e σ(0) are those that most influence the 
behavior of the sub-networks and, consequently, the quality of the solutions found. 
Appropriate values for these parameters vary according to the instance to be solved 
and can be obtained with preliminary experiments. In cases this is not possible, the 
following default values (obtained empirically) are suggested for all parameters: 
α(0) = 0.75, σ(0) = 40, ε = md*0.2, λ = md*0.4, κ = 0.01, τ1 = 100 e τ2 = 300, where 
md represents the minimum distance among all cities. 

The tests were conducted with a set of 9 instances ranging in size from 22 to 101 
cities. For each instance, the proposed algorithm was run 50 times and the results 
obtained are compared with the best known solutions and with results presented in 
other works dealing with self-organizing networks to solve the CVRP [12], [13], 
[14]. 

Table 1 presents the computational results for RABNET-CVRP regarding the qual-
ity of solutions, demonstrated by the best solution found, the average solution and the 
effectiveness in finding feasible solutions; and regarding to the computational effort, 
demonstrated by the average number of epochs and antibodies for the convergence of 
the algorithm and the running time. Table 2 presents a comparison between the best 
solutions found by RABNET-CVRP and other three similar works. 

Table 1. Computational results for RABNET-CVRP regarding the computational effort and the 
quality of solutions found. BKS is the best known solution; PCV is the percentage of solutions 
that violates the capacity constraint; Epochs and NA are the average number of epochs and 
antibodies, respectively; Time is the average running time in seconds; Best is the cost of the 
best solution found that does not violate the capacity constraint; Mean is the average cost of 
solutions that do not violate the capacity constraint. All results shown were taken from 50 runs 
for each instance. 

Instance BKS PCV Epochs NA Time Best Mean 
E-n22-k4 375 12 204.84 335.50 2.76 375 388.3 
E-n30-k3 534 48 162.76 175.28 2.38 543 559.7 
E-n33-k4 835 20 267.22 439.82 5.67 876 899.5 
E-n51-k5 521 48 157.18 276.68 5.33 578 632.1 
E-n76-k7 682 08 251.80 738.40 17.98 692 708.4 

E-n101-k8 815 14 267.66 1029.70 29.90 839 865.3 
Att-n48-k4 40002 02 256.94 475.72 7.93 40212 40991 
F-n45-k4 724 40 267.66 496.22 8.10 735 767.2 
F-n72-k4 237 42 187.68 416.14 8.55 254 294.5 
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Table 2. Comparison of the quality of the solutions found by RABNET-CVRP with the 
solutions presented in other three similar works: Vakhutinsky & Golden [12], named VG; Torki 
et al. [13], named TSE; and Gomes & Von Zuben [14], named GVZ. BKS is the best known 
solution and PDB is the percent deviation of the best solution found to the best known solution. 

PDB 
Instance BKS RABNET-

CVRP 
VG TSE GVZ 

E-n22-k4 375 0.00 75.73 4.00 2.27 
E-n30-k3 534 1.69 60.11 4.31 2.79 
E-n33-k4 835 4.91 7.07 6.47 4.64 
E-n51-k5 521 10.94 7.49 3.07 0.91 
E-n76-k7 682 1.47 - - - 

E-n101-k8 815 2.94 - 5.89 7.55 
Att-n48-k4 40002 0.52 - - - 
F-n45-k4 724 1.52 - - - 
F-n72-k4 237 7.17 - - - 

5   Conclusion and Future Investigation 

This paper presented a heuristic approach hybridizing artificial neural networks with 
artificial immune systems to solve the CVRP. The CVRP is one of the most studied 
combinatorial optimization problems in the literature, justifiable by its wide 
applicability in real world problems and by its difficulty in solving, since most often 
the capacity constraint conflicts with the route minimization objective. 

The proposed algorithm, named RABNET-CVRP, solves a CVRP instance by 
positioning one antibody from any sub-network (each one representing a vehicle) near 
enough each city of the instance, and the antibodies’ neighborhood defines the 
sequence of cities to be visited by each vehicle. The main characteristics of 
RABNET-CVRP are its unsupervised competitive model and constructive 
architecture. Its performance was evaluated with a set of standard data and its results 
were directly compared with other three similar works and the best known solutions 
from the literature. 

According to the results obtained, RABNET-CVRP showed to be capable of 
finding good quality solutions with a short computational effort. For the set of 
instances used in this paper, the proposed algorithm presented an average percent 
deviation of 3.46% from the best known solutions. A direct comparison of the best 
solutions obtained by RABNET-CVRP with solutions presented in other three similar 
works demonstrated that the proposed algorithm obtained competitive solutions, 
outperforming them, with regards to the quality of the solution found, on three out of 
five instances. However, it is important to stress that RABNET-CVRP was not 
capable of finding feasible solutions, regarding the capacity constraint, in all runs. For 
the set of instances used in this paper, the percentage of feasible solutions was greater 
than 50%. 

Further investigations might include computational tests with a larger number of 
instances, a model which presents a higher percentage of feasible and good quality 
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solutions and the joint use of the proposed approach with an improvement heuristic, 
such as simulated annealing and k-opt. 
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Abstract. Research works related to the Artificial Immune System (AIS) and 
their applications have been extensively reported during the last decade. In this 
work, we proposed an inductive bias heuristic called neighbourhood improve-
ment within the classical AIS for improving its performance. We also demon-
strated alternative mutation mechanisms for cloning the elite antibodies.  
Computational experiments using the proposed heuristic and mechanisms to 
find the near optimal solutions of travelling salesman problems were conducted. 
The results obtained from the modified AIS were compared with those obtained 
from other metaheuristics. It was found that the performance of the modified 
AIS adopting the proposed heuristic and mechanisms outperformed the conven-
tional AIS and other metaheuristics. 

Keywords: Artificial Immune System, Genetic Algorithms, Particle Swarm 
Optimisation, Simulated Annealing, Tabu Search, Travelling Salesman. 

1   Introduction 

Optimisation algorithms can be categorised as being either conventional or approxi-
mation optimisation algorithms [1, 2]. Conventional optimisation algorithms are usu-
ally based upon mathematical models such as Integer Linear Programming [3], 
Branch and Bound [4] or Dynamic Programming [5]. These approaches were rela-
tively well developed and attributed to the military services early in World War II. 
Based on the full enumerative search within these approaches, the optimal solutions 
are always guaranteed. However, the application of these methods might need expo-
nential computational time in the worst case. This becomes an impractical approach 
especially for solving a very large size problem. Alternative approaches that can guide 
the search process to find near optimal solutions in acceptable computational time are 
therefore more practical and desirable. 

Approximation optimisation algorithms so called metaheuristics have therefore  
received more attention in the last few decades. Metaheuristics iteratively conduct 
stochastic search process inspired by natural intelligence. They can be categorised 
into three groups [6]: physically-based inspiration such as Simulated Annealing [7];  
                                                           
* Corresponding author. 
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socially-based inspiration for instance Tabu Search [8]; and biologically-based inspi-
ration e.g. Neural Network [9], Genetic Algorithms [10], Shuffled Frog Leaping [11], 
Particle Swarm Optimisation [12], Ant Colony Optimisation [13] and Artificial Im-
mune System [14]. These alternative approaches have been widely used to solve 
large-scale combinatorial optimisation problems [14-17]. 

Research works related to the Artificial Immune System (AIS) and their applica-
tions have been extensively reported during the last decade [18-20] and also discussed 
in the ICARIS conferences. However, the immune inspired algorithms have been 
limited by the lack of theoretical advances, the adoption of a naive immune inspired 
approach and the limited application of AIS to challenging problems [20]. Freitas and 
Timmis [21] have pointed out that there is a lack of appreciations for possible induc-
tive bias within the AIS algorithms and positional bias within the choice of represen-
tation and affinity measures. The algorithms might be tailored by embedding heuristic 
information related to a specific problem as an inductive bias procedure for improving 
its performance. 

Mutation mechanisms play an important role in the cloning process conducted 
within the Artificial Immune System algorithms. The cloning process performs an 
exploration principle for searching candidate solutions in the solution space. Two 
mutation mechanisms called inverse and pairwise interchange mutations are generally 
adopted in the clonal section AIS algorithms [22, 23]. Other mutation mechanisms 
adapted within the Genetic Algorithms (GA) have also been systematically investi-
gated and reported in literature [24, 25]. Pongcharoen et al. [24] have investigated 
eleven mutation mechanisms used in the GA for solving travelling salesman problem. 
The analysis on their experimental results suggested that the best mutation mechanism 
was the Shift Operation Mutation [26] followed by the Inversion Mutation [10].  

The objectives of this paper were to: i) statistically investigate the appropriate set-
ting of the percentage of antibody elimination; ii) demonstrate the use of alternative 
mutation mechanisms (Shift Operation and Inversion Mutations) for improving the 
performance of the classical Artificial Immune System; and iii) propose an inductive 
bias process called Neighbourhood Improvement (NI) heuristic acting as the heuristic 
information related to the travelling salesman problem. 

This paper is organised as follows. Section 2 describes the proposed AIS algorithm 
for travelling salesman problem. Section 3 presents the design and analysis of compu-
tational experiments for identifying the appropriate setting of the percentage of  
antibody elimination and investigating the performance of the modified AIS with 
alternative mutation mechanisms and heuristic against other metaheuristics in terms 
of the quality of the results obtained and the execution time required. The conclusions 
are drawn in section 4 followed by appendices and references. 

2   Artificial Immune System 

The biological immune system is a defending system of living organisms. In humans, 
the immune system is highly developed with its ability to distinguish self from non-
self. The immune system functions by detecting and recognising the non-self or for-
eign molecules that enter the body (e.g. infectious micro-organisms or transplanted 
tissues). These functions confer by phagocytes as well as antigen-presenting cells 



222 P. Pongcharoen, W. Chainate, and S. Pongcharoen 

such as B cells and dendritic cells. These cells then specifically present antigens de-
rived from the foreign bodies that they had internalised to T cells via specific T cell 
receptors on the T cell membrane. The specifically stimulated T cell then responses 
by proliferating giving rise to antigen-specific T cell clones. Each clone has T cells 
with the same specificity to the stimulating antigen.  

The B cells specifically bind antigens using membrane receptors called B cell re-
ceptors. The antigen-bound B cells are then activated to proliferate and also to  
become ‘antibody-producing’ plasma cells. The proliferating B cell clones and the 
antibodies secreted from plasma cells all have the same specificity to the stimulating 
antigen. The proliferation rate of a B cell is directly proportional to its recognising 
degree of the antigen. The B cell learns by raising the population size and affinity (the 
degree of the cell recognition with the antigen) [27]. 

Artificial Immune System (AIS) is one of the biology-inspired method, which is a 
branch of computational intelligence [28]. The artificial immune system is based on 
two main principles [22]: clonal selection and affinity maturation principles. In the 
first principle, each antibody (candidate solution) has an affinity (fitness) value de-
termined by the affinity (objective) function. The latter principle consists of two main 
processes: mutation and receptor editing. Mutation mechanisms such as inverse muta-
tion and/or pairwise interchange mutation can be used to generate a clone from an 
antibody [23]. The number of clones is determined by its affinity value and the size of 
antibody population. After cloning, sorting and deleting the repetition, the receptor 
editing process is conducted by eliminating antibodies from the population based on 
the desired percentage of antibody elimination (%B). The whole process is repeated 
until the termination criterion is satisfied. A pseudo code for the clonal selection AIS 
algorithm is provided in the appendices. However, there have been other mutation 
mechanisms previously proposed within Genetic Algorithm [25]. 

In this work, we proposed alternative mutation mechanisms called Shift Operation 
Mutation [26] and Inversion Mutation [10], both of which have been statistically 
proven to be the effective mutation mechanisms within the GA [24]. These mecha-
nisms were therefore proposed to replace the inverse and pairwise interchange muta-
tions as a modified clonal selection AIS (MAIS). In addition, we proposed a heuristic 
called Neighbourhood Improvement (NI) within the modified AIS by taking the best 
affinity antibody to perform an inductive bias process during the evolutional itera-
tions. The pseudo code for the NI heuristic is shown in the appendices. The heuristic 
uses the distance between cities to find the best solution from neighbour solutions 
within iteration. The best antibody is then cloned in the next iteration. The integration 
of the AIS algorithm, mutation schemes and NI heuristic is provided in the pseudo 
code shown in the appendices. 

3   Experimental Design and Analysis 

Travelling salesman problem (TSP) is one of the classical combinatorial optimisation 
problems. The problem is to minimise the cost of the tour travelled by a salesman 
who want to visit every cities in his territory only once and return to the starting city. 
The cost of the tour is basically determined by the length of the itinerary travelled. In 
this work, three symmetric travelling salesman problem (TSP) instances provided in 
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the TSP library [29] were adopted in the numerical experiments. The first problem 
instance was relatively small and named as “pr76”, in which the number indicates the 
number of 76 cities to be travelled. The remaining problems named “bier127” and 
“a280” were relatively medium and large, respectively. 

Two step sequential experiments were carried out. In the first experiment (A), was 
aimed to investigate the appropriate setting of AIS parameter, the percentage of elimi-
nating antibodies (%B) through a 76 nodes of the TSP instance. The finding of appro-
priate setting of %B was sequentially applied in the next experiment, which was 
aimed to benchmark the performance of the AIS algorithms with other metaheuristics. 
In the latter experiment (Experiment B), the total number of search determining by 
the amount of candidate solutions multiplied by the number of iterations was fixed to 
5,000 generated solutions. The higher values of these parameters mean that there is 
more chance of getting good solutions but this requires longer computational time. 
The computational experiment was repeated 30 times using different random seed 
numbers. The simulation program including the proposed algorithms was coded in 
modular style using Microsoft Visual Basic 6.0. All computational runs were con-
ducted on a PC with Intel Core2Duo 2.66 GHz 2.0 GB RAM. 
 

Experiment A 
It is understood that no algorithm can outperform others for all problem instances and 
domains due to the distinct nature of the problems and its complexity. In fact, the 
performance of the algorithm depends on its parameters’ setting. For example, one of 
the AIS parameters called the percentage of eliminating antibody (%B) has been 
specified at 10% by Agarwal et al. [30] for solving project scheduling problem but 
30% has been used to solve job shop scheduling problem [22]. This experiment was 
aimed to investigate the appropriate setting of the percentage (%B) for solving the 
travelling salesman problem instance (pr76). The values of %B were ranged from  
0-30%. In this experiment, the number of antibodies (P) and the number of iterations 
(Imax) were set to 10 and 500, respectively. The experimental results obtained with 30 
replications for each value of %B were analysed by using the general linear model 
form of analysis of variance (ANOVA) shown in Table 1. It can be seen that the per-
centage (%B) was statistically significant with 95% confidence level (having p values 
less than 0.05). 

Table 1. ANOVA table of the computational results in the experiment A 

Source Degree of 
Freedom 

Sum of Square Mean Square F p 

%B 3 2356174422 785391474 3.41 0.020 
Error 116 26753968144 230637656   
Total 119 29110142566    

 
The main effect plots shown in Figure 1 suggested that the average distance of the 

tours produced by the AIS having %B at 10% was shortest compared to those with 
other settings. Therefore, this finding on %B was sequentially adopted in the next 
experiment. 
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Fig. 1. Average tour obtained from AIS by varying %B factors 

 

Experiment B 
This sequential experiment was aimed to benchmark the performance of conventional 
Artificial Immune System (AIS) with the modified AIS (MAIS) using alternative 
mutation mechanisms mentioned in the previous section, MAIS that embedded the 
proposed inductive bias heuristic called Neighbourhood Improvement (MAIS+NI), 
Genetic Algorithm (GA), Tabu Search (TS), Simulated Annealing (SAGeo) with Geo-
metric cooling scheme [7], SA with Lundy-Mees cooling schedule (SALM) [31] and 
Particle Swarm Optimisation (PSO) in terms of quality of solutions obtained and 
computational time required. The pseudo codes of these algorithms are provided in 
the appendices. 

From the finding in experiment A, the setting of percentage of eliminating antibod-
ies (%B) for all AIS algorithms was 10% of the population size of antibody. The mu-
tation operators used in conventional AIS has been Inverse and Pairwise interchange 
mutations, but the experimental results from the previous research [24] have sug-
gested that the mutation operators suitable for solving TSP are Shift operation (SOM) 
and Inversion (IM) mutations. These mutation operators, SOM and IM, were there-
fore applied in MAIS and MAIS+NI. It should be noted that the operation of Inver-
sion mutation is not the same as the Inverse mutation used in AIS. 

The setting of other well-known algorithms was set based on the pervious sugges-
tions. The setting of both SA parameters was based on the suggestion from Glass and 
Potts [32], in which the value of initial and final temperatures of SALM factors were 
500 and 10, respectively and 700 and 30 for SAGeo. For TS parameters, taboo list size 
was determined by the number of nodes divided by 3 and the candidate list per itera-
tion was set to 5 [33]. The setting of GA parameters was based on the suggestion from 
our previous research [24, 25, 33, 34], in which the value of the combination of popu-
lation size and the number of generations (P/G), probabilities of crossover (Pc) and 
mutation (Pm), crossover (COP) and mutation operators (MOP) were 100/50, 0.9, 0.5, 
edge recombination (ERX) and shift operation (SOM), respectively. The setting of 
PSO factors including the value of the combination of particle size and the number of 
iterations (N/Imax), c1 and c2 were 100/50, 0.1 and 0.9, respectively. 
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The computational runs using each algorithm were repeated 30 times with different 
random seed numbers for each TSP instant dataset. The high number of replications 
can reduce the effect of stochastic transition rules conducted within the algorithms. 
Due to the stochastic transition rules conducted within those algorithms, the measures 
of performance were considered on the mean and the standard deviation (SD) of the 
solutions obtained. The experimental results of 720 runs were analysed in terms of the 
average, standard deviation (SD.), maximum and minimum distance of the tours ob-
tained from each method including its execution time (second) as shown in Table 2. It 
can be seen that the average distance of the tours obtained from the modified AIS 
(MAIS) was considerably better than those using the conventional AIS, TS, GA and 
PSO for all problem sizes. But the performance of the MAIS was outperformed by the 
SAGeo and SALM. Considering the modified AIS with Neighbourhood Improvement 
(MAIS+NI), it can be seen that the average tour distance obtained from MAIS+NI 
marginally outperformed those results using other metaheuristics for small and me-
dium problems. For the large problem, the average tour distance produced by the 
MAIS+NI was shorter than those using SALM and SAGeo by 23% and 54%, respec-
tively. The best so far tours for small, medium and large size problems were found by 
SALM, SAGeo and MAIS+NI, respectively. The average execution time taken by PSO 
was quickest followed by SA, AIS and GA. Figure 2 shows the mean and the error 
bar (±3SD) of the best tours obtained from all approaches for each problem sizes. 

Table 2. The experimental results of all algorithms for experiment B 

Quality of solutions (tours) obtained Problem 
size Algorithms 

Average SD. Min Max 
Computational 

Time (s) 
AIS 239285.67 14423.04 216093 277455 10.07 

MAIS 136821.20 4193.55 127438 143004 9.97 
MAIS+NI 130886.17 4187.74 123977 140303 10.97 

SAGeo 132879.50 6106.33 124327 147140 2.37 
SALM 131502.83 5807.55 121860 144478 2.40 

TS 256817.63 7900.13 238711 271945 3.63 
GA 335746.97 14503.49 311912 363064 18.70 

Small 
(76 Nodes) 

PSO 339141.60 17299.69 308331 384315 1.47 
AIS 245261.37 9759.87 223260 261075 14.63 

MAIS 195079.10 6269.90 180596 207933 14.57 
MAIS+NI 182738.73 5759.61 170559 195591 16.40 

SAGeo 186804.63 10070.2 168399 207136 3.87 
SALM 185121.47 7209.46 173411 205168 3.93 

TS 301507.93 10290.19 283377 325694 6.30 
GA 427210.33 12364.31 402190 446432 52.00 

Medium 
(127 Nodes) 

PSO 424979.03 18896.63 387955 463034 2.53 
AIS 16021.40 576.92 14638 17021 29.57 

MAIS 11222.50 238.55 10740 11742 30 
MAIS+NI 8487.17 319.32 7669 9126 36.07 

SAGeo 18427.33 736.47 16089 19497 8.90 
SALM 11030.17 381.64 10184 11643 8.87 

TS 154234.03 302.06 14616 15963 14.70 
GA 24798.20 422.04 23972 25497 311.57 

Large 
(280 Nodes) 

PSO 24940.47 530.84 23966 25888 6.20 
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(a) small problem (76 nodes) 

 
(b) medium problem (127 nodes) 

 
(c) large problem (280 nodes) 

Fig. 2. Average tours produced by each method for all instant datasets 
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4   Conclusions 

Research works related to the Artificial Immune System (AIS) and their applications 
have been extensively reported during the last decade. However, it has been reported 
that the immune inspired algorithms have been limited by the lack of theoretical ad-
vances and appreciations for possible inductive bias within the algorithms. In this 
present work, we proposed an inductive bias heuristic called Neighbourhood Im-
provement within the clonal selection AIS for improving its performance. We also 
demonstrated alternative mutation mechanisms for cloning the elite antibodies. Com-
putational experiments using the proposed heuristic and mechanisms to find the near 
optimal solutions using benchmarking travelling salesman problems were conducted. 
The results obtained from the modified AIS were compared with those obtained from 
other metaheuristics including Simulated Annealing, Tabu Search, Genetic Algorithm 
and Particle Swarm Optimisation. It was found that the performance of the modified 
AIS adopting both proposed heuristic and mechanisms considerably outperformed the 
conventional AIS and other metaheuristics especially for the large size problem. 
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Appendices 

Appendix A. Pseudo Code for AIS Procedure 
Initialise the value of AIS parameters e.g. antibody size (P), iterations (Imax) and percentage of 
antibody elimination (%B). 
Generate a population of P antibodies 
For each antibody (i∈P), calculate affinity (i) 
Set current iteration (I) = 1 
Do 
 For each antibody (i) 
  Calculate the number of clones (NC) and clone antibody (i) 
  For each clone, apply inverse mutation to create a new antibody 
   Calculate the affinity of the new antibody 
   If affinity (new antibody) is better than the clone,  
   Then clone = new antibody, 
   Else 
    Perform pairwise interchange mutation to create a new antibody 
    Calculate the affinity of the new antibody 
    If affinity (new antibody) is better than the clone,  
    Then clone = new antibody, 
   End 
  End 
  antibody (i) = clone 
 End 
 Eliminate the worst antibodies from the population based on %B 
 Create new antibodies to replace the eliminated antibodies 
 I = I + 1 
While I ≤ Imax 
 
Appendix B. Pseudo Code for a SA Procedure 
Initialise the value of SA parameters including starting temperature (t0), cooling rate (α) and 
final temperature (tmin). 
Generate a candidate solution (s) 
Calculate the fitness (energy) value of the current solution, E(s) 
Set current temperature (t) = t0 
Do 
 Do 
  Find a neighbour solution (s*) of the current solution (s) 

 If E(s*) is better than E(s) or (random [0,1) ≤ exp((E(s)-E(s))/t)), s = s* 
While stopping criteria is satisfied  

 t = αt 
While t ≤ tmin 
 
Appendix C. Pseudo Code for Neighbourhood Improvement (NI) Procedure 
Begin 
 Select a candidate solution (tour) 
 Identify the worse pair of cities in the tour 
 Relocate both cities in the tour by checking the new tour’s distance 
 If the new tour is better than the previous tour, then tour = new tour 
End 
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Appendix D. Pseudo Code for MAIS Procedure 
Initialise the value of AIS parameters e.g. antibody size (P), iterations (Imax) and percentage of 
antibody elimination (%B). 
Generate a population of P antibodies 
For each antibody (i∈P), calculate affinity (i) 
Set current iteration (I) = 1 
Do 
 For each antibody (i) 
  Calculate the number of clones (NC) and clone antibody (i) 
  For each clone, apply Inversion Mutation (IM) to create a new antibody 
   Calculate the affinity of the new antibody 
   If affinity (new antibody) is better than the clone,  
   Then clone = new antibody, 
   Else 
    Perform Shift Operation Mutation (SOM) to create a new antibody 
    Calculate the affinity of the new antibody 
    If affinity (new antibody) is better than the clone,  
    Then clone = new antibody, 
   End 
  End 
  antibody (i) = clone 
 End 
 Eliminate the worst antibodies from the population based on %B 
 Create new antibodies to replace the eliminated antibodies 
 In case of MAIS+NI, apply Neighbourhood Improvement (NI) for the best antibody 
 I = I + 1 
While I ≤ Imax 
 
Appendix E. Pseudo Code for a TS Procedure 
Initialise the value of TS parameters e.g. length of tabu list (L), iteration (Imax). 
Generate a candidate solution (s) 
Calculate the fitness value of the current solution, f(s) 
Set taboo list is empty 
Set current iteration (I) = 1 
Do 
 Find a set of neighbour solutions of the current solution 

Select the best neighbour solution (s*) from the set of neighbour solutions 
If f(s*) is better than f(s), s = s* 
Update taboo list  

 I = I + 1 
While I ≤ Imax 
 
Appendix F. Pseudo Code for a GA Procedure 
Initialise the value of GA parameters e.g. population size (P), number of generations (G) and 
probabilities of crossover (Pc) and mutation (Pm). 
Generate a population of P chromosomes 
For each chromosome (i∈P), calculate fitness (i) 
Set current generation (g) = 1 
Do 
 Based on Pc, randomly select two parent chromosomes for crossover operation 
 Based on Pm, randomly select a parent chromosome for mutation operation 
 Calculate the fitness of the offspring 
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 If offspring is better than the parent, replace the parent 
 g = g + 1 
While g ≤ G 
 
Appendix G. Pseudo Code for a PSO Procedure 
Initialise the value of PSO parameters including swarm size (N), number of iterations (Imax), 
inertia weight (ω), self (c1) and social (c2) learning rates. 
Generate a swarm of N particles 
For each particle (i∈N), calculate fitness (i) 
Set current iteration (I) = 1 
Do 
 For each particle, update the best fitness of particle (i) as pBest 
 Update the best fitness of all particles as gBest 
 For each particle 
  Calculate particle velocity based on the pBest and gBest 
  Update particle position based on the new velocity 
 End 
 I = I + 1 
While I ≤ Imax 
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Abstract. Artificial Immune System (AIS) is an emerging technique for
the classification task and proved to be a reliable technique. In previous
studies, many classifiers including AIS classifiers require the data to be
in numerical or categorical data types prior to processing. The transfor-
mation of data into any other specific types from their original form can
degrade the originality of the data and consume more space and pre pro-
cessing time. This paper introduces AIS model using immune network
for classifying heterogeneous data in its original types. The model is able
to process the data with the types as represented in the database and it
solves some bias problems highlighted in the AIS review papers. To en-
sure the consistent conditions and fair comparison, the selected existing
algorithms use the same set of data as used in the proposed model. Ex-
perimental results show that this network-based model produces a better
accuracy rate than the existing population-based immune algorithm and
than the standard classifiers on most of the data from University of Cali-
fornia, Irvive (UCI) Machine Learning Repository (MLR) and University
of California, Riverside (UCR) Time Series Data (TSR).

Keywords: artificial immune system (AIS), classification, immune net-
work, heterogeneous, accuracy, significant difference.

1 Introduction

Data mining serves a task of extracting knowledge from real world data sets. It
helps in decision making and forecasting on the currently available knowledge
or information. A classification is one of important tasks in data mining to help
people make a better decision in the future based on the available knowledge.
With the available classification algorithm, people can repeatedly make a forecast
on the accumulated knowledge in new situations.

The proposed model in this paper focuses on the classification task of data
mining. More precisely, this work proposes an algorithm that will classify het-
erogeneous data (data with the combination of various types such as continuous,
discrete and nominal) without the need for the transformation of the data into
any specific type. Transforming the data into different type from its original form
somehow will degrade the accuracy of the data [26] and this consumes more space
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and data pre processing time. Some limitations in AIS models as highlighted by
[11][13][20] are the data representation and suitable affinity measurements that
cause inductive bias problem. Furthermore, previous studies in AIS classifiers
did not test enough real world dataset with low accuracy rate when using stan-
dard algorithm. Note also that this study concerns the computational AIS and
does not suppose to offer any insight into theoretical immunology.

The technique used in this paper is to induce a set of classification rules
based on immune network of artificial immune system (AIS), a relatively new
computational intelligence paradigm [10]. The advantage of using AIS technique
is that it uses a distance function to find similarity or affinity measurement be-
tween two instances. This allows the technique to incorporate the hybrid affinity
measurement so called heterogeneous value difference metric (HVDM) distance
function that is mainly for evaluating dataset with heterogeneous types with
special methods to handle outliers and bias value.

The remainder of this paper is organized as follows. Section 2 presents a brief
overview of natural immune system, artificial immune system and affinity mea-
surements. Section 3 generally explains the proposed algorithm Flexible Immune
Network Recognition System (FINERS). Section 4 reports the experiments and
result discussion. Finally, section 5 presents the conclusion and future work for
the proposal.

2 Immune System

A biological immune system has two broad response systems. One is innate
immunity, which is general and not normally modeled by AIS systems. The
other one is an adaptive immunity that is based on two kinds of antibody cells
in the body: T-cells, so named because they originate in the thymus gland and
B-cells originate in bone marrow. When a pathogen invades the body, special
cells called antigens are available. An individual T-cell or B-cell responds to the
antigens by cloning and mutating to match the antigen. The affinity of that
T-cell or B-cell from the antigen [15] is stronger if the the match is closer.

B-cells that do not match any antigens and do not stimulate with the neigh-
bour antibodies eventually die. When a body has successfully defended against
a pathogen, a comparatively small number of memory cells remain in the body
for very long time. These memory cells recognize antigens similar to those that
originally cause the immune response, so that the body’s response to a future
and very similar invader is much faster and powerful than to a never-before-seen
invader.

2.1 Artificial Immune System (AIS)

An Artificial Immune System is a bio-inspired computational model that uses
ideas and concepts from the natural immune system, mainly the interaction
between antigen and B-cells (stimulation and suppression), interaction between
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antibody and antibody from the immune network theory [19], cloning and muta-
tion process [9]. It offers strong and robust information processing capabilities for
solving complex problems. Applications of AIS include supervised and unsuper-
vised machine learning, pattern recognition, intrusion detection and security [8].

Among the early models on supervised machine learning are Immunos81 [4]
and AIRS [22][23]. However, the former model uses a significantly different and
complex approach. The later model is the first straightforward immune-inspired
supervised learning algorithm and has subsequently gone through a period of
study and refinements [12][24][25]. However, many of these studied classifiers
concentrate on the population-based AIS algorithm and ignore the important
network feature [19] of the immune system. They also require numerical rep-
resentation of data, use Euclidean affinity measurement and mostly are tested
only on numerical dataset.

As suggested in [11][13][20][22], methods of using other types of data need to
be explored to allow for greater applicability of this learning paradigm. [12] have
explored variety of distance metric for affinity measurements with population-
based AIS algorithm but a more comprehensive experiment on many problems
with heterogeneous types is required in order to proof a high quality classifica-
tion technique for heterogeneous data types using hybrid affinity measurement.
To overcome the limitation and improve the classification accuracy, there is a
need for developing the AIS classifier with the network feature and be able to
accept heterogeneous data without the need for the data transformation. In
order to accept heterogeneous types of data, all processes involving these data
must consider appropriate and suitable affinity measurement, data structure and
mutation method.

2.2 Affinity Measurements

One of the important components in AIS framework is affinity measurement. The
affinity measurement in AIS uses the distance metric function such as Euclidean
function, Value Difference Metric (VDM) and Heterogeneous Value Difference
Metric (HVDM). There are many learning systems depend on good distance
function to measure similarities and be successful such as the nearest neighbor
techniques [6][7][14], and memory-based reasoning methods [18]. Such algorithms
have had much success on a wide variety of applications (real-world classification
tasks).

The Euclidean distance function works well with numerical attribute [26] but
do not handle nominal attributes appropriately. The VDM [18] was introduced
to define an appropriate distance function for nominal attributes. It works well
in many nominal domains, but it does not handle continuous attributes directly.
Instead, they rely upon process of discretization which can degrade generaliza-
tion accuracy [21].

Many real-world applications have both nominal and numeric attribute as
shown in the UCI MLR [17]. The HVDM was introduced in [26] that can take
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heterogeneous data where it uses normalized VDM for nominal data and nor-
malized difference for linear data. HVDM has shown a good potential to be the
distance metric for heterogeneous data without the need for any discretization
or transformation of data into any specific type. HVDM has become the choice
as the hybrid affinity measurement for the AIS algorithm in this paper.

Heterogeneous Value Difference Metric (HVDM). As mentioned in the
previous section, the Euclidean distance function is inappropriate for nominal
attributes, and VDM is inappropriate for continuous attribute, so neither is
sufficient on its own for use on a heterogeneous application, i.e. one with both
nominal and continuous attributes. So, HVDM is used as shown below:

HV DM (x, y) =

√√√√
m∑

a=1

da
2 (xa, ya) (1)

where m is the number of attributes. The function da(x, y) returns a distance
between the two values x and y for attribute a and it is defined as:

da(x, y) =

⎧⎨
⎩

1, if x or y is unknown; otherwise
vdma (x, y) , if a is nominal
diffa (x, y) , if a is linear

⎫⎬
⎭ (2)

where vdm and diff are defined as follows:

vdma (x, y) =

√√√√ C∑
c=1

∣∣∣∣
Na,x,c

Na,x
− Na,y,c

Na,y

∣∣∣∣
2

(3)

where

– Na,x and Na,y are the numbers of instances in the training set that have
value x and y for attribute a;)

– Na,x,c and Na,y,c are the numbers of instances in the training set that have
the value x and y for attribute a and output class c;

– C is the number of output classes in the problem domain;

and

diffa (x, y) =
|x − y|
4σa

(4)

where x and y are input linear values and σ is the standard deviation for
attribute a.

Distances are often normalized by dividing the distance for each variable by
the range of that attribute, so that the distance for each input variable is in
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the range 0..1 and this is employed by algorithm in [12]. However, dividing
by the range allows outliers (extreme values) to have a profound effect on the
contribution of an attribute. A more robust alternative in the presence of outliers
is to divide the values by the standard deviation to reduce the effect of extreme
values on the typical cases [26].

The situation for HVDM is more complicated because the nominal and nu-
meric distance values come from different types of measurements: numeric dis-
tances are computed from the differences between two linear values, normalized
by standard deviation, while nominal attributes are computed from a sum of C
differences of probability values (where C is the number of output classes). It is
therefore necessary to find a way to scale these two different kinds of measure-
ments into approximately the same range to give each variable a similar influence
on the overall distance measurement. The detail experiment and explanation for
evaluating HVDM can be found in [26].

3 Proposed Algorithm Flexible Immune Network
Recognition System (FINERS)

In the real world situation, there are many data set which comprise of both
numerical and nominal data types. This paper investigates the use of hybrid
affinity measurement in immune network algorithm for applying heterogeneous
datasets that are composed of nominal, discrete or continuous data types or the
combination of them without the need for the transformation of the data into
any specific type. The algorithm in the proposed model considers an appropriate
data structure to suit the complexity of recognizing heterogeneous data in its
original types.

The algorithm FINERS works as follows:

1st STAGE:
-Calculate Affinity Threshold (AT) by calculating average

affinity (distance) between all pairs among antigens
-MemoryCell (MC) initialization, usually starts with null

For each antigen do
2nd STAGE:
-Search for mcmatch from MC, if unavailable, antigen as

mcmatch
-Clone and mutate mcmatch
-Generate first generation antibodies (AB)
-Create a network among antibodies with affinity greater

than network affinity threshold (NAT)
3rd STAGE:
-Clone and mutate antibody from AB randomly until average

stimulation is greater than stimulation threshold.
-Generate the final AB
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-Create a network among antibodies with affinity greater
than network affinity threshold (NAT)

4th STAGE:
-Search for mccandidate (most stimulated) from AB
-Compare mccandidate to mcmatch, if mccandidate is more

stimulated, it is added to MC. If affinity between
mccandidate and mcmatch is less than
affinity threshold scalar times affinity threshold
then mccandidate replaces mcmatch inside MC

-Create a network among antibodies with affinity greater
than network affinity threshold (NAT)

4 Experiment and Discussion

Experiment is carried out on eleven datasets from UCI MLR [17]. The datasets
are carefully selected to represent different data types such as real-valued IRIS
and Ionosphere (ION), Nominal Zoo and Tic-tac-toe (TTT), Discrete Wisconsin
Breast Cancer (WBC) and Lung Cancer (LC) and Heterogeneous Australian
Credit (CRX), German Credit (GC), Hepatitis (HP), Cleveland Heart Disease
(HD) and Ljubljana Breast Cancer (BC) [28]. The experiment is also carried out
on five time series datasets from UCR TSD [16]. The time series data are Beef,
ECG200 (ECG), Lighting7 (LIGHT7), OSULeaf (OSU) and Synthetic Control
(SC). The dataset is distributed into 10 fold cross validation with 90 percent
data for training and 10 percent data for testing with no overlapping. The data
are tested in their original types as provided in the databases.

For a consistent condition and comparison on FINERS with other immune and
standard classification algorithms, WEKA toolbox [27] is used to run the same
sets of 10-fold CV data used in FINERS. The selected classifiers from WEKA
toolbox are the immune algorithms with detail explanation in [27] as the repre-
sentatives of earlier population-based AIS models: AIRS1 [1][23], AIRS2 [1][24],
AIRS2 Parallel (AIRS2P) [1][25], CLONALG [2] [9], Immunos1 [3], Immunos2 [3],
and Immunos99 [3]. The standard algorithms are chosen as a representative from
different categories include Nave Bayes (NB) from bayesian category, Multilay-
erperceptron (MLP) and Learning Vector Quantization (LVQ) from neural net,
IBK from instance-based category, J48/C45 from tree and NNGE from nearest-
neighbour category. The descriptions of these classifiers can be studied from [27].

The average accuracy is calculated from the 10 sets for each dataset and
the significant difference is analyzed using paired T-Test in standard statistical
package. The importance of the significant difference test is to show whether the
difference can be taken into consideration or the difference is too small to be
considered and can just be assumed as comparable. The difference is significant
only if the significant value is less than 0.05 with 95 percent confidence [5].

The accuracy rates from the experiment comparing FINERS and previous
immune classifiers on heterogeneous and non-heterogeneous data with the sig-
nificant value of differences are shown in Table 1.



238 M. Puteh et al.

Table 1. Comparison of the accuracy rates between FINERS and the other immune
algorithms on heterogeneous and non-heterogeneous data with their significant value of
differences in 2nd column labeled with SIG. SIG value < 0.05 shows that the differences
are significant.

Real-valued Nominal Discrete Heterogeneous
SIG IRIS ION ZOO TTT WBC LC CRX GC HD HP BC

FINERS 97 88 89 91 98 50 87 75 73 89 93

AIRS1 0.036 96 86 98 90 97 36 80 67 68 82 83

AIRS2 0.002 94 84 89 84 96 34 83 71 68 82 84

AIRS2P 0.013 94 82 98 83 96 44 81 71 67 80 85

CLONALG 0.010 92 71 94 64 94 54 63 70 68 71 75

Immunos1 0.027 98 71 96 67 85 48 85 68 71 86 80

Immunos2 0.001 97 62 55 64 67 37 74 71 69 76 80

Immunos99 0.002 96 70 78 66 82 45 82 70 71 86 82

The accuracy rates from the experiment comparing FINERS and other stan-
dard classifiers on heterogeneous and non-heterogeneous data with the significant
value of differences are shown in Table 2.

Table 2. Comparison of the accuracy rates between FINERS and the standard classi-
fiers on heterogeneous and non-heterogeneous data with their significant value of dif-
ferences in 2nd column labeled with SIG. SIG value > 0.05 shows that the differences
are not significant.

Real-valued Nominal Discrete Heterogeneous
SIG IRIS ION ZOO TTT WBC LC CRX GC HD HP BC

FINERS 97 88 89 91 98 50 87 75 73 89 93

NB 0.159 97 82 98 68 96 51 77 76 74 84 87

MLP 0.311 96 93 96 97 95 41 86 75 64 83 82

LVQ 0.007 95 83 91 76 95 48 64 67 64 76 69

IBK 0.221 96 88 98 99 95 49 83 70 62 79 83

J48/C4.5 0.125 97 89 95 85 94 47 86 76 73 78 76

NNGE 0.053 97 89 96 83 96 47 83 74 64 78 81

The accuracy rates from the experiment comparing FINERS and previous
immune classifiers on time series data with the significant value of differences
are shown in Table 3.

Accuracy rate comparing FINERS and other standard classifiers on time series
data with the significant value of differences is shown in Table 4.

On heterogeneous and non-heterogeneous data sets, the results in Table 1 and
Table 2 show that FINERS produces better accuracy rates than the rates pro-
duced by all previous immune algorithms and LVQ from the standard classifiers.
The SIG value between FINERS and these algorithms falls below 0.05. For other
standard classifiers, FINERS produces comparable accuracy rates because the
SIG value for comparing FINERS and these standard classifiers is more than 0.05.
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Table 3. Comparison of the accuracy rates between FINERS and the other immune
algorithms on time series data with their significant value of differences in 2nd column
labeled with SIG. SIG value < 0.05 shows that the differences are significant.

SIG BEEF ECG LIGHT7 OSU SC
FINERS 62 95 67 65 93

AIRS1 0.009 47 75 36 24 79

AIRS2 0.035 40 73 58 22 87

AIRS2P 0.003 40 71 51 33 81

CLONALG 0.012 47 79 51 40 51

Immunos1 0.001 42 73 49 40 59

Immunos2 0.011 30 64 30 26 89

Immunos99 0.000 32 71 46 38 57

Table 4. Comparison of the accuracy rates between FINERS and the standard classi-
fiers on time series data with their significant value of differences in 2nd column labeled
with SIG. SIG value > 0.05 shows that the differences are not significant.

SIG BEEF ECG LIGHT7 OSU SC
FINERS 62 95 67 65 93

NB 0.079 37 74 61 32 98

MLP 0.002 47 81 46 38 66

LVQ 0.087 50 88 56 42 97

IBK 0.065 62 91 63 64 91

J48/C4.5 0.025 58 78 61 43 81

NNGE 0.035 57 80 59 47 59

On time series data sets, the results in Table 3 show that FINERS produces
better accuracy rates than the rates produced by all previous immune algorithms
with the SIG value < 0.05. The results in Table 4 show that FINERS produce
better accuracy rates than MLP, C4.5 and NNGE with the SIG value between
FINERS and these algorithms falls below 0.05. For other standard classifiers,
FINERS produces comparable accuracy rates because the SIG value is more
than 0.05.

5 Conclusion

This paper has proposed a new AIS network-based classifier that is called Flex-
ible Immune NEtwork Recognition System (FINERS) that uses hybrid affinity
measurement for heterogeneous data type without the need for the discretization
or transformation of the data into any specific type. The experimental results
show that the immune network-based model produces better accuracy rates in
most of the heterogeneous, non-heterogeneous and time series datasets compared
to population-based immune classifiers. The results also show that FINERS is
better than some standard classifiers and comparable to some. It shows that the
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study solves some limitation shown in [11][13][20][22]. The results suggest that
it is significant to process the data in its original types to avoid degradation of
data accuracy from transformation, discretization and normalization of original
data prior to processing. Avoiding some of these data preprocessing task will
decrease the preprocessing time and space.

For future investigation, other AIS algorithm can employ hybrid affinity mea-
surements for other tasks such as optimization and clustering. FINERS could
also be further refined to make it a dynamic algorithm which can process dy-
namic data. With the result, we hope to derive a more stable and flexible AIS
classifier.
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Abstract. This paper addresses the classification task of data mining (a form of 
supervised learning) in the context of an important bioinformatics problem, 
namely the prediction of protein functions. This problem is cast as a hierarchi-
cal classification problem, where the protein functions to be predicted corre-
spond to classes that are arranged in a hierarchical structure, in the form of a 
class tree. The main contribution of this paper is to propose a new Artificial 
Immune System that creates a new representation for proteins, in order to 
maximize the predictive accuracy of a hierarchical classification algorithm ap-
plied to the corresponding protein function prediction problem. 
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1   Introduction 

This paper addresses  classification within data mining in the context of bioinformat-
ics, more precisely the prediction of protein function. In essence, a protein consists of 
a linear sequence of amino acids, and predicting the function of a protein, based on 
information derived from its sequence of amino acids, remains an important problem 
in bioinformatics. 

The main contribution of this paper is to propose a new Artificial Immune System 
(AIS) – a variant of opt-aiNet (a well-known AIS) – that creates a new representation 
for proteins, in order to maximize the predictive accuracy of a classification algorithm 
applied to the corresponding protein function prediction problem.  

In order to understand the task to be solved by the proposed AIS, it should first be 
noted that the type of attribute representation addressed in this paper involves local 
descriptors of amino acid sequences [18], [7]. In developing the local descriptors 
technique, Cui et al. [7] divided the amino acids into three functional groups (clus-
ters); namely hydrophobic, neutral and polar, based upon the amino acid clustering 
suggested by Chothia and Finkelstein [5]. There are, however, many different ways of 
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clustering amino acids, according to many different physical-chemical properties. 
Furthermore, it is unlikely that a given amino acid clustering will be the most effec-
tive one for all possible protein function prediction problems. The optimal amino acid 
clustering tends to be strongly dependent on the type of protein being classified. 

In this context, this paper proposes an AIS that evolves clusters of amino acids op-
timized for a given type of protein. The evolved clusters are then used to define the 
protein representation that will be used by the classification algorithm. In the words of 
machine learning and data mining,  the AIS algorithm  solves a clustering (unsuper-
vised learning) problem, consisting of finding the optimal clustering of amino acids 
for the type of protein whose data is being mined, and the result of the AIS is then 
used to solve a classification (supervised learning problem). 

The proposed AIS is evaluated on a challenging real-world protein function predic-
tion problem:  the classification of GPCRs (G-protein-coupled receptors) into their 
functional classes. GPCRs constitute a large and diverse group of proteins that per-
form many important physiological functions [6], [12], [3]. The addressed GPCR 
classification problem is challenging because it involves a large number of classes 
organized in a hierarchy – being an instance of the so-called hierarchical classification 
problem – as will be explained later. 

The remainder of this paper is organized as follows. Section 2 describes how the 
problem of predicting GPCR functions is cast into a classification problem. This sec-
tion also provides some background on bioinformatics, in order to make the paper 
more understandable to readers without a biology background. Section 3 described 
the proposed AIS for clustering amino acids. Section 4 reports computational results, 
and Section 5 concludes the paper. 

2   Casting Protein Function Prediction as a Classification Problem 
in Machine Learning/Data Mining 

2.1   Representing Proteins by Local Descriptors of Amino Acid Sequences 

Proteins are large molecules that perform a wide range of vital functions in living 
organisms. A protein consists of a linear sequence of amino acids – each of which can 
be represented by a single letter. For instance, the sub-sequence "AVC…" corre-
sponds to (A)lanine, (V)aline, (C)ysteine, … Given a protein's sequence of amino 
acids, one can try to determine its function via either biological experiments or com-
putational prediction methods. The former produce in general more precise results, 
but are much more time consuming and expensive. Hence, the latter is often used in 
practice, and it can provide valuable information for the more cost-effective use of 
biological experiments. This work addresses the computational prediction of protein 
function, by casting this problem as a classification (supervised learning) problem in 
machine learning/data mining, where protein functions are classes and attributes de-
rived from the protein's sequence of amino acids are the predictor attributes.  

The number of amino acids in the sequence varies widely across different proteins. 
Since the vast majority of classification algorithms can cope only with datasets where 
all examples (records, data items) have the same length, it is necessary to convert  
all proteins (examples) to the same fixed number of attributes, using an attribute  
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representation at higher level of abstraction than the full sequence of amino acids. The 
high-level representation used here involves the attribute creation technique defined 
in [18], which is based on summarizing the protein's entire sequence of amino acids 
by a fixed number of local descriptors (attributes), as follows.  
 

 

Fig. 1. The 10 descriptor regions (A-J) for a hypothetical protein sequence of 16 amino acids. 
Adapted from Zhang et al. [18] (unpublished). 

 
Cui et al. [7] divided the amino acids into three functional clusters: hydrophobic 

(amino acids C,V,L,I,M,F,W), neutral (amino acids G,A,S,T,P,H,Y), and polar 
(amino acids R,K,E,D,Q,N), as suggested by Chothia and Finkelstein [5]. It is then 
possible to substitute the amino acids in the sequence for the cluster in which that 
amino acid belongs. Assuming H=hydrophobic, N=neutral and P=polar, the protein 
sequence CVGRK would be converted to HHNRR. The position or variation of these 
clusters within a sequence is the basis of three local descriptors: composition (C), 
transition (T), and distribution (D).  

C is the proportion of amino acids with a particular property (drawn from a particu-
lar cluster such as the hydrophobic one). As an example, given the cluster H, we can 
determine C(H) over the example sequence of HHNRR as 0.4 as 2 of 5 positions in 
the sequence are of value H. T is the frequency with which amino acids with one 
property are followed by amino acids with a different property. Thus to compute T(N) 
over the example sequence, we can see there is a transition between H and N from 
positions 2 to 3, then a transition from N to R between positions 3 and 4. In this case 
T(N) = 2/4 = 0.5 as there are 4 places where a transition may occur. Any transitions 
between H and R are ignored here as neither of these clusters are the subject. Descrip-
tor D measures the chain length within which the first, 25%, 50%, 75% and 100% 
occurrences of the particular property are located.  

Given that the amino acids are divided into three clusters in this instance, the cal-
culation of the C, T and D descriptors generates 21 attributes in total (3 for C, 3 for  
T and 15 for D). While this technique is valid if applied over the whole amino  
acid sequence, Zhang et al. [18] split the amino acid sequences into 10 overlapping 
regions – see Fig 1. For sequences A-D and E-F there may be cases where the  
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sequence cannot be divided exactly, in which case each subsequence may be extended 
by one residue. Each descriptor - C, T, and D - is calculated over the 10 subse-
quences. The number of attributes created with this technique therefore generalises to 
70n, where n is the number of amino acid clusters. In the case of 3 clusters of amino 
acids, proteins are now represented by 210 numerical descriptors, which can be  
offered to any of the plethora of well understood, well documented classification 
algorithms. 

In the case of [18], the three clusters as defined in [7] were used, however no ex-
plicit explanation was included to justify the use of this particular clustering scheme. 
The keys to the success or failure of the technique described thus far are: (a) the num-
ber of clusters used, and (b) the specific amino acids that are included in each cluster. 
While there exists a truly enormous number of ways to partition the 20 amino acids, it 
seems clear that some will be more useful than others. However, in general it is not 
possible to determine, a priori, which amino acid clustering will result in the optimal 
performance for a given protein dataset. In addition, the classifier used may have 
certain biases that can be exploited during the clustering procedure. Hence, in princi-
ple we can use a data-driven approach to evolve an amino acid clustering that ap-
proaches optimality with respect to both the data being mined and the classification 
algorithm applied to that data.  

This is the approach followed in this paper, whose main contribution is to present a 
new variant of the opt-aiNet algorithm for producing an amino acid clustering tailored 
to the problem of protein function prediction – cast as a classification problem. 

2.2   Hierarchical Classification of G-Protein-Coupled Receptors (GPCRs) 

Some data can be naturally organised as a hierarchy of classes. The classification of 
data in such a hierarchy poses some unique challenges to data miners, such as the 
large number of classes to be predicted. One particular case of this is the classification 
of G-Protein Coupled Receptor (GPCR) proteins by their function. GPCRs are impor-
tant proteins as they can transmit messages from a cell’s exterior to its interior, chang-
ing that cell’s behaviour, and approximately 50% of all marketed drugs are targeted 
towards GPCRs [13]. 

The method of optimising clusters for a local descriptor-based attribute construc-
tion technique, as proposed in this paper, is generic to any protein dataset where it is 
sensible to represent the data using the local descriptors representation, but it should 
be pointed out that the GPCR dataset used in this study is hierarchical in nature.  
Because of this, the algorithm used to assess the quality of the attriute-construction 
technique and compare it with a baseline is also hierarchical in nature. Most extant 
classifiers deal with flat data sets, i.e., data for which a single level of classes may be 
assigned to an example. In a hierarchical dataset an example may be assigned to one 
class at a number of levels of specialisation. The most general level being near the 
root of the tree and becoming more specialised as the tree’s branches are traversed. In 
this paper we deal only with structures where each class has exactly 1 parent – i.e. the 
data is structured like a tree. The class structure of a typical flat dataset will contain, 
for example, classes A, B and C which are all equally different from each other. 
However, in a hierarchy some classes may be more alike than others. Classes A and B 
are equally dissimilar, but these classes may subdivide such that classes A1 and A2 
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are more alike than A1 and B1 as A1 and A2 share a common parent class. For more 
details about the hierarchical classification of GPCRs, see [14]. 

3   The Proposed Artificial Immune System for Amino Acid 
Clustering 

Pseudocode 1 shows the most general view of the process of attribute creation based 
on amino acid clustering (performed by an AIS) and subsequent use of a classification 
algorithm. Note that this process of attribute creation (or construction) based on clus-
tering should not be confused with attribute selection. The goal of attribute selection 
is essentially to choose a subset of relevant attributes, out of all available attributes. 
This work rather involves attribute construction, where the goal is to create new  
attributes (new descriptors of amino acid sequences corresponding to higher-level 
information about proteins) based on the original sequence of amino acids (corre-
sponding to lower-level information about proteins). The actual process of attribute 
creation is performed by using a clustering algorithm that groups together similar 
amino acids, and the result of this clustering is then used to produce a new set of pre-
dictor attributes for the classification algorithm.  

 
1. Split full dataset into training and testing sets 
2. Split training set into sub-training and validation sets 
3. Generate initial random candidate clustering solutions 
4. Evolve clustering 
   4a. Create attributes for sub-training and validation 
       data from clusters 
   4b. Train classifier on sub-training data 
   4c. Evaluate classifier on validation data 
   4d. Assign quality to this clustering 
   4e. Update population depending on individual’s quality 
   4f. Repeat from 4 until stopping criterion is met 
5. Return the best clustering from the population 
6. Create attributes for training and testing datasets using 
   this best clustering 
7. Train classifier using newly transformed training set 
8. Evaluate classifier using newly transformed test set. 

Pseudocode 1. High level description of amino acid clustering-based attribute creation and 
subsequent use of classification algorithm 

 

In Pseudocode 1, points 1 and 2 are standard pre-processing tasks. Point 3 initial-
ises the population for the AIS that performs amino acid clustering; while point 4 and 
sub-points thereof describe, at a high level of abstraction, the evolutionary process of 
amino acid clustering. Point 6 uses the output of the AIS (point 5) to create the data 
which will form the input to the classification algorithm, while points 7 and 8 are the 
standard training/testing steps used in a classification scenario.  

The proposed AIS for amino acid clustering is a new variant of opt-aiNet, which 
we call opt-aiNet-AA-Clust (opt-aiNet for Amino Acid Clustering). The original opt-
aiNet is an optimiser based on abstract ideas of clonal selection and somatic hypermu-
tation as found in natural immune systems [11]. Opt-aiNet was first proposed in [9], 
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[10], and updated slightly in [16]. In this latter paper, opt-aiNet was proposed as a 
function optimisation tool. In this case, each immune cell would encode a single float-
ing point value – the input to the function to be optimised. 

Several modifications were required to allow the opt-aiNet algorithm to work in 
our scenario of amino acid clustering. These included the changing of the individual 
representation from a real value to a string of symbols to represent clusters, the chang-
ing of the fitness evaluation from a straightforward mathematical function to a much 
more complex system for creating and evaluating the attributes produced by the clus-
tering results and some minor procedural changes such as the termination function. In 
the case of the original opt-aiNet, the algorithm will terminate when there has been no 
improvement above a threshold in the population between successive iterations. In 
this case, it is possible that many iterations could pass before an improvement is 
found and thus the system terminates after a given number of iterations. These 
changes are explained in more detail below. 

 

Individual (Immune Cell) Representation. Each individual (immune cell) encodes a 
candidate solution to the problem of clustering the 20 amino acids. More precisely, 
each individual consists of a vector with 20 elements, <c1, …, c20>, where the ith 
element, ci = 1,..,20, indicates the id of the cluster to which the ith amino acid is as-
signed – since there are 20 amino acids. To consider a simple hypothetical example, if 
the first five elements of a vector were 3, 1, 2, 1, 3, this would mean that the second 
and fourth amino acids would be assigned to the same cluster (arbitrarily denoted as 
cluster 1); the first and fifth amino acids would be assigned to another cluster (de-
noted as cluster 3); and the third amino acid would be assigned to yet another cluster 
(denoted as cluster 2); and so on, for all the 20 amino acids. Different individuals can 
produce different numbers of clusters. 

 

The Algorithm's Pseudocode and Search Operators. The opt-aiNet-AA-Clust 
algorithm proceeds as shown in Pseudocode 2, which is a more detailed description of 
points 4a-4f from Pseudocode 1. Thus, the algorithm is initialised by generating a 
population of immune cells such that the representation of each immune cell is in a 
random configuration. That is, amino acids are randomly assigned to clusters. Next, 
the quality of each immune cell (that is, the accuracy of the attributes defined by the 
clustering represented by that individual) is assessed. This is a somewhat complex 
process, explained in the Fitness Function paragraph. Each immune cell is then cloned 
(copies of that cell are produced) mimicking the clonal expansion stage of an immune 
reaction. These clones are mutated with a rate inversely proportional to their parent’s 
(and therefore their) quality. The mutation scheme used in this algorithm is somewhat 
different to the original opt-aiNet. In the latter, the single value encoded by each im-
mune cell will be incremented or decremented with a magnitude based on its fitness. 
However, a mutation in this context is simply a change in one or more positions in the 
immune cell’s representation. This has the effect of switching an amino acid from one 
cluster to another. As well as switching an amino acid between clusters, this would 
include taking the amino acid out of a cluster with others and placing it in a cluster on 
its own or vice versa. The better the solution encoded by an immune cell the fewer 
positions are mutated. This has the effect of drastically changing poorly performing 
clustering schemes in the hope that a better solution may be found, while at the same 
time not destroying solutions that are already good. These newly mutated clones are 
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then assessed for quality once again and the best solution is kept to form part of the 
next generation. When all immune cells in the population have been cloned and mu-
tated a small number of badly performing cells are discarded. These are replaced in 
the population with an equal number of randomly configured immune cells. This 
injection of randomness into the population discourages the population converging 
prematurely on a single local optimum. 

 
1.Initalise population with each cell having randomly generated 

features 
2. While (stopping criteria not met) 
   2a. Determine fitness of each cell 
   2b. Generate clones for each cell, keeping the parent cell in 

the population 
   2c. Mutate each clone based on the fitness of its parent 
   2d. Determine the fitness of all new clones 
   2e. For each parent cell, select its fittest clone for sur-

vival into next generation 
   2f. Determine average fitness of the population. If it has 

improved significantly, then loop from 2. 
   2g. Remove the least fit cells from the population 
   2h. Replace the cells removed in 2.g. with randomly generated 

new cells 

Pseudocode 2. opt-aiNet (adapted from [10]) 

Fitness Function. The original opt-aiNet used a single mathematical function as a 
measure of quality whereas the assessment of quality for each immune cell in this 
scenario is not as straightforward. Several stages must be gone through to assess the 
quality of the representation as encoded by the immune cell. For each immune cell, 
the clustering must firstly be translated from the immune cell representation, as ex-
plained earlier. The clusters defined can then be used to create a set of predictor at-
tributes. In detail, each protein sequence in the training data set is split into 10 regions 
as defined in Fig. 1. Then the C, T and D (Composition, Transition and Distribution) 
values are determined for each protein subsequence (A-J) based on the clusters de-
fined by the immune cell. This produces a dataset consisting of 70n predictor attrib-
utes (where n is the number of clusters as defined by the immune cell). This dataset 
(the training data) must then be split into two further sets – sub-training and valida-
tion. For this algorithm the split between these datasets is 80%/20%. The chosen clas-
sification algorithm is now trained on the sub training data and evaluated using the 
validation data. The quality of the cell’s representation is defined as the percentage 
predictive accuracy output from the classifier on the validation set. Note that this 
predictive accuracy is measured on the validation set, separated from the sub training 
set (used to build a classification model), because the goal is to estimate the generali-
zation ability of classification models, as is usual in classification.  

 
Parallel processing. As each immune cell encodes a different set of clusters, it is 
important to note here that the above-described entire process of creating the new 
training set from the encoded clustering and then training/evaluating the classifier  
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must be repeated every time a fitness evaluation is requested and each iteration of opt-
aiNet-AA-Clust may require many hundreds of such evaluations to occur. The fitness 
evaluation in this AIS is therefore extremely processor-intensive and as such the as-
sessment of immune cell fitness was distributed over a cluster of 30 computers. Given 
each node in the cluster has its own copy of the training partition of the data set, each 
fitness evaluation is atomic in nature. Therefore multiple fitness evaluations can occur 
simultaneously while the algorithm pauses until all evaluations are complete. The 
main algorithm can then resume and continue as if the fitness evaluations had taken 
place in the normal, serial manner. It was found that executing these fitness evalua-
tions in parallel was the only way to ensure the algorithm completed a reasonable 
number of iterations in a reasonable amount of time. 

4   Computational Results 

The new variant of opt-aiNet proposed in Section 3 – opt-aiNet-AA-Clust – was im-
plemented by modifying the original opt-aiNet’s code kindly obtained from Andrews 
[1], which formed part of [2]. The WEKA data mining toolkit [17] was used to pro-
vide the classification algorithm used in the fitness function, many of the algorithms 
used in the selective top-down classifier and a number of auxiliary functions regard-
ing data manipulation. Some algorithms from [4] were also used in the selective top 
down classifier. The dataset used for training and testing was our own comprehensive 
dataset of GPCR sequences. This dataset, called the GDS dataset, originally contained 
8354 protein sequences (examples), but classes with fewer than 10 examples were 
discarded – since in general such rare classes cannot be reliably predicted. This left 
8222 protein sequences in the dataset. The dataset contains 5 classes (A-E) at the 
family level (the first level), 40 classes at the sub-family level and 108 classes at the 
sub-sub-family level (the third level). This dataset is described in more detail in [8]. 

For each run of opt-aiNet-AA-Clust, the algorithm was run on the training data and 
then the classification algorithm was trained on the same training data. Hence, follow-
ing standard machine learning principles, no data used during the amino acid cluster-
ing stage was present in the ultimate testing of the classifier. For each run of the  
algorithm the number of training items was reduced to half the size by random sam-
pling, in order to reduce processing time – due to the rather processor-intensive fit-
ness function.  

Ideally, the opt-aiNet-AA-Clust’s fitness function would use a classification algo-
rithm to predict classes in all  3 hierarchical levels of GPCR function. However, this 
is prohibitively slow with each individual evaluation likely to take many hours. 
Clearly a faster solution must be found. It was decided that just one classifier should 
be used in the fitness function. As 1-Nearest Neighbour (1-NN) has appeared to be the 
more accurate than other classifiers on this type of data in preliminary tests, it was 
chosen here. As only one classifier is to be used, it was decided that for the purpose of 
fitness computation the classifier will distinguish between classes only at the top level 
of the hierarchy (GPCR families A-E). 

For each opt-aiNet-AA-Clust run, the algorithm performs 40 generations, using a 
population size of 20 individuals. While the algorithm was allowed to form clusters 
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using any combination of amino acids, a limit of 5 clusters per individual was en-
forced. Because of the way the clustering is used to produce the predictor attributes, 
large number of clusters per individual results in a very large number of predictor at-
tributes, and so the classifier becomes too slow to train and test in a reasonable amount 
of time. Thus, it was decided that 5 clusters struck a reasonable balance between the 
algorithm’s flexibility and constraining the time taken during evaluation of the repre-
sentation. Table 1 shows the parameters used for each run of opt-aiNet-AA-Clust. 

Table 1. Opt-aiNet-AA-Clust parameters 

Number of initial cells in the network 20 
Number of clones for each immune cell during clonal selection 20 
Number of algorithm iterations 40 
Suppression threshold for network cell affinities 0.5 
Maximum number of clusters that can be produced by each 
immune cell 

5 

Fitness evaluation method 1-NN classifier 

 
To assess the effectiveness of the proposed algorithm, an experiment was under-

taken to compare the accuracy of a classifier when attributes are evolved by the algo-
rithm against a baseline. As stated above, the dataset used was our GDS dataset. In 
the case of the baseline, attributes were generated from raw protein sequences by the 
approach of Zhang et al. [18], as described earlier. For each set of constructed attrib-
utes the same classification algorithm was used. In this case it was the selective top 
down classification algorithm as defined in [8] and [15]. In other words, the experi-
ments compare the performance of a given hierarchical classification method in two 
different scenarios, using two different types of predictor attributes: the attributes 
created by using our proposed opt-aiNet-AA-Clust and the baseline attributes pro-
posed by Zhang et al. [18]. Hence, what is ultimately being compared is the effective-
ness of two different protein representations: one of them automatically evolved by 
opt-aiNet-AA-Clust and the other manually proposed by Zhang et al. using their do-
main knowledge about proteins and amino acid properties. 

Because of the sheer amount of time taken to evolve the protein representations, 
only one run of a 10-fold cross-validation procedure – a standard procedure for evalu-
ating predictive accuracy in data mining [17] – was performed with opt-aiNet-AA-
Clust. However, as the experiments with the baseline representation have been run 
before during other investigations, the results of 10 runs of a 10-fold cross-validation 
procedure (100 runs of the classifier in total) are available. The results are shown in 
Table 2 where the mean predictive accuracy over the 10 folds of the cross-validation 
procedure is shown. The mean accuracies for the baseline are shown and finally the 
statistical significance of the difference between the accuracies of the evolved repre-
sentation and the baseline is displayed. This has been computed using Student’s t-test 
with 2-tails. This test was used as the number of runs is small while it can be used to 
compare distributions where there are different numbers of observations for each. In 
this case, 10 observations for the evolved attributes and 100 for the baseline.  
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Table 2. Predictive accuracy (%) per class level 

1st 
level 

2nd 
level 

3rd 
level 

Classifier using attributes 
evolved by opt-aiNet-AA-Clust 96.91 83.14 72.75 
Classifier using baseline attributes 96.97 82.72 70.46 
P value result of Student’s t-test 0.775 0.280 0.003 

 
It can be seen from the table that the difference in the predictive accuracy of the 

two approaches on the first (most general) and second class levels are statistically 
negligible – the t-tests produced high p values. On the other hand, at the third class 
level the attributes evolved by opt-aiNet-AA-Clust led to a very significant improve-
ment in predictive accuracy over the baseline attributes, statistically significant at the 
1% level.  

It should be noted that the third class level represents the most challenging classifi-
cation scenario, since it involves many classes and typically a smaller number of 
examples per class (making generalization more difficult), as compared with the first 
two levels. In addition, classes at the third level are often more informative to biolo-
gist users, since they specify a protein’s function more precisely. 

It should be stressed that, although the automatically evolved clusters of amino ac-
ids have led to an improvement for the particular dataset of GPCR proteins used in 
our experiments,  there is no guarantee that the same evolved amino acid clusters will 
be optimal for predicting other types of protein functions. However, the proposed 
algorithm is generic enough to be easily applicable to other types of proteins, offering 
us an automated approach for trying to find a near-optimal cluster of amino acids 
tailored to the type of protein whose functions have to be predicted. 

5   Conclusions 

Previous experience has shown that the protein representation generated by the local 
descriptors method results in highly competitive predictive accuracies when attempt-
ing to classify GPCR proteins. The local descriptors technique, as currently published 
in the literature, divides amino acids into 3 clusters, leading to a specific set of predic-
tor attributes. When evaluating this published representation, , we found no clear 
reason why these three clusters were used. It was therefore hypothesised that predic-
tive accuracy could be improved over this “one size fits all” set of clusters by assign-
ing amino acids to clusters in a data driven manner. In this spirit, this paper proposed 
a new variant of opt-aiNet, called opt-aiNet-AA-Clust, that optimizes the clustering of 
amino acids for the type of protein being mined and for the type of classification algo-
rithm being used. 

When compared against the original local descriptors-based representation, which 
was not optimized for the data nor for the classification algorithm, it was found that a 
significant increase in predictive accuracy was observed at the 3rd level of the class 
hierarchy, which is the most informative (most specialized) type of protein function 
for the user. 
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One future direction would be to let the AIS algorithm have free reign to decide the 
number of clusters. It is thought that allowing an unlimited number of clusters could 
result in better predictive accuracy. However, in the experiments reported here this 
was impractical as, firstly, the AIS would have a hugely increased solution space to 
search, which would require an increase in time taken to solve the clustering problem. 
Secondly, an increase in the number of clusters defined by the solution returned by 
the AIS would result in a huge number of attributes being created for the data, which 
can be impractical when using a hierarchical classification algorithm. 
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Abstract. This work presents an application of Artificial Immune System (AIS) 
using CLONALG to the synthesis and optimization procedure of a Steel Catenary 
Riser (SCR) for floating oil production systems at deep and ultra-deep waters. 
The evaluation of the behavior of riser configurations, needed for the calcula-
tion of the fitness function in the optimization procedure by an evolutionary al-
gorithm, requires a large number of time-consuming Finite Element analyses. 
Therefore, it is important to reduce the number of analyses; in this paper, the  
effectiveness of AIS for this purpose is assessed in this real-world industrial ap-
plication. The results indicate that the AIS approach is more effective than Ge-
netic Algorithms (GA), generating better solutions with smaller number of 
evaluations. 

Keywords: Artificial immune System, Optimization, Steel Catenary Risers. 

1   Introduction 

Developing oil production activities in deep and ultra-deep waters has been a perma-
nent challenge for petroleum industries around the world. The design of production 
risers, to connect the wellheads at the seabottom with a floating platform at the sea 
surface, is one crucial aspect of these activities.  

For water depths below 1000 m, flexible risers have been employed with most 
floating production systems. However, for ultra-deep waters flexible risers can fre-
quently reach or exceed their technical and economical feasibility limits. This fact can 
occur due to the limitation of the viable riser diameter, particularly when associated to 
high external pressures and temperatures, and to significant static offsets and heave 
motions, associated with reduced capability of sustaining harsh service conditions [1].  

Recently, the SCR (Steel Catenary Riser) concept has been shown to be able to 
overcome such limitations, and to comprise a feasible alternative when employed in 
floating production systems. Detailed studies presented in [2] demonstrated that the 
lazy-wave configuration, in which distributed floaters are installed in an intermediate 
section of the riser (Fig. 1), presents a structural behavior more favorable than the 
usual free-hanging catenary, under environmental loadings of wave, marine current, 
and the motions imposed by the platform.  
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Fig. 1. Lazy-wave Configuration 

Those studies included an exhaustive parametric analysis to achieve a better appre-
ciation of the model behavior, and to determine values for some parameters that de-
fines the configuration, including for instance top angle and length and position of the 
section with floaters, in order to obtain a configuration with reasonable costs and still 
capable of resisting extreme loadings and fatigue. However, those studies were per-
formed with a particular scenario in mind, and the conclusions may not be readily 
extended for other scenarios, for instance in ultra-deep waters, where similar huge and 
expensive parametric studies would be necessary. 

The motivation of the present work, therefore, lies in the recognition that the selec-
tion of a riser configuration with a good structural performance and low cost must 
indeed be formally described and treated as an optimization problem. This fact had 
already been recognized in [1], where Genetic Algorithms – GA were employed in 
the development of an optimization procedure for lazy-wave risers.   

Nevertheless, the evaluation of the behavior of riser configurations, needed for the 
calculation of the fitness and objective function in the GA approach, requires Finite 
Element structural analyses employing a non-linear time-domain dynamic solver. 
Such solvers are extensively time consuming; furthermore, previous studies indicated 
that a typical optimization procedure using GA [1] could involve a large number of 
evaluations.  

Therefore, an ideal optimization approach should be able to find an optimum solu-
tion in the shortest time possible, indicating that efforts should be directed to  
minimize the number of analyses for the calculation of the fitness of each candidate 
configuration. Therefore, the primary objective of this work is to minimize the num-
ber of evaluations by employing Artificial Immune System – AIS, comparing its 
performance with the optimization procedure employing GA. 

This paper is organized as follows. Section 2 describes the optimization methodol-
ogy applied in this work. Section 3 presents the formulation of the riser optimization 
problem. Section 4 describes a sensitivity study of some parameters of AIS and GA in 
the search for the lowest possible number of evaluations that can achieve an optimum 
solution. Finally, Section 5 presents the final remarks and conclusions. 
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2   Optimization Methodology 

2.1   Engineering Optimization Problems 

Real Engineering problems are usually difficult to model and complex by nature. 
Classical optimization approaches involves gradient information and requires a great 
computational effort [1]. Structural engineering optimization problems are character-
ized by various objectives and constraints functions that are generally non-linear 
functions of the design variables [3]. Conventional techniques may find difficulties 
such as being trapped in local optima, high dimensional spaces and multi-constraints, 
making the adoption of such techniques inappropriate.  

AIS and other nature-inspired computation paradigms, such as GA, artificial neural 
networks and applications of swarm intelligence (such as particle swarm and ant col-
ony optimization), have been shown to be efficient and robust at solving complex 
problems in engineering. Some previous works present the application of GA to struc-
tural engineering optimization problems. Initial applications of GA to optimize struc-
tural topologies were carried out by Shankar and Hajela [4] and Hajela et al [5]. De-
gertekin [6] presents the optimum design of geometrically non-linear elastic-plastic 
steel frames using GA.  

The computational cost of fitness function evaluation can be a serious dilemma to 
GA applied to structural optimization problems. Some works present techniques that 
aim to reduce the computational effort of such algorithms. In [7] a new Evolutionary 
Algorithm (EA) is introduced with a globally stochastic but locally heuristic search 
strategy by incorporating a modified micro-genetic algorithm with two local optimi-
zation operators. The authors state that the optimal design is obtained with fewer 
computational operations than the ones required by the existing algorithms. Fonseca 
et al [8] employ approximation models to replace the objective function evaluations; 
essentially, that approach consist in the correct evaluation of only a fraction of the 
population. The results showed that the approximation procedures could be embedded 
in a GA, allowing computational gains. 

Yoo and Hajela [9] made a first trial of using immune system inspiration to solve 
structural optimization problems. It was based on the ability of the immune system of 
performing pattern recognition to improve the performance of the GA in solving a 
multicriterion design problem. Luh et al [10], describes a novel approach for finding 
optimal solutions to multi-modal structural problems using a multi-modal immune 
algorithm (MMIA). The use of this approach provided this methodology with a supe-
rior local search ability compared to GA. 

A deep discussion is brought in [11] about the role of AIS in many research areas, 
including examples of recent applications, and its potential in the future. It is clear 
that most of the publications related to optimization using AIS present results for 
benchmark cases rather than real-world problems. Specifically, structural engineering 
optimization problems using AIS are not very common, mainly because this approach 
has been proposed relatively recently compared to others EAs. This is exactly the 
purpose of this work: to implement and study an application of AIS to a real-world, 
complex structural optimization problem – the definition of an optimal lazy-wave 
SCR riser configuration for deepwater oil exploitation activities. 
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2.2   Artificial Immune System – CLONALG 

AIS follows ideas taken from immunology in order to develop systems capable of 
performing different tasks in various areas of research. The clonal selection principle 
that is able to explain the basic features of an immune response to an antigen stimulus 
inspired the development of powerful computational tools [12]. 

The AIS considered in this work uses the Clonal Selection Algorithm – CLONALG 
[12] to implement the optimization procedure. This algorithm was initially proposed 
to carry out machine-learning and pattern recognition tasks, and then adapted to solve 
optimization problems.  

Other AIS optimization algorithms could be used, such as AiNET; however CLON-

ALG was chosen for our first approach in comparing GAs and AIS algorithms, be-
cause it is a basic and simpler algorithm, and mainly because, while AiNET has 
achieved better results in multimodal optimization, on average it uses more iterations 
to find the global optimum (as stated in [13]), indicating that it might require more 
affinity evaluations. Still according to [13], AiNET presents the advantage of locating 
a larger number of optima solutions; however, the objective of our current engineer-
ing application is not to obtain several optima solutions (in general only one solution 
will suffice), but to obtain the solution with the smaller number of fitness evaluations. 

The basic CLONALG optimization algorithm may be written as follows: 
 

1. Generate a random initial population of antibodies (Ab) of size N; 
2. Calculate affinity values of the Ab population; 
3. Generate Nc clones by cloning all N cells in the Ab population; 
4. Mutate the clone population to produce a mature clone population; 
5. Select the N best Ab to compose the new population; 
6. Repeat steps 2-5 until it reaches a pre-defined stopping criteria. 

 

The immune system uses a relatively small number of gene segments to construct 
the antibodies receptors. The rearrangement of those gene segments can generate an 
infinite number of antibodies that is able to cover antigenic spaces. There are four 
main classes of antibodies that can be switched during this rearrangement [14]. In this 
work, a computational procedure is inspired in a concept of different classes of anti-
bodies, acting as “antibody families” that are able to co-evolve, Therefore, this idea is 
incorporated in the algorithm with evolutions taking place separately in each family.  

The antibody family mechanism allows the algorithm to simultaneously explore 
different points of the search space. This characteristic, along with the affinity propor-
tional mutation rate, provides the ability to search around every “family” according to 
its affinity. It is expected that this mechanism contributes to the aforementioned main 
objective of our current application: the reduction of the number of affinity/fitness 
evaluations when compared to GA.   

In step 5, the selection operator is adapted to incorporate this concept. The best an-
tibody is selected deterministically between the cells of each antibody family, by 
comparing each original antibody only with its clones. This mechanism can guarantee 
a good diversity during the evolution. Since we are interested in reducing the popula-
tion size in order to reduce the number of function evaluations, this method allows the 
use of a very small number of antibodies without losing diversity. 
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The somatic hypermutation is the next event in the maturation of the immune cells, 
after the gene rearrangement, that can improve the affinity of the antibodies. The 
mutation rate applied to every immune cell is inversely proportional to its antigenic 
affinity. The mutation changes all attributes of an antibody vector according to the 
following expression [12]: 

' exp( *)m m Dρ= + − ⋅  . (1)

where 1 2, , ..., Lm m m m=  is the attribute string, 'm  its mutated version, ρ  is a pa-

rameter that control the smoothness of the inverse exponential, *D  is the normalized 
affinity, that can be determined by max* /D D D= . 

For real-world complex problems, the initial population should present a large 
number of cells in order to cover the complex landscape. In [12] the reproduction is 
made by cloning all antibodies of the population, giving rise to a temporary popula-
tion of clones. The number of clones of each antibody is usually a percentage of the 
original population. Consequently, the temporary population can be very large as well 
as the number of function evaluations.  

This characteristic is problematic to the present engineering problem, since our in-
terest is in decreasing the number of evaluations. Therefore, the first step to reach this 
goal is to perform a sensitivity analysis varying the antibody population size. The 
results showed that, employing a small initial Ab population with a large number of 
clones, we could reach the desired reduction without losing diversity due to the cell 
family evolution. 

3   Problem Representation 

As mentioned in the introduction, the objective of this work is to develop a more 
efficient synthesis procedure for the determination of an optimal SCR riser system. 
This section describes the variables that are considered for the optimization process, 
employing real-valued shape-space for the representation of variables in the imple-
mentation of the AIS. 

Fig. 2 presents a schematic model showing the parameters that define a lazy-wave 
riser system. The geometric riser parameters are (L1), length of lower riser segment; 
(L2), length of segments with distributed floaters; (L3), length of top segment of the 
riser; (α ) the “top angle”, or the angle of the riser axis with the vertical direction at 
the connection with the platform, measured in the neutral equilibrium configuration; 
(Z) the depth of the connection, and (P) the horizontal projection.  

Since the horizontal projection P and the depth Z are dictated by the characteristics 
of the platform and well connections, and the angle α is related to the projection P 
and the total length (L1 + L2 + L3), only these latter geometric parameters need to be 
considered in the optimization process. 

There are also the parameters related to the buoys, which are: (Lf) buoy length, 
(Hdf) buoy diameter, (ESP) spacing between buoys. Other parameters such as the spe-
cific weight and other mechanical properties of the buoys could be considered; however 
in this work only the geometric parameters Lf, Hdf and ESP will be optimized [15]. 
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Fig. 2. Riser model 

Therefore, there are six parameters to be optimized, in order to determine a riser 
configuration that complies with all technical standards and design criteria, and pre-
sents the lowest construction cost. For this purpose, the following cost function is 
used: 

( )
1..max

1
i i buoy buoy

i n

f CI L V CI
f =

⎡ ⎤⎛ ⎞= ⋅ ⋅ + ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑  . (2)

where 1..i n=  represents the number of segments of the riser; iCI  is the cost index 

associated to each segment; iL  is the segment length; buoyCI  represents the cost index 

associated to the volume of the buoy; buoyV  is the volume of the buoy and maxf  is the 

maximum value of the objective function f . 

Since this is a minimization problem with constraints, the affinity/fitness function 
will be defined as: 

( ) 1
/ jaffinity fitness f P

−
= +∑  . (3)

where f is the objective function and 
jP∑  is the sum of all the penalties. 

The structural behavior constraints are determined from the results of structural 
analyses. At this point, it is interesting to note that, although the final optimization 
procedure must rely in a full non-linear, time-domain dynamic Finite Element solver, 
in the current application the evaluations are performed using an analytical catenary 
solver, which is much faster to compute and provides results that are at least represen-
tative of the actual FE solution. This is because the main objective of this work is to 
assess the performance of the AIS approach in reducing the number of evaluations. In 
actual design applications, the evaluations will be performed by nonlinear dynamic 
FE analyses.  
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In any case, the structural behavior constraints are:  

 The maximum equivalent Von Mises stress acting on the riser sections (to assure 
the structural integrity of the pipe);  

 The maximum angle between the riser axis and the vertical direction at the con-
nection with the platform (dictated by installation requirements);  

 The maximum variation of the “built-in” angle, measured at the top riser axis, 
between the neutral equilibrium configuration and any configuration acquired by 
the riser during the application of the environmental loadings and the platform 
motions (dictated by the design of the flex-joint that provides an articulated con-
nection of the riser with the platform); 

 The maximum tension at the riser top (also dictated by the design of the flex-
joint); and 

 The minimum tension at the riser bottom (to avoid buckling and collapse of a riser 
section). 

Therefore, there are five constraints, and the violation of any one of them results in 
a penalty given by the following equation: 

3(1 ), if 1

0, if 1
j

k x x
P

x

⎧ ⋅ − <
= ⎨ ≥⎩

 . (4)

where 
jP  is the penalty value of the j ith−  constraint criteria, x  is the ratio between 

j ith−  constriction limit value and its calculated value and k  is a factor to force the 
emergence of non restricted solutions.  

4   Evaluation of the Performance of the AIS 

4.1   Definition of the Structural Problem 

This section presents results of test cases applying AIS and GA in the optimization of 
a given lazy-wave riser configuration, to be installed at a sea depth of 1290m, and 
considering a horizontal projection of 2000m. Specific data related to the riser model-
ing are depicted in Table 1. In this table, the cost ratio C2/C1 means that the segment 
with floaters costs two times more than the regular riser segments. 

The user-defined bounds for the riser structural behavior constraints are displayed 
in Table 2.  

Table 1. Riser modeling data 

MATERIAL  GEOMETRY 
Density 7800 kg/m³  Thickness 0.01905 m 
Specific weight 77 kN/m³  External diameter 0.21908 m 
Yield stress 413 MPa  Internal diameter 0.18098 m 
Allowable stress 277 MPa  Floater weight 0.162 ton/m 
Elastic modulus 207800 MPa  Floater Buoyancy  0.3175 ton/m 
Cost ratio C2/C1 2.0  Floater external diameter 0.568 m 
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Table 2. Riser optimization parameters 

DESIGN LIMITS (meters)  MIN MAX  CONSTRAINTS VALUE 
Riser segment (L1) 800 2000  Von Mises Stress 415.5MPa 
Riser segment (L2) 400 800  Maximum top angle 18° 
Riser segment (L3) 800 2000  Minimum top angle 5° 
Buoy diameter (HDf) 0.5 2  “Built-in” angle variation 5° 
Buoy length (Lf) 0.5 2  Maximum top Stress 1500 kN 
Spacing between buoys (Esp) 0.8 1.5  Minimum Stress 300 kN 

 

4.2   Definition of the AIS / GA Parameters 

In order to assess the performance of the AIS in the minimization of the number of 
analyses for the affinity/fitness calculation, parametric studies are performed by estab-
lishing a set of values for the AIS and GA parameters. Of course, the success of the 
algorithm should be measured not only by the reduction of the number of fitness 
evaluations, but also by the average value of the best obtained fitness. Therefore, both 
results (the average of the best individual affinity/fitness and the average number of 
evaluations) will be taken to compare the results.  

The current CLONALG implementation employs a family antibody concept in which 
every antibody compete only against its clones. Thus, a good diversity can be 
achieved naturally. Previous tests showed that after 50 generations no substantial 
improvement was attained in the affinity/fitness results.  

Each line of Table 3 represents a test case for the AIS. All tests considered 50 gen-
erations, with the exception of the tests with population of 1000 individuals, which 
used 30 generations. Repeated individuals are not re-evaluated. Those latter tests with 
1000 individuals are intended to provide a glimpse of the best possible solution for 
each algorithm.  

In order to have a sensitivity of the hypermutation rate, each AIS test is executed 
with five different values of ρ (equation (1): 1, 2, 3, 4 and 5). For each value of ρ the 
test is repeated five times, therefore totalizing 425 executions of the algorithm.  

Table 3. AIS Parametric Analysis – Test cases 

TEST NUMBER AB CLONES POP  TEST NUMBER AB CLONES POP 
AIS P 1 100 9 1000  AIS 8 8 9 80 
AIS P 2 10 99 1000  AIS 9 6 9 60 
AIS 1 10 9 100  AIS 10 4 9 40 
AIS 2 10 8 90  AIS 11 2 9 20 
AIS 3 10 7 80  AIS 12 2 19 40 
AIS 4 10 6 70  AIS 13 2 29 60 
AIS 5 10 5 60  AIS 14 2 39 80 
AIS 6 10 4 50  AIS 15 2 49 100 
AIS 7 10 3 40      

 
The classical Genetic Algorithm is used, with binary codification, single point 

crossover, one individual elitism and roulette-wheel selection. Four different mutation 
rates are employed: 0.05, 0.10, 0.15 and 0.20. The crossover rate is varied from 0.75 
to 0.90 in steps of 0.05. Three different population sizes are considered: 1000, 100 
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and 80 individuals. The combination of these parameters results in 48 test sets for the 
GA. Each set is executed five times, thus totalizing 240 executions of the algorithm.  

4.3   Results 

Table 4 summarizes the results of the parametric analyses, comparing the perform-
ance of the GA and AIS algorithms in terms of statistical values (maximum, mean, 
minimum and standard deviation) for the affinity/fitness of the best individual ob-
tained in the last generation of all executions of each test case. 

The results are grouped according to the number of individuals. The first group in-
cludes the tests with the larger number of individuals (1000), and the second corre-
sponds to all other tests with smaller populations. It can be observed that AIS is supe-
rior in all situations, achieving higher values of affinity.  

Table 4. Summarized results of AIS and GA 

 1000 INDIVIDUALS  SMALL POPULATION 
 AIS AFFINITY GA FITNESS  AIS AFFINITY GA FITNESS 

MAX 1.635 1.540  1.630 1.507 
MEAN 1.629 1.497  1.596 1.442 
MIN 1.621 1.464  1.530 1.333 

STD DEV 0.005 0.021  0.024 0.046 

 
As mentioned before, the assessment of the performance of both methods should 

also include the number of fitness evaluations. Detailed results for each test case with 
the AIS are presented in Table 5, including the mean of the best antibody affin-
ity/fitness (AFF) and the average number of evaluations (EVAL) amongst all executions 
for each test case.  

It can be seen that the AIS was able to reach an affinity value of 1.621 with only 40 
individuals (test case AIS 10, ρ = 4) requiring 1957 evaluations. Comparing with the 
maximum affinity of 1.635 that was obtained by a test with the larger population of 
1000 individuals (and requiring around 30500 evaluations), it can be seen that this is a 
good result for such a small number of individuals. This complies with the main ob-
jective of this work, that is, to obtain accurate solutions with a small number of affin-
ity/fitness evaluations. 

In Table 5 one can also observe the influence of decreasing the number of antibod-
ies: comparing the results of the test cases AIS 8 to 11, it can be seen that at the end of 
50 generations around 1000 evaluations can be saved each time the number of anti-
bodies is decreased by two. Also, comparing the results of the cases 1 to 7, it can be 
seen that a reduction of just one clone can save around 500 evaluations. 

On the other hand, as can be seen in Table 4, the best fitness with the GA method-
ology obtained by a test with the larger population of 1000 individuals is smaller than 
the best fitness for the AIS. More important, the performance of the GA degraded 
remarkably with the reduction of the number of individuals. There was no need to try 
to reduce the population size below 80 individuals, since the performance is already 
unsatisfactory with 100 individuals.  
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Table 5. Detailed AIS results – mean of best individual affinity and number of evaluations 

 ρ = 1 ρ = 2 ρ = 3 ρ = 4 ρ = 5 
TEST  AFF EVAL AFF EVAL AFF EVAL AFF EVAL AFF EVAL 

AIS P 1 1.621 30464 1.626 30893 1.629 30976 1.630 30988 1.622 31005 
AIS P 2 1.625 30163 1.631 30362 1.634 30575 1.635 30537 1.635 30502 
AIS 1 1.591 4894 1.610 4897 1.624 4901 1.610 4901 1.594 4902 
AIS 2 1.603 4392 1.611 4411 1.620 4414 1.617 4411 1.618 4411 
AIS 3 1.599 3913 1.619 3924 1.622 3922 1.596 3921 1.583 3924 
AIS 4 1.606 3421 1.598 3434 1.613 3436 1.624 3436 1.551 3432 
AIS 5 1.564 2938 1.585 2946 1.612 2947 1.601 2946 1.587 2945 
AIS 6 1.589 2453 1.583 2458 1.588 2457 1.546 2457 1.545 2458 
AIS 7 1.566 1965 1.575 1967 1.572 1968 1.567 1968 1.573 1969 
AIS 8 1.599 3911 1.600 3920 1.628 3922 1.627 3918 1.596 3919 
AIS 9 1.591 2939 1.608 2942 1.624 2940 1.625 2940 1.582 2940 

AIS 10 1.585 1958 1.563 1962 1.585 1960 1.621 1957 1.582 1957 
AIS 11 1.557 979 1.574 979 1.567 978 1.602 976 1.609 978 
AIS 12 1.585 1952 1.597 1952 1.530 1954 1.585 1952 1.533 1949 
AIS 13 1.591 2922 1.608 2923 1.605 2922 1.560 2912 1.614 2923 
AIS 14 1.603 3885 1.615 3891 1.626 3887 1.625 3879 1.614 3885 
AIS 15 1.607 4846 1.618 4848 1.630 4860 1.608 4849 1.626 4837 

 
The best GA fitness obtained with 100 individuals is 1.507 (lower than any affinity 

value reported for the AIS in Table 5, which includes cases with a population of only 
20 individuals). This result is achieved with an average of 2646 evaluations, more 
than most of the test cases with the AIS; for instance, more than the test case AIS 10, 
ρ = 4 that reached the affinity of 1.635 with an average of only 1957 evaluations.  

5   Final Remarks  

This work intends to study and implement two different nature-inspired optimization 
methodologies applied to a real-world, complex structural optimization problem – the 
definition of an optimal lazy-wave SCR riser configuration for deepwater oil exploita-
tion activities. This is a demanding problem for the offshore industry, which requires 
cost-effective solutions for the exploration of oil in increasing water depths, in scenar-
ios where both the cost and the complexity of the structures involved also tend to 
increase – therefore motivating studies on optimization procedures. 

The evaluation of the behavior of riser configurations requires Finite Element 
structural analyses employing a non-linear time-domain dynamic solver. Such solvers 
are extensively time consuming; therefore, the primary objective of this work is per-
form sensitivity studies on some parameters of AIS and GA methodologies, searching 
for the lowest possible number of evaluations that can achieve an optimum solution. 

In addition, some improvements are suggested in order to enhance the performance 
of the AIS, such as the concept of “antibody families” that co-evolve, in order to 
guarantee that a small population can reach a good diversity during the evolution. 
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The comparison between the results of this enhanced implementation of the AIS 
and those of a GA methodology showed that the former presented a superior behav-
ior, being able to find an optimal solution with better affinity/fitness values while 
requiring fewer FE analyses to be performed.  

The superior behavior of AIS against GA may be attributed to the concept of fam-
ily selection, and also to the affinity-proportional mutation rate, which ensures the 
exploration of the search space with small population size. 

Acknowledgements 

The authors are grateful to the Brazilian research agency CNPq for the financial sup-
port of this research project. 

References 

1. Lima, B.S.L.P., Jacob, B.P., Ebecken, N.F.F.: A hybrid fuzzy/genetic algorithm for the de-
sign of offshore oil production risers. International Journal for numerical methods in engi-
neering 64, 1459–1482 (2005) 

2. Jacob, B.P., Lima, B.S.L.P., Reyes, M.C.T., Torres, A.L.F.L., Mourelle, M.M., Silva, 
R.M.C.: Alternative Configurations for Steel Catenary Risers for Turret-Moored FPSO’s. 
In: Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest-
France, vol. 2, pp. 234–239 (1999) 

3. Lagaros, N.D., Papadrakakis, M., Kokossalakis, G.: Structural optimization using evolu-
tionary algorithms. Computers and Structures 80, 571–589 (2002) 

4. Shankar, N., Hajela, P.: Heuristics driven strategies for near-optimal structural topology 
development. In: Topping, B.H.V. (ed.) Artificial intillegence structural engineering,  
pp. 219–226. Civil-Comp. Press, Oxford (1991) 

5. Hajela, P., Lee, E., Lin, C.-Y.: Genetic algorithms in structural topology optimization. In: 
Bendsoe, M.P., Mota Soares, C.A. (eds.) Topology design of structures, pp. 117–133 
(1993) 

6. Degertekin, S.O., Saka, M.P., Hayalioglu, M.S.: Optimal Load and Resistance Factor De-
sign of Non-Linear Steel Space Frames via Tabu Search and Genetic Algorithm. Engineer-
ing Structures 30, 197–205 (2008) 

7. Fawaz, Z., Xu, Y.G., Behdinan, K.: Hybrid evolutionary algorithm and application to 
structural optimization. Struct. Multidisc. Optim. 30, 219–226 (2005) 

8. Fonseca, L.G., Barbosa, H.J.C., Lemonge, A.: A Genetic Algorithm with similarity-based 
fitness approximation for structural optimization. In: Proceedings of the XXVII Iberian 
Latin American Conference of Computational Methods in Engineering (2006) 

9. Yoo, J., Hajela, P.: Immune Network Simulations in Multicriterion Design. In: Structural 
and Multidisciplinary Optimization, vol. 18, pp. 85–94. Springer, Heidelberg (1999) 

10. Luh, G.C., Chueh, C.H.: Multi-objective Optimal Design of Truss Structure with Immune 
Algorithm. Computer and Structures 82, 829–844 (2004) 

11. Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the future. Ap-
plied Soft Computing 8, 191–201 (2008) 



 Optimization of Steel Catenary Risers for Offshore Oil Production 265 

12. de Castro, L.N., Zuben, F.J.V.: Learning and Optimization Using the Clonal Selection 
Principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial 
Immune Systems (2001) 

13. de Castro, L.N., Timmis, J.: An Artificial Immune Network for Multimodal Function Op-
timization. In: CEC 2002, Proceedings of the 2002 Congress Evolutionary Computation, 
vol. 1, pp. 699–704 (2002) 

14. Sompayrac, L.M.: How Immune System Works. Blackwell Publishing, Malden (2003) 
15. Pina, A.A., de, A.C.H., Lima, B.S.L.P., Jacob, B.P.: Particle Swarm Optimization applied 

in design of risers structures Symposium of Computational Mechanics - SIMMEC (in Por-
tuguese) (2008) 



P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 266 – 278, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

An Idiotypic Immune Network as a Short-Term  
Learning Architecture for Mobile Robots 

Amanda Whitbrook, Uwe Aickelin, and Jonathan Garibaldi 

School of Computer Science, University of Nottingham, UK, NG8 1BB 
{amw,uxa,jmg}@cs.nott.ac.uk  

Abstract. A combined Short-Term Learning (STL) and Long-Term Learning 
(LTL) approach to solving mobile robot navigation problems is presented and 
tested in both real and simulated environments. The LTL consists of rapid simu-
lations that use a Genetic Algorithm to derive diverse sets of behaviours. These 
sets are then transferred to an idiotypic Artificial Immune System (AIS), which 
forms the STL phase, and the system is said to be seeded. The combined  
LTL-STL approach is compared with using STL only, and with using a hand-
designed controller. In addition, the STL phase is tested when the idiotypic 
mechanism is turned off. The results provide substantial evidence that the best 
option is the seeded idiotypic system, i.e. the architecture that merges LTL with 
an idiotypic AIS for the STL. They also show that structurally different envi-
ronments can be used for the two phases without compromising transferability. 

1   Introduction 

An important decision when designing effective controllers for mobile robots is how 
much a priori knowledge should be imparted to them. Should they attempt to learn all 
behaviours during the task, or should they begin with a set of pre-engineered actions? 
Both of these alternatives have considerable drawbacks; starting with no prior knowl-
edge increases task time substantially because the robot has to undergo a learning 
period during which it is also at risk of damage. However, if it is solely reliant on de-
signer-prescribed behaviours, it has no capacity for learning and adaptation. 

The architecture described in this paper takes inspiration from the vertebrate im-
mune system in order to attempt to overcome these problems. The immune system 
learns to recognize antigens over the lifetime of the individual (Short-Term Learning, 
STL), but also has knowledge of how to build successful antibodies from gene librar-
ies that have evolved over the lifetime of the species (Long-Term Learning, LTL). 
This “two timescale” approach can be mimicked by coupling an idiotypic Artificial 
Immune System (AIS) scheme (STL phase) with a Genetic Algorithm (GA) that rap-
idly evolves sets of behaviours in simulation (LTL phase) to seed the AIS. This  
removes any need for hand-designing, permits more scope for creating adaptive solu-
tions, and prevents robots from having to begin a task with no knowledge. The main 
focus here is describing the idiotypic AIS system (as the GA has already been treated 
in [1]), and testing whether the seeded system outperforms an unseeded one in both 
the real and simulated domains. In addition, the role of idiotypic selection in the STL 
is also examined by trialing systems that do not employ this feature. 
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The paper is arranged as follows. Section 2 discusses previous idiotypic AIS robot-
controllers, and explains the potential benefits of coupling an LTL phase with an  
idiotypic system. Section 3 describes the test environments and problem used, and 
Section 4 presents a thorough description of the STL architecture. Section 5 highlights 
the experimental procedures used and Section 6 reports on and discusses the results 
obtained. Section 7 concludes the paper. 

2   Background 

The aim of this paper is chiefly to investigate whether there are distinct advantages to 
integrating LTL strategies (a GA run in fast simulation is used here) with STL strate-
gies. In theory, the LTL phase should be able to provide the STL phase with unbiased 
(i.e. non-user-designed) starting behaviours, and the STL should permit the continued 
adaptation of the behaviours as the robot carries out its task in real time. 

The STL phase used here is an idiotypic AIS network based on Farmer et al.’s [15] 
model of Jerne’s [16] idiotypic network theory. In the model, antibody concentrations 
are dependent both on the antigens present, and on the other antibodies in the net-
work, i.e. antibodies are suppressed and stimulated by each other as well as being 
stimulated by antigens. This means that the antibody that best matches the invading 
antigen is not necessarily selected for execution, which produces a more flexible and 
dynamic system. The theory has proved popular when designing AIS-based robot 
control systems, since it potentially allows great variability of robot behaviours (mod-
elled by antibodies) in the face of changing environments (modelled by antigens). 

However, past research has mostly been concerned with the structure and evolution 
of the antibody network, and little attention has been given towards the derivation and 
design of the antibodies themselves. For example, [3]–[7] all use GAs but evolve only 
the network links between the antibodies, which are hand-designed, fixed, and small 
in number. Reference [2] also uses a fixed set of pre-engineered antibodies. In con-
trast, the LTL phase of this research [1] uses a GA where six basic antibody-types are 
encoded with a set of six variable attributes that can take many different values, 
meaning that the system can evolve complete sets of simple but very diverse antibod-
ies. These can then be passed to the STL phase, providing the potential to bestow 
much greater flexibility to the idiotypic system. In addition, the use of rapid simula-
tions means that the AIS can be seeded within a very realistic time frame (less than 
twenty minutes) whereas most evolutionary work requires much longer to converge, 
sometimes even a number of days, which is prohibitive. For example, the systems 
developed in [8]–[11] have not overcome the unrealistic convergence-time problems. 

The most important questions, however, are whether the evolved antibodies can be 
used effectively in an STL system, and whether such systems can cope with different 
environments, particularly the real world. Since environments can change, any form 
of STL needs to be adaptable as well as robust. Previous attempts at fusing STL and 
LTL include the use of neural networks, for example [12], which proves adaptable to 
different environments and across different platforms, but the system is trialed using a 
simple light-switching problem with no obstacles apart from the pen walls. In the ex-
periments described here, more complex problems and much busier environments are 
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employed for testing. In [13] an evolutionary strategy is used for the STL phase. This 
provides continued adaptation, but deals with a maximum of only 21 behaviour pa-
rameters in the LTL phase. Here, behaviours are assembled in a piecewise fashion and 
from a huge pool of parameters, which should mean greater flexibility. In [14] the two 
learning phases are implemented simultaneously, but the system is trialed only in 
simple, structured environments. In addition, the authors claim an evolutionary period 
of only five minutes, but the results suggest that the robot was unable to avoid the 
obstacle prior to this. In contrast, the seeded STL system discussed here does not start 
until it has received the complete sets of GA-derived behaviours, so that it is fully 
ready to begin the task.  

In order to establish that the initial seeding is extremely important in producing a 
robust and adaptable controller, unseeded systems (i.e. with no LTL phase) that begin 
with random behaviour sets are also tested. In addition, both the seeded and unseeded 
systems are run with and without the use of idiotypic effects, to establish the role of 
the idiotypic mechanism in providing flexibility. A hand-designed controller is also 
included to investigate how fixed strategies compare with variable ones. It uses a 
simple random wander to search for the target, a backward turning motion to escape 
collisions, and it steers the robot in the opposite direction of any detected obstacles. 
The research thus aims to investigate the following hypotheses: 

 

H1 Seeded STL systems outperform unseeded STL systems.  

H2 Seeded STL systems that employ idiotypic effects outperform seeded 

systems that do not. 
H3 Seeded STL systems that employ idiotypic effects outperform fixed, 

hand-designed strategies. 
H4 As long as the LTL-derived behaviours are sufficiently diverse, anti-

body replacement should not be necessary in the STL phase. 
 

Reference [2] has already provided statistical evidence that idiotypic AIS systems 
are more effective than similar non-idiotypic ones, but it is restricted to a single ro-
botic platform (Pioneer 3), the simulated domain, and only two different environ-
ments. This paper will hence also extend the research in [2] to include a different type 
of robot (e-puck), more environments, different problems, the real domain, an alterna-
tive RL strategy (see section 4.4), and a variable idiotope (see section 4.2). 

3   Test Environments and Problem 

The STL is conducted with an e-puck, a miniature mobile-robot with a small frontal 
camera and eight infra-red (IR) sensors that can detect the presence of objects up to a 
distance of about 0.1 m. Both virtual and real environments are used for testing. The 
simulated environments are worlds that have been designed using Webots [17] soft-
ware, since the GA employs it, and many modules from the GA can be re-used for the 
AIS. Webots also permits easy transfer of control from the simulation to the real  
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robot. Two simulated worlds are considered, World 1 (see Fig. 1), and World 2 (see  
Fig. 2). In these the robot begins south of the central row of pillars and must detect 
and travel to the blue target-block in the north, avoiding collision with the obstacles, 
walls and pillars. In addition, a wandering e-puck acts as a dynamic obstacle. Once 
the robot has arrived at the target, the number of collisions c and the time to complete 
the task τ are recorded. The starting positions of the robots and target block are 
changed automatically after each run. 

The real environment consists of a square wooden pen with sides 1.26 m long and 
0.165 m high, (see Fig. 3). The mission robot must find and travel to the blue ball 
located in the pen, avoiding collisions. Once it has found the ball it must stop to signal 
that the target has been found. The obstacles, robots and ball are randomly placed in 
different starting positions after each run, so that the environment is slightly different 
in each case.   

The seeded systems all take their starting antibody-sets from those created when 
the GA is run in the first world described in [1], i.e. a maze-world where the robot 
must track painted doors in order navigate to the end, (see Fig. 4).  This world is em-
ployed in the LTL phase to show that the evolved behaviours do not have to be gener-
ated using the same environment and problem as in the STL phase.  

Webots version 5.7.0 is used, running on GNU/Linux 2.6.9 (CentoOS distribution) 
with a Pentium 4 processor (clock speed 3.6 GHz). For both the real and virtual e-
pucks the camera field-of-view is set to 0.3 radians, the pixel width and height to 15 
and 3 pixels, and the speed unit for the wheels is set to 0.00683 radians/s. 

 

  

Fig. 1. Simulated World 1 Fig. 2. Simulated World 2 

           

Fig. 3. Real World Fig. 4. GA Maze World 



270 A. Whitbrook, U. Aickelin, and J. Garibaldi 

4   System Architecture 

4.1   Antibodies and Antigens 

There are eight antigens indexed 0-7, but only one presents itself at any instant. Either 
“0 - target unseen” or “1 - target seen” is active when no obstacles are present, (when 
the maximum IR reading Vm is less than 250). If Vm is between 250 and 2400 then 

either “2 - obstacle right”, “3 - obstacle rear” or “4 - obstacle left” is active.  If Vm is 

2400 or more then “5 - collision right”, “6 - collision rear”, or “7 - collision left” pre-
sents itself. 

There are six basic types of antibody, as listed in Table 1, and each possesses the 
attributes type T, speed S, frequency of turn F, turn angle A, direction of turn D, fre-
quency of right turn Rf,  angle of right turn Ra, and cumulative RL-score L. However, 

some types have null values for some attributes, and there are set limits to the values 
that the attributes can take.  

Table 1. System Antibody Types 

T Description S 
Speed Units 

/ s 

F 
% of time 

A 
% reduc-

tion in 
speed of one 

wheel 

D 
Either left 

or right 

Rf 
% of time 

Ra 
% reduc-

tion in right 
wheel-speed 

 MIN MAX MIN MAX MIN MAX 1 2 MIN MAX MIN MAX 

0 Wander single 50 400 10 90 10 110 L R - - - - 
1 Wander both 50 400 10 90 10 110 - - 10 90 10 110 
2 Forward turn 50 400 - - 20 200 L R - - - - 
3 Static turn 50 100 - - 100 100 L R - - - - 
4 Reverse turn 300 400 - - 20 200 L R - - - - 
5 Track markers 50 400 - - 0 30 - - - - - - 

 

4.2   Creating the Paratope and Idiotope Matrices 

An antibody set consists of eight behaviours, one for each antigen, and five distinct 
antibody sets are used. The 40 antibodies in the system can hence be represented as 
Aij, i = 0, …, x-1, j = 0, …, y-1, where x is the number of sets and y is the number of 

antigens. For the seeded systems the evolved sets of antibody attribute values, their 
associated task completion times τi, and numbers of collisions ci are read in from the 

file previously created when the GA was run. The STL system then calculates the 
relative fitness of each antibody set μi from: 
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where ρ = 8 to give c equal weight compared to τ.  It then produces a matrix of RL 
scores Pij, which are analogous to antibody paratope values, as the scores represent a 

comparative estimate of how well each antibody matches its antigen, see [2]. The 
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elements of Pij are calculated by multiplying the antibody’s final RL score Lij by the 

relative fitness μi of its set, and scaling approximately to between 0.00 and 1.00 using: 
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Taking φ = 20 works here since the approximate maximum value Lijμi can take is 20. 

For the unseeded systems the five antibody sets are generated at the start of the STL 
phase, by randomly choosing behaviour types and their attribute values. The initial 
elements of Pij are also randomly generated, but always lie between 0.25 and 0.75 to 

try to limit any initial biasing of the selection. 
For both seeded and unseeded systems, a matrix Iij (analogous to a matrix of idio-

tope values, see [2]) is created by comparing the individual paratope matrix elements 
Pij with the mean element value for each of the antigens σj. This is given by:  
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If Pij, i = 0, …, x-1 is less than σj, then an idiotope value Iij of 1.0 is assigned, oth-

erwise a value of zero is given. However, only one antibody in each set may have a 
non-zero idiotope. If more than one has a non-zero value, then one of them is selected 
at random and all the others are set back to zero. This avoids over-stimulation or over-
suppression of antibodies. 

The paratope matrix is adjusted after every iteration; first, because the active anti-
body’s paratope value either increases or decreases, depending on the RL score 
awarded, and second, because all the paratope values are then re-calculated, so that 
the σj values are changed back to the initial mean values. The adjustment is given by: 
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where σj0 represents the initial means and σjt represents the temporary means ob-

tained after the active antibody has been scored. This adjustment helps to eliminate 
the problems that occur when useful antibodies end up with zero Pij values. The idio-

tope is re-calculated, based on the latest Pij values, after every 120 sensor readings, 
i.e. every 3.84 s, since the sensors are read every 32 milliseconds. 

4.3   Antibody Selection Process 

At the start of the STL phase each antibody has 1000 clones in the system, but the 
numbers fluctuate according to a variation of Farmer’s equation: 
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where Nim represents the number of clones of each antibody matching the invading 

antigen m. Sim is the current strength-of-match of each of these antibodies to m, b is a 

scaling constant and k3 is the death rate constant, (see [2] for further details). The 
concentration Cij of every antibody in the system consequently changes according to: 
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where Φ is another scaling factor that can be used to control the levels of inter-
antibody stimulation and suppression (25 is used here). 

The antibody selection process comprises three stages for idiotypic selection, but 
only one stage if idiotypic selection is not used. First, the sensors are read to deter-
mine the index of the presenting antigen m, and an appropriate antibody is selected 
from those available for that antigen. More specifically, the system chooses from an-
tibodies Aim, i = 0, …, 4, by examining the paratope values Pim. The antibody α with 

the highest of these paratope values is chosen as the first stage winner. If the index of 
the winning antibody set is denoted as n, then α = Anm. If idiotypic effects are not 
considered α carries out its action, and is assessed by RL, see section 4.4.  

If an idiotypic system is used, then the stimulatory and suppressive effects of α on 
all the antibodies in the repertoire must be considered. As detailed in [2], this involves 
comparing the idiotope of α with the paratopes of the other antibodies to determine 
how much each is stimulated, and comparing the paratope of α with the idiotopes of 
the others to calculate how much each should be suppressed. Here, idiotypic selection 
is governed by equations (7)-(10), which are based on those in [2]. Equation (7) con-
cerns the increase in strength-of-match value εim when stimulation occurs, 
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where k1 is a constant that determines the magnitude of any stimulatory effects. The 
formula for the reduction in strength-of-match value δim when suppression occurs is:  
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where k2 governs the suppression magnitude. Hence, the strength-of-match after the 

second selection-stage (Sim)2 is given by: 

,)()( 12 imimimim SS δε −+=  (9) 

where the initial strength-of-match (Sim)1 for each antibody is taken as the current 

Pim value. After the (Sim)2 values are calculated, the numbers of clones Nim are ad-

justed using (1) and all concentrations Cij are re-evaluated using (2). The third stage 
calculates the activation λ of each antibody in the sub-set Aim from 



 An Idiotypic Immune Network as a STL Architecture for Mobile Robots 273 

.)( 2imimim SC=λ
 (10) 

The third-stage winning antibody β has the highest λ value. If p is the index of β’s 
antibody set, then β = Apm. When idiotypic selection is used, β carries out its action 
and it is β that is scored using RL rather than α, although α and β will be the same if  
n = p.  

4.4   Reinforcement Learning and Antibody Replacement 

Reinforcement learning scores the performance of an antibody by comparing old and 
new environmental information. Here, the antibody used in the previous iteration At-1 
is assessed by examining the current and previous antigen codes mt and mt-1. Table 2 

shows the RL score r awarded for each possible combination.  The final score given is 
dependent on how many environmental changes have taken place, and whether the 
change is negative or positive, for example, moving away from an obstacle is a valu-
able improvement, and would yield a positive component of 0.1. The maximum cu-
mulative-RL-score (or Pij value) allowed is 1.00, and the minimum Pij value is 0.00.  

The Pij values are also affected when the antigen code has remained at 0 for more 

than 250 iterations, as this means that the robot is spending too much time wandering 
and has not found anything. It is important to recognize this behaviour as negative, as 
otherwise robots may be circling around on the spot, never achieving anything, but 
receiving constant rewards. The non-idiotypic case reduces the cumulative-RL-score 
by 1.0, and the idiotypic case reduces it by 0.5, as pre-trials have shown that non-
idiotypic robots require a more drastic change to break out of repeated behaviour cy-
cles. The same Pij adjustments are also made if there have been more than 15 con-
secutive obstacle encounters, as this may indicate that a robot is trapped. 

Following RL, the paratope values are scaled using (4). In the case of the unseeded 
trials, replacement occurs for all antibodies with Pij less than 0.1. When this takes 

place, a new antibody is created by randomly choosing a behaviour type and its at-
tribute values. Antibody replacement is not used in the seeded systems, since H4 is 

directly concerned with establishing whether this is necessary. 

Table 2. Reinforcement Scores 

Antigen code r score Reinforcement status  

Old  New    

0 0 0.05 Reward – No obstacles encountered  
1 0 -0.10 Penalize - Lost sight of marker 
2-7 0 0.10 Reward - Avoided obstacle 
0 1 0.10 Reward - Found marker 

1 1 0.00 to 0.05 
Reward – Kept sight of marker  
 (Score depends on orientation of marker with respect to robot) 

2-7 1 0.20 Reward - Avoided obstacle and gained or kept sight of marker  
0 2-7 -0.05 Penalize – Encountered obstacle 
1 2-7 -0.05 Penalize – Encountered obstacle 
2-7 2-7 -0.40 to 0.50 Reward or Penalize (Score depends on several factors) 
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5   Experimental Procedures 

Before any of the seeded STL-phase tests take place, the GA is run once in the maze 
world, in accordance with the procedures described in [1], to obtain the initial seed-
ing. Five independent populations of ten robots and a mutation rate of 5% are used, as 
recommended in [1]. Following this, 30 STL trials are performed in each of the two 
simulated worlds, and 20 are completed in the real world. This is done for each of the 
following systems; seeded with idiotypic effects, seeded with RL only, unseeded with 
idiotypic effects, unseeded with RL only, and a hand-designed controller. In the un-
seeded simulated-worlds two separate sets of experiments are conducted with two 
different initially-random behaviour sets R1 and R2. The real-world unseeded experi-

ments use only R1 since they have to run in real time and are hence much more time 
consuming to carry out.  

In the idiotypic systems b is set to 100, k3 is set to zero, and k1 and k2 are set at 

0.85 and 1.10 respectively. These values are chosen in order to yield a mean idiotypic 
difference rate of approximately 20%, as this is advised in [2]. N. B. An idiotypic 
difference occurs when the antibodies α and β are different. For all experiments, the 
time taken τ and the number of collisions c are capped at 4000 s and 100 respectively. 
Any runs that exceed either of these limits are counted as failed runs. The fitness f is 
calculated as: 

,
2

τρ += c
f

 
(11) 

where ρ = 8 as before. A run finishes when the robot has detected three consecutive 
instances of more than 40 blue pixels in the ball image, so that it is “aware” of having 
found its target. Standard two-tailed t-tests are applied to compare the various sys-
tems, and differences are accepted as significant at the 99% level only.  

6   Results 

Table 3 shows the mean c, τ, and f values for each of the systems in each of the 
worlds, and Table 4 presents the significant difference levels when the systems are 
compared. Table 5 displays the failure rates, indicating the percentage of failures due 
to an excessive number of collisions, running out of time, and overall. 

In all of the worlds, both simulated and real, the system with the lowest c, fastest τ, 
and best f is the seeded idiotypic system. When compared with the unseeded systems 
it is significantly better in all cases, i.e. for all of the metrics, in all the worlds, and 
irrespective of whether the unseeded systems use idiotypic effects, or which random 
behaviour set is used. 

However, when the non-idiotypic seeded system is compared with the unseeded 
systems, although its performance is better in all cases, it is not always significantly 
better. Most of the significant differences arise when comparing seeded and unseeded 
systems that do not use idiotypic effects. In these cases, c is always significantly bet-
ter for the seeded system, and, when R2 is used in unseeded system, the seeded one is 
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always significantly better. When the unseeded system employs idiotypic effects and 
the seeded system does not, there is a marked drop in the percentage of significant 
differences, although many of the collision comparisons are significantly better for 
the seeded system.  

When the seeded idiotypic system is compared with the seeded non-idiotypic sys-
tem, the idiotypic system performs better in all cases, and significantly better in most 
cases. However, when the unseeded systems are compared in this way, although the 
idiotypic system consistently performs better, none of the differences are significant.  

The seeded idiotypic system surpasses the hand-designed controller in all cases 
(except for a tie in c in Simulated World 2), and more than half of these differences 
are significant overall. However, in the real world all of the differences are signifi-
cant. It appears that the hand-designed controller performs very well in the simulator 
in terms of c, but poorly for τ, whereas in the real world it performs badly for both of 
these metrics. The seeded idiotypic system works well in the real world and in the 
simulator for both c and τ. In fact, in the real world it proves significantly better than 
all of the other systems trialed, for all metrics. 

Table 3. Mean c, τ, and f. (S = seeded, U = unseeded, IE = idiotypic effects, RL = reinforce-
ment learning, HDC = hand-designed controller) 

System Set Simulated World 1 Simulated World 2 Real World 
  c τ f c τ f c τ f 

SIE - 1 562 284 2 659 336 5 283 161 
SRL - 8 1298 679 4 1113 573 23 904 544 
UIE R1 26 1513 862 26 1530 868 96 1384 1074 

URL R1 45 2150 1253 35 1732 1006 100 1678 1239 

UIE R2 20 1720 941 48 1578 981 - - - 

URL R2 35 2214 1246 54 2137 1285 - - - 

HDC - 2 1362 688 2 1256 636 44 1439 897 

Table 4. Significance Levels (S = seeded, U = unseeded, IE = idiotypic effects, RL = rein-
forcement learning, HDC = hand-designed controller) 

Systems Set Simulated World 1 Simulated World 2 Real World 
  c τ f c τ f c τ f 

SIE SRL - 100 100 100 98 96 97 99 99 100 
SIE HDC - 85 100 100 33 97 97 100 100 100 
SIE UIE R1 100 100 100 100 100 100 100 100 100 

SIE URL R1 100 100 100 100 100 100 100 100 100 

SIE UIE R2 99 100 100 100 100 100 - - - 

SIE URL R2 100 100 100 100 100 100 - - - 

SRL UIE R1 98 49 72 99 83 92 100 85 99 

SRL URL R1 100 99 100 100 94 98 100 96 100 

SRL UIE R2 91 82 89 100 86 98 - - - 

SRL URL R2 100 99 100 100 100 100 - - - 

UIE URL R1 87 90 93 59 44 52 68 53 57 

UIE URL R2 82 81 87 40 86 84 - - - 
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Table 5. Percentage Failure Rates (S = seeded, U = unseeded, IE = idiotypic effects, RL = rein-
forcement learning, HDC = hand-designed controller) 

System Set Simulated World 1  
(%) 

Simulated World 2  
(%) 

Real World  
(%) 

Mean  
        (%) 

  c τ Tot c τ Tot c τ Tot c τ Tot 
SIE - 0 0 0 0 0 0 0 0 0 0 0 0 
SRL - 0 3 3 0 7 7 10 5 10 3 5 7 
UIE  R1 23 17 30 20 13 23 95 10 95 46 13 49 

URL R1 43 30 57 33 23 47 100 20 100 59 24 68 

UIE  R2 17 20 37 43 17 43 - - - 30 18 40 

URL R2 30 30 47 50 27 53 - - - 40 28 50 

HDC - 0 20 20 0 17 17 10 25 35 3 21 24 

 
Furthermore, the seeded idiotypic system is the only scheme that consistently dis-

plays a 0% failure rate. Failure rates are reasonably low (7% overall) for the non-
idiotypic seeded system, but reach unacceptable proportions for the hand-designed 
controller (24% overall) and the idiotypic unseeded system (49% and 40% overall). 
The non-idiotypic unseeded system is clearly the worst option with overall fail rates 
of 68% and 50%. Moreover, the actual number of collisions for failing robots is often 
of the order of thousands for unseeded real-world systems, which renders the method 
entirely unsuitable. 

These observations represent very strong statistical evidence in support of H1 and 

H3, i.e. they recommend the use of GA-seeded systems over both unseeded systems 
and fixed, user-designed systems. In particular, there is over-whelming statistical evi-
dence in favour of using a seeded idiotypic system over any unseeded system, with all 
tests proving highly significant. In addition, the results provide some evidence to up-
hold H2, since robot performance appears to be further enhanced by incorporating an 
idiotypic network into the STL architecture. In the seeded idiotypic system the GA 
provides immediate knowledge of how to begin the task, and the idiotypic AIS per-
mits it to change and adapt its behaviour as the need arises. Without idiotypic effects, 
the seeded system has the same initial knowledge, but relies only on RL for adapta-
tion, so it is less flexible. Although the hand-designed controller has built-in initial 
knowledge, it also proves inferior because of its inability to change the way it re-
sponds to an antigen. In contrast, the unseeded systems have no initial knowledge, 
and must acquire their abilities during the STL phase. This is a very slow process, 
even when idiotypic selection is used, because the search space is probably much too 
large given the time frame for completing the task. Moreover, the mechanism by 
which antibodies are replaced is not well developed; the robot is forced to select a 
random behaviour when it rejects an antibody, and could hence still be using random 
antibodies during the latter stages of task completion.  

The results also demonstrate that behaviours derived in GA simulations can trans-
fer extremely well to the real world, even when the simulated and real environments 
are very different. In addition, the tests show that the superiority of idiotypic AIS sys-
tems over RL-only systems (suggested in [2]) can be extended to the real world, other 
simulated worlds, and a different robotic platform. These experiments also uphold 
H4, since the seeded idiotypic system exhibits a 0% fail rate in all cases, suggesting 
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that antibody replacement is not necessary when adequate seeding and a sufficiently 
adaptive strategy are in place. 

7   Conclusions 

This paper has described merging LTL (an accelerated GA run in simulation), with 
STL (an idiotypic AIS scheme), in order to seed the AIS with sets of very diverse 
behaviours that can work together to solve a mobile-robot target-finding problem. 
Results have shown that such seeded systems consistently perform significantly better 
than unseeded systems, and have also provided strong statistical evidence that the 
idiotypic selection process contributes towards this improved performance. The fu-
sion of the two learning timescales has been shown to provide a rapid and realistic 
method for training robots in simulation, and an adaptable and robust system for car-
rying out real world activities.  
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Abstract. Self-nonself model makes a lot of sense in the mechanisms of self 
versus nonself recognition in the immune system but it failed to explain a great 
number of findings. Some new immune theory is proposed to accommodate in-
compatible new findings, including Pattern Recognition Receptors (PRRs) 
Model and Danger Theory. Inspired from the PRRs model, a novel approach 
called Conserved Self Pattern Recognition Algorithm (CSPRA) is proposed in 
this paper. The algorithm is tested using the famous benchmark Fisher’s Iris 
data. Preliminary results demonstrate that the new approach lowers the false 
positive and thus enhances the efficiency and reliability for anomaly detection 
without increase in complexity comparing to the classical Negative Selection 
Algorithm (NSA).  

Keywords: Conserved Self Pattern Recognition Algorithm, Pattern Recogni-
tion Receptors Model, CSPRA, Artificial Immune System. 

1   Introduction 

Biologically inspired computing, in particular, the Artificial Immune Systems (AIS) is 
a promising solution to develop automated and adaptive defensive tools for current 
and future threats in the larger IT systems. Currently major types of AIS methods 
include Negative Selection Algorithms, Immune Network, Clonal Selection, and 
Danger Theory [1]. Negative Selection Algorithm (NSA) was first conceived mimick-
ing the negative selection in the T-cell maturation process. Negative selection elimi-
nates inappropriate and immature T-cells that bind to self antigens and thus allows the 
system to detect non-self antigens without mistakenly detecting self-antigens. NSA 
could be applied to one of the central challenges with computer security: determining 
normal and potential harmful activity, so it has attracted many AIS researchers and 
practitioners and found broader applications comparing to the other AIS models. 
Various features of the NSA make it by far the most popular algorithm, notably for 
anomaly detection [2]. However, NSA has its intrinsic limit by assuming foreign 
patterns intrusions and thus a high false positive error rate caused from this assump-
tion [3]. On the contrast, non-self patterns would not necessarily indicate intrusions 
[4]. Within Biological Immune System (BIS), the traditional self-nonself model has 
failed to explain many findings. The new theories such as Modified Self-Nonself 
Model [5], Pattern Recognition Receptors (PRRs) Model [6-8], and Danger Model [5] 
are proposed. These models center on renewing the sense of self. A brief overview for 
these models will be provided in section 2.  
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Some efforts are made to tackle the above limit of NSA, for example, the more 
flexible boundaries are applied between self and non-self space using fuzzy rules [9]. 
Not all AIS are based on negative selection, the other major branch in AIS is emerged 
based on the new immune theory - Danger Theory.  

BIS employs a multilevel defense against invaders through nonspecific (innate) 
and specific (adaptive) immunity. Adaptive immunity has the features of learning, 
adaptability, and memory, so many computer scientists and engineers use adaptive 
immunity as inspiration for producing immune-based defensive tools and algorithms. 
However, our interests have extended to the principle of innate immunity such as 
Pattern Recognition Receptors (PRRs) model. PRRs model assumes that Antigen 
Presenting Cells (APCs) are quiescent until they are activated via encoded PRRs that 
recognize conserved pathogen-associated molecular patterns (PAMPs) on bacteria [6]. 
The encoded PRRs allow APCs to discriminate between “infectious nonself” and 
“noninfectious self” [7]. 

Currently the AIS methods that are inspired from innate immunity are rare. The re-
cent work [10] used the functionality of Dendritic Cell (DC) with Danger Theory as 
inspiration for developing the algorithm for anomaly detection. The author imported 
the concept of PAMPs in PRRs model to Danger Theory and regarded it as one of the 
danger signals within the tissue to determine the function that the DC will perform 
when the body is under attack. PAMPs are used as one of the signals in the experi-
ment of detecting port scan attach and are represented as “unreachable destination” 
errors. The signal value is a normalized real-number recorded during data collection 
from the monitored system. That is, PAMPs in this application are regarded as signal 
molecules like the other signals in Danger Theory, which are established based on 
pre-defined anomalies. However, PAMPs in PRRs model are the conserved pattern 
within the antigen object and the signal refers to the process that PAMPs active the 
APCs rather than the PAMPs itself. In this paper, we report our on-going investiga-
tion – an immune based anomaly detection approach called Conserved Self Pattern 
Recognition Algorithm (CSPRA) from the abstraction of PRRs model. Our work 
extensively mimics the PRRs model but PAMPs are built based on normal behaviors. 
PAMPs in [10] are arbitrary, depending on application domain. In our algorithm, 
PAMPs are well-defined mandatory components in the training stage based on the 
inputted normal data in the system. The rest of the paper is organized as follows: 
Section 2 briefly introduces the immune theories on the mechanisms of self versus 
nonself recognition; Section 3 outlines the Pattern Recognition Receptors (PRRs) 
model; Section 4 describes the proposed algorithm; Section 5 reports the experimental 
results; finally, the conclusions are given in Section 6. 

2   Self Versus Non-self 

Of all the mysteries in modern science, the mechanisms of self versus nonself recog-
nition in the immune system ranks at or near the top [11]. Self-nonself model sug-
gested that the immune system functions by discriminating self (defined early in life) 
and nonself (anything that comes later), tolerating self and attacking nonself [5].  
Although the self-nonself discrimination model has often served us well, it has failed 
to explain new findings. For example, why do organisms not attack their newly 
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changed tissues when they become older? Why do mammalian mothers not attack 
their newly lactating breasts that were not part of earlier “Self”? Why does the im-
mune system not respond to vaccines composed of foreign proteins? [5] 

To accommodate incompatible new findings, the concept of costimulation was 
added to self-nonself model, that is, the activation of individual effector cells requires 
not only ligation of the specific Receptors but also a second signal (name “costimula-
tion”) delivered from “stimulator” cell such as APCs. Costimulation principle sug-
gested that the immune response is initiated by APCs. However, APCs are not antigen 
specific but they capture all sorts of self and foreign substances. Therefore, an unac-
ceptable conclusion can be derived from cositmulation that the immunity cannot be 
directed against nonself. 

In 1989, Janeway published the PRRs model. He proposed that APCs are quiescent 
until they are activated via a set of germ line - encoded PRRs that recognize con-
served pathogen-associated molecular patterns (PAMPs) on bacteria [6]. We will 
describe this model in details in section 3. 

Like self-nonself model, the PRRs model couldn’t explain all of the findings in the 
immune system. For example, the conserved PAMPs are only experimentally discov-
ered in bacteria, so this model couldn’t explain why viruses stimulate immunity. The 
basis for discrimination in another immune theory - danger model was not centered 
around ‘self’ or ‘non-self’, but to the presence or absence of danger signals. It is 
thought that danger signals, such as those exposed to pathogens, toxins, mechanical 
damage, and so forth, are detected and processed through professional APCs. The 
danger model is presented in [5] and the applications of danger model to AIS were 
identified and discussed in depth in [12].  

3   The Pattern Recognition Receptors (PRRs) Model 

This paper takes the PRRs model and explores the relevance of this model to the ap-
plication domain of computer security. We are going to give some background on this 
model in this section. 

To solve the problems emerging from Self-nonself discrimination model and co-
stimulation, as already stated in section 2, the basic idea for the PRRs model is that 
APCs can recognize evolutionarily distant pathogens. The self/nonself discrimination 
requests co-stimulation from APCs but APCs do not co-stimulate unless activated via 
encoded PRRs that recognize conserved pathogen-associated molecular patterns 
(PAMPs) on bacteria [6-7].  

As shown in Fig.1, T cell or B cell would die if it recognized antigen (Signal 1) 
without the costimulation from APC (Signal 2). The nonclonal receptors in the sur-
face of APC appear to detect common constituents of pathogenic microorganisms. 
These microbial structures cannot be modified by the pathogen without changing its 
core structure. Receptors for these structures have been selected over evolutionary 
time to provide broad-spectrum recognition of harmful foreign materials [7]. PRRs 
model only responds to the potential threat that is very foreign (evolutionally distant 
infectious non-self). The encoded PRRs allow APCs to discriminate between “infec-
tious nonself” and “noninfectious self” [7], therefore, PRRs model is also known as 
the Infectious Nonself Model [5]. 
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Fig. 1. Illustration of the Pattern-Recognition Receptors Model 

Over the years, the PRRs model has been modified to account for some issues. 
Medzhitov et al discussed three strategies of immune recognition in the innate im-
mune system of vertebrate animals, which are summarized as follows [8]: 

• Recognition of “Microbial Nonself”: the host recognizes conserved patho-
gen-associated molecular patterns that are unique to microorganisms and are 
not produced by the host. This strategy allows the innate immune system to 
discriminate between “infectious nonself” and “noninfectious self”. 

• Recognition of “Missing Self”: this strategy relies on the detection of 
“marker of normal self”. Such recognition is coupled with various inhibitory 
pathways that block initiation of immune responses against self. Markers of 
normal self are unique to the host and absent from microorganisms. 

• Recognition of “Induced or Altered Self”: recognition of induced self is 
based on the detection of markers of abnormal self that are induced upon vi-
ral infection and cellular transformation. Markers of abnormal self tag the af-
fected cells for elimination by the immune system. 

4   CSPRA - Conserved Self Pattern Recognition Algorithm 

NSA performs a high false positive error rate because of its assumption of foreign 
pattern. Inspired from relatively new immune theory – the PRRs model, the motiva-
tion of developing a new algorithm is to overcome the intrinsic limits of NSA – high 
false positive rate and improve the system performance. This section gives the general 
overview of the proposed algorithm. In our algorithm, both APCs Pattern Recognition 
and T cell Negative Selection are combined to detect anomalies in new samples, 
which efficiently reduces high false positive error rate. 
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4.1   Subspace Definition  

PAMPs in the PRRs Model, as shown in Fig. 1, are pre-defined bacterial signatures, 
causing the maturation of APCs through the expression of mature cytokines [10]. 
Each high-dimension antigen (or self protein) in our system is regarded as the infor-
mation vector (or object). Depending on application domain, we can explore a strong 
pattern of conservation, analogous to PAMPs in nature immune system, along a sub-
set of their dimensions from the antigen objects. That is, there is a subset of the origi-
nal dimensions in which the similarities are very high within the antigen objects. Such 
subset of dimensions is often referred to as a subspace in the area of data mining. The 
number of the dimensions in the subspace, as well as, the similarity of each dimension 
within the objects is varied for different application domain. The dimensions in the 
subspace are not necessary to be contiguous.  

The system we proposed works over two distinct phases: Initialization and Detec-
tion. The first task for the system is to define the subspace based on the training data-
set, which could be considered as preprocessing phase. In the intrusion detection 
system, it is practical to build up “Self” database from the normal behaviors of each 
process of interest or protected data but the abnormal behaviors usually remain un-
known. We are interested in building an anomaly detection system, not an accurate 
simulation. Therefore, we change the concept of PAMP by considering it as con-
served self-associated pattern rather than conserved pathogen-associated molecular 
patterns in nature immune system.  

If the relationship between the objects and the dimensions of their feature space 
can be derived from the empirical data based on the scientists’ lab results, the sub-
space, as described above, could be pre-defined. We are investigating the other ap-
proaches to establish the subspace. 

4.2   Algorithm Overview  

In the proposed algorithm, APC is treated as the detector capable of recognizing the 
conserved self pattern in the antigen objects. The representation and recognition of 
APC detectors are very different from the other AIS methods, which is described in 
section 5.2. In the system, T cell detectors are generated by using negative selection to 
eliminate invalid (self-recognized) candidates. Euclidean distance measure is em-
ployed to compute the affinity between T detectors and antigens and a partial match-
ing rule is used, as described in [13].  

PRRs model assumes that APCs are quiescent until they are activated via encoded 
pattern recognition receptors that recognize conserved pathogen-associated molecular 
patterns (PAMPs) [6]. To mirror this, T cell detectors in the proposed algorithm are 
first used to recognize the antigen according to negative selection. The co-stimulation 
of APC detector will not be conducted until the so-called suspicious antigen is en-
countered in the system. The suspicious antigen is defined as: 1) the affinity between 
the T cell detector and the suspicious antigen is very low; 2) the decision for abnormal 
(non-self) is made based on the other antigen epitope instead of the subspace where 
the conserved self pattern is located. For example, an antigen is defined as m = < m1, 
m2… mL>, which can be considered as a point in an L-dimensional real-valued shape 
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space. If the antigen m epitope is <m1, m2> but the conserved pattern is <m5, m6> and 
the distance between the T detector d and the epitope <m1, m2> is greater than the 
defined threshold (low affinity), then the T cell detector d fails to recognize the anti-
gen m without the co-stimulation of APC detector. The outline of the detection algo-
rithm is illustrated in Fig. 2. 

 

Fig. 2. Flowchart for Detection Algorithm 

5   Empirical Evaluation 

To study the algorithm property and evaluate the performance of our system, experi-
ments were carried out with the famous benchmark Fisher’s Iris Data. We start by 
describing some properties of Fisher’s Iris Data, then go on to show that our algo-
rithm can detect anomalies very efficiently comparing to NSA.   

5.1   Some Properties of Iris Data  

The Iris data set [14] was created by R. A. Fisher. This is perhaps the best known 
database to be found in the pattern recognition literature. The data set contains 3 
classes of 50 instances each, where each class refers to a type of iris plant.  There are 
four attributes in the data set. Adapted from the document in [14], the attribute infor-
mation and some brief statistic analysis are presented in Table 1.  

Table 1. The statistics of the attributes for Iris data set 

Attribute Name Min Max Mean Class Correlation 
Sepal Length 4.3 7.9 5.84 0.7826 
Sepal Width 2.0 4.4 3.05 -0.4194 
Petal Length 1.0 6.9 3.76 0.9490 
Petal Width 0.1 2.5 1.20 0.9565 
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5.2   The Representation and Recognition of the APC Detectors  

As stated before, APC detector represents for the conserved self pattern that are ex-
tracted from the collected “Self” data. In the algorithm, zero-based column (dimen-
sion) indexes are used to mark the positions of the conserved self pattern. For Iris data 
used in our experiments, as shown in Table 1, the class correlation for the attributes of 
both petal length and petal width is very high, therefore, the subset from both the 2nd 
and 3rd dimension of the original dimensions is considered as conserved self pattern. 
For the benchmark Iris Data, the APC detector is represented as {<loc1, min, max, 
mean>, <loc2, min, max, mean>, …}. For the training data of 50% Iris Setosa, we 
calculate the max, min and mean of all of the values in the 2nd and 3rd column and 
then the APC detectors are represented as follows: 

{<2, 1, 1.9, 1.46>, <3, 0.1, 0.5, 0.248>} 

During the detection phase, for each suspicious antigen to be co-stimulated by 
APC detector d, after extracting the conserved antigen peptide based on the position 
information in APC detector, for the above example, the conserved antigen peptide is 
projected from the attributes indexed as 2 and 3 in the original antigen, the distance 
between the antigen peptide p and the APC detector d is computed by  

Dist(p, d) =
1

| |w

i

ip di

mi ni=

−
−∑                         (1) 

where w is the number of the dimensions for the conserved pattern; mi and ni repre-
sent the lower and upper bounds of the i-th attribute in the entire training data; pi is 
the value of the i-th attribute for the antigen object to be examined; di is the mean of 
all of the values in the i-th column in the entire training data.  

If the distance calculated by equation (1) is less than the pre-defined threshold, 
then the suspicious antigen peptide is similar to conserved self pattern and thus the 
suspicious antigen is concluded as “Self”, possibly analogy to “Altered Self” in the 
PRRs model. Otherwise, the suspicious antigen is classified as “Non-self”. As noted, 
APC recognition is occurred between each antigen peptide and the single APC detec-
tor, so the time complexity is O(1) for detecting each antigen. Comparing to NSA, the 
proposed algorithm acts as adding a special detector (APC detector) to the total size 
of the detectors but doesn’t increase the complexity.  

5.3   Algorithm Pseudo Code for Anomaly Detection   

The algorithm implementation is very straightforward. The pseudo code is listed as 
follows:  
 
//Initialization phase 
GenerateTDetector()  //same as NSA 
GenerateAPCDetector() //see section 5.2 
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//Detection phase 
//System Input 
S: set of antigen data 
t1: threshold for T detector 
t2: threshold for APC detector 
t3: threshold for suspicious antigen 
d: distance between T detector and the tested antigen 
int loc[]: array for storing the positions for the antigen epitope 
 

//Start recognition 
for every si in S={Si, i=1, 2, …} 
        if(CheckWithTDetector(Si, t1, d, loc ) = = true)  // d and loc will be returned 
                if(d > t3) //low affinity 
                        if(loc doesn’t match positions in APC) //not conserved pattern 
                                if(CheckWithAPCDetector(Si, t2,) = = true ) 
                                         Si is non-self 

          else 
                                                   Si is self 
                     else 
                             Si is non-self 

 else 
Si is non-self 

      else 
    Si is self 

end for 
 

//implement CheckWithTDetector() 
D: set of T detectors 
w: sliding window size for projecting the antigen into peptides 
P: set of peptides for tested antigen 
 

bool CheckWithTDetector(Si, t1, d, loc ) 
       ChopAgPeptide(Si, w, P, loc) //like NSA, P and loc will be returned 

         for every pi in P={pi, i=1, 2, …} 
                for every dj in D={dj, j=1, 2, …} 
              if(Dist(pi, dj) < t1) // compute Euclidean distance 
        d = Dist(pi, dj) 
        return true; 
                end for 
         end for 
   return false; 

 

//implement CheckWithAPCDetector() 
d: APC detector 
bool CheckWithAPCDetector(Si, t2,) 
       if(Dist() < t2) //compute the distance with equation (1) in section 5.2 
               return false; 

   else 
          return true; 
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5.4   Experimental Results  

The results reported in this section are the summary of the 100 repeated tests for each 
method and parameters setting with the training data of 50% Iris Setosa. One of the 
three types of iris is treated as normal data, whereas the other two are considered as 
abnormal. For each experimental case, we take 50% of the normal data to train the 
system and the remaining 50% data are used to test the system capability of recogniz-
ing unknown normal data.  

To be fair to the other approaches, it is very difficult to make reasonable compari-
sons between our method and some other AIS methods. But, it is meaningful and 
relatively fair to choose the classic NSA to compare with CSPRA. There are two 
reasons for this. Firstly, the PRRs model added additional layer of PAMPs to the Self-
nonself model but kept the features of Self-nonself model. CSPRA naturally involves 
negative selection since it is inspired from the PRRs model, so we can employ the 
same values for the common parameters in the two methods to make the comparisons 
fair. Secondly, since CSPRA is targeted at overcoming the intrinsic limits of NSA, we 
must examine whether this goal is achieved. In this section, we report the experimen-
tal results and all conclusions are derived from such comparisons since it is noted that 
Iris data are smaller.   

Since T detectors are randomly generated, different values for detection and false 
alarm rates are observed. Table 2 shows the mean and standard deviation of the re-
sults of 100 repeated experiments for CSPRA and NSA, respectively. The readers can 
reproduce the results with these parameters settings: sliding window size is 2; the 
threshold for T detector and APC detector are 0.1 and 1, respectively; T detector size 
is set to 35; the threshold for discriminating suspicious antigen is 0.02. These parame-
ters are not meant to generate the best results from the system but enough to show that 
CSPRA outperforms the classical NSA. We found through the experiments that the 
threshold for T detector is the most sensitive parameter that influences the experimen-
tal results. Detection Rate (DR), False Alarm Rate (FA), and False Positive Rate (FP) 
are computed in equation (2) ~ (4). TP, FP, TN, and FN are defined in [13].  

DR = TP/(TP+FN) (2) 

FA = FP/(FP+TN) (3) 

FP = FP/(FP+TP+FN+TN) (4) 

The results show that CSPRA has higher detection rate with far lower false alarm rate. 
As expected, Table 2 also shows that CSPRA has lower false positive rate, which is 
the major reason that CSPRA has higher performance. 

Table 2. Experimental results for CSPRA and NSA 

Training data Algorithm Detection Rate False Alarm Rate False Positive Rate 
  Mean SD Mean SD Mean SD 

CSPRA 97.67 2.76 0.92 1.15 0.31 0.38 Setosa 
50% NSA 97.24 3.19 4.76 2.54 1.59 0.85 
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Fig. 3. T detector size’s influence on Detection Rate and False Alarm Rate 

 

Fig. 4. ROC curves show the performance of CSPRA in comparison with NSA 
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The trend of T detector size’s affect on the system performance is studied. As 
shown in Fig.3, the detector size initially influences the detection rate dramatically in 
CSPRA, however, the detection rate is close to 100% with lower false alarm rate 
when the detectors are increased to the size of around 40. V-detector is featured with 
smaller number of detectors and thus requires less space [15]. Our results are appar-
ently comparable to V-detector. Fig. 3 also shows that false alarm rate is not sensitive 
to the detector size in CSPRA.  

ROC (Receiver Operating Characteristics) curve reflects the tradeoff between false 
alarm rate and detection rate and is usually used to evaluate the system performance. 
Experiments are carried out to obtain different values for detection rate and false 
alarm rate by changing T detector thresholds. ROC curve is plotted for both NSA and 
CSPRA. As illustrated in Fig. 4, the performance of CSPRA is very promising. It 
always produces higher detection rate with the same false alarm rate as that in NSA.  

6   Conclusions 

In immunology, new theories are constantly being proposed explaining how the im-
mune system responds to pathogenic material. This paper explores the relevance of 
the relatively new theory: PRRs Model in innate immunity to anomaly detection. By 
mimicking the concept of costimulation, PRRs and PAMPs in the PRRs Model, a 
novel immune-based approach called Conserved Self Pattern Recognition Algorithm 
(CSPRA) is presented. The algorithm is implemented and evaluated with the best 
known benchmark Fisher’s Iris data. The experimental results show that the algorithm 
request smaller number of detectors and its performance is clearly better in compari-
son with the classical NSA, particularly for the discrimination between altered self 
and non-self. The major advantages of CSPRA are as follows: 

• The pre-defined anomalies are required to establish the PAMPs in recent 
work [10]. However, only normal data are used in CSPRA during the train-
ing phase and the special APC detector gains the capability of recognizing 
the conserved self pattern in the antigen object from extracting the useful 
knowledge from the Self. 

• False positive error rate for anomaly detection is greatly reduced with 
CSPRA, as the algorithm takes its inspiration from PRRs model, which al-
lows APCs to discriminate between “infectious nonself” and “noninfectious 
self” and thus prevents from detecting altered self. 

• The algorithm acts as adding only one robust detector to the total size of the 
detectors in NSA and thus doesn’t increase the complexity of the system.  

• It makes the system more efficient that APC detector is quiescent until the 
decision on “Non-self” made by T detectors is unsure.   

Investigating the strategies for discovering the conserved pattern (self signatures) and 
finding real-world application are the main directions of our future work.     
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Abstract. The Dendritic Cell Algorithm is an immune-inspired algorithm orig-
inally based on the function of natural dendritic cells. The original instantiation
of the algorithm is a highly stochastic algorithm. While the performance of the
algorithm is good when applied to large real-time datasets, it is difficult to anal-
yse due to the number of random-based elements. In this paper a deterministic
version of the algorithm is proposed, implemented and tested using a port scan
dataset to provide a controllable system. This version consists of a controllable
amount of parameters, which are experimented with in this paper. In addition the
effects are examined of the use of time windows and variation on the number of
cells, both which are shown to influence the algorithm. Finally a novel metric for
the assessment of the algorithms output is introduced and proves to be a more
sensitive metric than the metric used with the original Dendritic Cell Algorithm.

1 Introduction

Artificial Immune Systems (AISs) have developed significantly over the past five years,
instigated by the creation of novel algorithms termed ‘2nd Generation AISs’. These
AISs initially rely on interdisciplinary collaboration to use current research in immunol-
ogy to produce algorithms which are both true to the underlying metaphor used as
inspiration and perform well upon their resultant application domain. One such 2nd
Generation AIS is the Dendritic Cell Algorithm (DCA), which is based on models of
the dendritic cells (DCs) of the human immune system.

The original DCA was developed as part of the Danger Project [1], and formed the
majority of Greensmith’s thesis [3]. A prototype of the algorithm was first presented in
2005 [4] with a fully implemented real-time system version presented in 2006 [8]. The
DCA has distinct advantages when applied to real-time computer security problems, as
it has very low CPU processing requirements and does not require extensive training
periods. All versions of the DCA to date have used a relatively large number of param-
eters and stochastic elements, such as random selection of cells and variable thresholds.
Setting these parameters to the appropriate values has always been somewhat arbitrary,
and thus has left the algorithm open to various criticisms. The use of various probabilis-
tic elements was in part an artifact of the use of the Twycross’ libtissue framework
for the initial algorithm development. While this framework is useful for the rapid de-
velopment of such AISs, one of the drawbacks for the DCA is the sheer amount of
interacting entities.
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As a result, it is still unclear which parts of the algorithm are responsible for its per-
formance and for its time-dependent correlation properties. In order to push forward the
DCA as a serious contender within biologically inspired computation, a thorough anal-
ysis of the algorithm itself must be performed: a task too complex when implemented
within a large framework. Insight is needed into exactly what each component of the
algorithm does and how detection is actually achieved. Despite avoiding a theoretical
approach so far, the time has come to pick apart this algorithm and to break it down
into a controllable deterministic system which is more accessible for the performance
of various computational analyses and the various parameter relationships explored.

The aim of this paper is to describe, implement, and test a deterministic DCA (dDCA)
to uncover its inner relationships and function. This paper is structured as follows, with
background information present in section 2, section 3describing the dDCA and the
new metric Kα. Experiments are described in section 4, with a discussion of results
and conclusions presented in sections 5 and 6 respectively.

2 DCA Overview

Metaphorically, DCs are the crime-scene investigators of the human immune system,
traversing the tissue for evidence of damage - namely signals, and for potential suspects
responsible for the damage, namely antigen. More information regarding the function
of natural DCs can be found in [10] with a distilled version for computer scientists pre-
sented in [3]. The DCA is derived from an abstract model of DC biology resulting in a
population based algorithm which provides robust detection and correlation. Different
cells process signals acquired over different time periods, generating individual ‘snap-
shots’ of input information which are correlated with antigens. The original DCA is
described in detail in numerous sources including [7] and [3].

The majority of research performed with the DCA has been within the sphere of
security. In particular, the works of Greensmith et al. have focussed on computer se-
curity applications. The algorithm to date has been successfully applied to port-scan
detection [8] [6] [5], and upon comparison to a self organizing map performed well on
the large dataset used, classifying 13 million antigens in under 100 seconds. In addition
to her work, the DCA has also been applied to the detection of a novel threat on the
internet, botnets [2], where the DCA produced high rates of true positives and low rates
of false positives in comparison to a statistical technique. Outside of computer security
Kim et al. have successfully applied the DCA to the detection of misbehaviour in wire-
less sensor networks, where again the algorithm showed a lot of promise. More recently
in the work of Lay and Bate [9], the DCA is applied to the detection of overruns in the
scheduling of processes, again with success.

The DCA is also showing promise in the area of robotic security as demonstrated
by Oates et al. [11]. A proof of concept experiment is performed to demonstrate that
the DCA could be used for basic object discrimination in a controlled environment.
The same researchers have now extended this research into the theoretical domain [12]
through frequency tuning analysis. This research has highlighted that the DCA exhibits
filter properties and also suggests the importance of the lifespan limit. Their research
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also contains two optimizations of the DCA which are used in this paper, namely a real
valued representation of individual DC output and tissue centric processing of signals.

3 The Deterministic DCA (dDCA)

In this section the dDCA is formally described followed by a discussion of the modified
features. In order to produce the deterministic version, it is necessary to make a number
of assumptions and modifications to the original DCA:

– Both signals and antigen are required for the system to correctly function. If no
signals are used, then the DCs will not exceed their lifespan limit and will not be
able to present antigen. If no antigen are used, then the context has no subject.

– At minimum two signal categories are required, an activating signal and an in-
hibitory signal - the danger and safe signal respectively.

– A uniform distribution of lifespan values is used across the population. This allows
for the study of the time-window effect in a repeatable and controllable manner.

– To provide reproducibility and for the ease of sensitivity a reduction in parameters
is required from those used with the original DCA. As a result explicit antigen
storage and sampling of the antigen population is removed, with all antigen data
sampled by the DC population.

– Each DC in the population is exposed to identical input signal data and would
process these signals in an identical manner. This results in the optimisation of the
signal processing procedure, as the output signal values are calculated only once
for the entire population, as suggested by Oates et al. [12].

– The output context value of an individual DC is reduced to one factor, k̄, which
negative numbers indicate a safe context and positive numbers indicating analogous
to the previously used mature context. This is also derived from the theoretical
analysis provided in Oates et al. [12].

One further modification is proposed for use with this system. This is the incorpo-
ration of an antigen profile. In previous implementations of the DCA, the string type
antigens are stored in an ‘antigen vector’ data structure. This required the random se-
lection of antigen by each DC and antigen overwriting. To ensure exact reproducibility
the random sampling and storage is replaced by a simple array. In this array the value of
the antigen is stored with the number of times a DC has collected antigens of this type.
This reduces the required overhead as no dynamic memory management is required and
leaves no concerns over denial of service due to the potential threat of antigen flooding.

Previous versions of the DCA featured in excess of 10 parameters, each of which
were derived from empirical biological observation and through sensitivity analysis.
The resultant algorithm contains three parameters. Firstly, the number of DCs must be
defined - this is set to 100 as previously, but is experimented with in Section 4. Sec-
ondly the weighting schema for the signal processing. The signal processing equation
used previously is modified for use with simplified weight values. As with the original
DCA, the input signals are transformed to output signals. However a different procedure
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is needed as the processing is performed in the tissue, the incorporation of k reduces
the outputs from three to two and this is coupled with the reduction to two signal cat-
egories. The new signal processing procedure is shown in Equations 1 and 4, where
S and D is the input value for the safe and danger signals respectively with 2 and 3
showing subsequent derivation thereof, c is the interim costimulation output signal and
k is the interim context output value. Pseudocode for the implemented dDCA is given
in Algorithm 1.

csm = S + D (1)

k = (mature − semi) (2)

k = (D − S) − S (3)

k = D − 2S (4)

input : Antigen and Signals
output: Antigen Types and cumulative k values

set number of cells;
initialise DCs();
while data do

switch input do
case antigen

antigenCounter++;
cell index = antigen counter modulus number of cells ;
DC of cell index assigned antigen;
update DC’s antigen profile;

end
case signals

calculate csm and k;
for all DCs do

DC.lifespan -= csm;
DC.k += k;
if DC.lifespan <= 0 then

log DC.k, number of antigen and cell iterations ;
reset DC();

end
end

end
end

end
for each antigen Type do

calculate anomaly metrics;
end

Algorithm 1. Pseudocode of the deterministic DCA
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3.1 Anomaly Metrics: MCAV and Kα

The mature context antigen value (MCAV) is calculated once all data is processed,
derived from the output of the cells collected during run-time. This value is generated
for each antigen type (α), where α is defined as a set of antigens of identical value. As
the name suggests, the MCAV is a measure of the proportion of antigen presented by
a fully mature cell as shown in Equation 5, where MCAVα is the MCAV for antigen
type α, M is the number of ’mature’ antigen of type α, and Ag is the total amount of
antigen presented for antigen type α.

MCAVα =
M

Ag
(5)

This metric returns a value between zero and one, where the probability of an anti-
gen type being anomalous increases as this value tends to one. This is a convenient,
normalised output, to which an anomaly threshold can be applied. However, it fails to
encapsulate the magnitude of the difference between positive and negative values of the
presented k̄. In the MCAV calculation a value of k̄ of -1 is treated in exactly the same
manner as a value of -200. The algorithm provides this information, hence it may be
fruitful to incorporate this information into a more sophisticated metric.

Kα is implemented with the dDCA, and uses the magnitudes of the k̄ values. This
generates real valued anomaly scores and may assist in the polarisation of normal and
anomalous processes. The process of calculating this anomaly score is shown in Equa-
tion 6, where km is the k̄ value for DCm, αm is the number of antigen presented of
type α by DCm.

Kα =
∑

m km∑
m αm

(6)

As this equation returns real valued numbers dependent on the actual values of the
input signals used, we propose a method for defining an anomaly threshold, to allow
for the classification of the antigen types analysed. This can be performed if the signals
are known a priori. The number of signal instances and the equivalent processed total
sum of the input signals. The threshold, TK , is defined in Equation 7 with SK , the
weighted sum of all input signals, defined in Equation 8, where Is is the number of
pairs of signal instances, ī is the mean number of iterations per cell incarnation, and D
and S representing danger and safe signal values.

TK =
SK

Is
∗ ī (7)

SK =
∑
Is

D − 2
∑
Is

S (8)

Once TK is applied to the Kα values, antigen types with a value of over this threshold
are classed as anomalous, and lower values classed as normal. If required, true and false
positives can be derived from this information. A similar threshold can be derived from
the MCAV, using the ratio of total danger signals to total safe signals present in the used
dataset.
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4 Experimental Analysis

4.1 Introduction

In this section initial tests are performed using the dDCA. This involves re-visiting a
past dataset, namely the ping scan data used in Greensmith et al. [7] with one ran-
domly selected set used to test the algorithm. In these experiments two aspects of the
algorithm’s function are examined:

– E0: A validation exercise to ensure the dDCA is correct.
– E1: The influence of variation in the number of cells.
– E2: Examination of ‘time windows’ and their effects on performance.

4.2 Testing Dataset

For these experiments one safe and one danger signal are used to provide the context
information. As opposed to contriving artificial data, a dataset containing an outbound
port scan is used. The object of using this data is that it is real-world data yet it is also
relatively small, with approximately 25,000 antigens and 38 sets of danger and safe sig-
nal instances. The data is derived from a monitored remote shell session, where antigens
are derived from process ID numbers and signals from monitored attributes of machine
behaviour. Specifically, the danger signal is the rate of sending of outbound network
packets, with the safe signal being the inverse rate of change of the packet sending rate.
For more information of the necessity of these signals for port scan detection and for
the mechanisms involve in port scanning please refer to [3].

In this dataset signals are updated once per second, with antigens generated as
processes produce system calls. Both signals are normalised within a range of 0 to
50, based on maximum values derived in preliminary experiments. A graph of these
signals is shown in Figure 1(a), where the mean danger signal value is 15.0 and mean
safe signal value is 21.8. In terms of antigens, four processes of interest are captured by
the antigen generator. These processes include two anomalous processes namely nmap
the port scan process and pts a parent process of the nmap. Also included are two nor-
mal processes including sshd the remote shell facilitator process and bash the process
of the actual monitored remote shell. The aim of the dDCA for these experiments is to
produce high MCAV and Kα for the nmap and pts with lower values for the bash and
sshd processes.

4.3 Experimental Setup

The deterministic DCA has two parameter values namely the number of cells and the
lifespan limit. Unless specified otherwise, all experiments described use 100 artificial
DCs with a maximum lifespan limit of 100 csm signal units. The increments of the
lifespans are derived from the maximum limit divided by the number of cells. This is
used to ensure an equivalent range of cells are present in each experiment. The TK

value used for this experiment is calculated as shown in Equation 9 , where the number
of signal instances is 38 and the mean number of iterations per cell incarnation is 2.
The anomaly threshold for the MCAV is set to 0.69 based on the ratio of danger to
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Table 1. MCAVs produced for dDCA versus Original DCA (mean of 3 runs)

Process ID Original DCA dDCA
nmap 0.999 0.969

pts 0.901 0.830
bash 0.711 0.623
sshd 0.070 0.202

safe signals within the dataset. The signal processing schema used is the one described
previously in Equation 4 For the implementation, the dDCA is coded in C (gcc 4.0.1),
with all experiments run on a 2.2 GHz MacBook Intel Core 2 Duo.

− 57.4 =
−1090

38
∗ 2 (9)

4.4 E0: Validation

Before the dDCA can be used for these experiments, it must first be validated against
the results generated by the original DCA. For this purpose, the results presented for the
original DCA are derived from data used for Chapter 6 of [3]. The results of one run of
the dDCA with default parameters are compared with three runs of the original DCA,
with the MCAV results generated presented in Table 1. As shown in this table, the same
trends are evident in both datasets. However, less polarisation between the normal and
anomalous processes is shown with the dDCA. Despite such discrepancies, as similar
trends are shown, we are confident that the dDCA is valid as a form of DCA.

4.5 E1: Cell Number Experiments

In this series, the number of cells used to process data are varied between runs. The set
of cell numbers used is n = {1, 5, 10, 50, 100, 500, 1000, 5000}. Based on past sensi-
tivity analyses of the cell numbers we expect the greatest variation between 1 and 100
cells. In addition to exploring this relationship, this experiment is used to generate statis-
tics regarding the mean behaviour of the cell population. During these experiments, the
number of antigen presented per cell per iteration, the number of iterations per lifespan
and the number of cell resets are collated and mean values are calculated. Additionally,
these experiments are timed to gain some insight into the scalability of the algorithm.

Both the MCAV and Kα values are shown for the four processes of interest for
each cell number and we can use this information to assess the differences between
the two output metrics. We predict that the real valued magnitude of Kα will produce
more polarised results as it will provide discrimination between borderline cases and
the more extreme, which of course is merely represented as 0 or 1 for the MCAV.

The results for the cell number experiments are shown in Figures 1(b) and 1(c). A
graph of the timing results for the experiments are presented in Figure 1(d). Statistics
regarding the cell behaviour information are presented in Table 2.
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(a) Input Signals for the 38s session (b) MCAV of varying cell numbers

(c) Kα of varying cell numbers (d) Execution Times of varying cell numbers

(e) MCAV for time-shifts (f) Kα for time-shifts

Fig. 1. The input signal data is displayed in (a) with results for both series of experiments given
in (b) to (f). Figures (b) and (c) show the MCAV and Kα values across a range of cell numbers
plotted on a log-scale, (d) shows the execution times for varying the cell numbers, with (e) and
(f) showing the MCAV and Kα with varying time delays.

4.6 E2: Time Window Experiments

It is assumed that the DCA performs correlation between antigen and signals based on
time windows. These experiments are designed to ascertain if this is indeed the case.
The nature of the time window effect created by the population of DCs is examined by
shifting the position of the signals within the dataset. Each cell in the population has a
lifespan, which defines the quantity of input signals the cell can process per incarnation.
Having variable time windows should add robustness when the signals occur after the
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Table 2. Cell behaviour statistics

Cell Number Mean iterations Mean incarnations
1 3.7 19.0
5 2.3 10.0
10 2.1 8.7
50 1.9 9.9
100 1.8 10.1
500 1.1 17.4
1000 1.1 17.4
5000 1.0 17.5

antigens, but we expect a reduction in DCA performance should the signals occur before
the antigen.

While the cells create a type of moving average for the signals, this does not extend
before the cell is initialised, and therefore signals appearing before antigen may result in
a poor performance. A total of 20 extra datasets are created, with a maximum shift of 20
second for the signals before and after the original position, at two second increments.
As with E1, both the MCAV and Kα values are calculated for each process of interest.
These results are presented in Figures 1(e) and 1(f).

5 Experimental Analysis

5.1 E1: Cell Numbers

In E0 the dDCA is validated as fit for purpose. Subsequently when the number of cells
is varied in E1 a noticeable effect on the performance of the DCA is indicated as shown
in Figures 1(b) and 1(c). When the MCAV is used as the anomaly metric, an increase in
the number of cells causes an increase in the MCAV for both pts and bash, though sshd
and nmap do not increase to the same magnitude. The same trends are evident though
less noticeable when using Kα for the bash and pts processes. This may be because it
is difficult to assess if these processes, the parent processes of the nmap scan process,
are actually anomalous or normal given that they have involvement in facilitating the
scan itself. These two processes are borderline cases, and it appears that Kα provides
improved information for this type of input data.

The sshd process which does not assist the scan has consistently low Kα values, well
below the derived threshold of -57.4. It is interesting to note that as the number of cells
used increases, the resultant output values converge. One possible explanation for this
is that the lifespan limit is set incorrectly and maybe an improvement could be made if
the range of these thresholds also increase in proportion to the number of cells.

Another explanation is that once the number of cells exceeds a certain limit, the
capacity of the system exceeds the requirements of the input data, and therefore no
matter how many extra cells are added, the resultant values remain similar. This is also
shown in the summary statistics of the cell behaviour presented in Table 1. The results
of the timed experiments are also encouraging, giving that the relationship between the
number of cells and the execution time appears to be linear.
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5.2 E2: Time Windows

The results of experiment E2 also show similar trends in comparison between MCAV
and Kα, with the Kα values representing more precisely the classification of these pro-
cesses. Therefore, Kα will be used in future for the assessment of our DCA experiments
both empirical and theoretical. A marked difference is shown in particular for the nmap
process between time offset -20 and zero and for the pts process also between -20 and
zero.

Examination of the pts graphs show a moderately low MCAV value, yet when Kα

is used, this value looks to remain stable at a level of 0. This could indicate that the pts
process exhibits minor fluctuations around this point, with these fluctuations amplified
by the binary classification of cells used in the MCAV, with Kα showing to be more
sensitive to encapsulating such fluctuations.

In terms of the time window analysis two conclusions can be drawn from these
graphs. Firstly, when the signals are delayed (time offset of 0 to 20), correct classifi-
cation continues for almost 10 seconds, until the anomalous processes are classified as
normal as they fall below TK . Interestingly, improved results are shown with a delay of
2-4 seconds - which is equivalent to the average number of cell iterations per lifespan.
Potentially the range of acceptable delay may be linked to a relationship between the
number of iterations and the lifespan range itself, to which a formal analysis may be
able to prove. Within the applications of the DCA in security so far, the signals are al-
ways updated after the antigens are generated, indicating one reason for why the DCA
functions in the manner shown previously. These results suggest that the dDCA has the
potential to be error tolerant to at least a five second lag in signal data, which is a desir-
able property for any behaviour based anomaly detection approach, as this reflects the
situation often seen in real world intrusion data.

The opposite effect is shown when the signals are advanced ahead of the antigens.
For the MCAV results both sets of processes, normal and anomalous, are classified in-
correctly between time offset -20 and 0. A similar effect is seen for Kα for the same
offset values. One explanation for this effect is that whilst cells produce a type of mov-
ing average, this is derived from information in only one direction i.e. the cells cannot
incorporate information received before the start of their current incarnation. Therefore
a reincarnated cell can only have knowledge of the signals which occur after its gen-
eration. While these results are interesting, a more formal analysis with contrived and
controllable data must be performed in future in order to corroborate this tenet. This
mirrors what is shown with natural DCs, as pathogenic infection (i.e. the presence of
antigen) always occurs before the generation of danger signals.

6 Conclusions

In this paper a deterministic version of the DCA is proposed, implemented and tested.
In addition to changes in the algorithm a new metric for the system’s evaluation is
proposed namely Kα which takes into account the magnitude of the output values pro-
duced by the DC population. The dDCA is compared to the original DCA using a port
scan dataset used previously with the DCA. We are satisfied that while that results are
not identical the values show similar trends, indicating that the essence of the DCA is
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housed within the deterministic version. This version has several advantages, including
the ability to replay experiments exactly, predictability of output and the reduction in
the number of parameters required. All such factors have resulted in a version of the
DCA which is simple to implement and can produce reliable, consistent results.

One of the remaining parameters of the dDCA is the number of cells used. As this
number increases, discrimination between the processes is less obvious. While the cause
of this effect still remains unclear it has given us insight into the limits of the system
as it appears that there is a saturation point. For this particular dataset, this point is at
500 cells shown for both the MCAV and Kα. The metric Kα is tested for the first time
in this experiment and is shown to be more sensitive to the minor fluctuations in the
resulting output of the cells and provides a more precise overview of the classification
of the various antigen types. To assess the implications of Kα, this metric should be
applied to a wider range of problems.

Finally, timing discrepancies between signals and antigen are performed. As a result
it is shown that should there be a delay for the input signals, within a tolerance range
the dDCA can cope well with this delay. A potential relationship between the lifespan
maximum limit and the number of iterations per cell incarnation may exist, though a
more formal analysis is required to verify this effect. Conversely, if the signal data is
advanced, severe misclassifications can occur, hence suggesting that the dDCA should
not be applied to data where there is the potential for delayed antigen as performance
may be impaired.

As future work we intend to further explore this new instantiation of the DCA. This
investigation will involve a more in-depth study of the inherent relationships present
within the algorithm in addition to extensive testing both on a range of real-world and
synthetic data, and in comparison with other standard techniques such as support vector
machines. This has the aim of selecting such parameters appropriately no matter what
the application. In conclusion, the dDCA is a comparable and controllable form of the
DCA and is a powerful tool necessary to further the understanding of this interesting
immune-inspired algorithm.

Acknowledgements

This research is supported by the EPSRC (EP/D071976/1). Code optimisations courtesy
of Gianni Tedesco.

References

1. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger theory: The link between
AIS and IDS. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787,
pp. 147–155. Springer, Heidelberg (2003)

2. Al-Hammadi, Y., Aickelin, U., Greensmith, J.: DCA for detecting bots. In: Proc. of the
Congress on Evolutionary Computation (CEC), page tba (to appear, 2008)

3. Greensmith, J.: The Dendritic Cell Algorithm. PhD thesis, School of Computer Science,
University Of Nottingham (2007)



302 J. Greensmith and U. Aickelin

4. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a novel immune-
inspired algorithm for anomaly detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis,
J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)

5. Greensmith, J., Aickelin, U., Feyereisl, J.: The DCA-SOMe comparison: A comparative
study between two biologically-inspired algorithms. Evolutionary Intelligence: Special Is-
sue on Artificial Immune Systems (accepted for publication, 2008)

6. Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection with the
DCA. Information Fusion (in print) (2008)

7. Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the Dendritic Cell
Algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417.
Springer, Heidelberg (2006)

8. Greensmith, J., Twycross, J., Aickelin, U.: Dendritic cells for anomaly detection. In: Proc. of
the Congress on Evolutionary Computation (CEC), pp. 664–671 (2006)

9. Lay, N., Bate, I.: Improving the reliability of real-time embedded systems using innate im-
mune techniques. Evolutionary Intelligence: Special Issue on Artificial Immune Systems
(2008)

10. Lutz, M., Schuler, G.: Immature, semi-mature and fully mature dendritic cells: which signals
induce tolerance or immunity? Trends in Immunology 23(9), 991–1045 (2002)

11. Oates, R., Greensmith, J., Aickelin, U., Garibaldi, J., Kendall, G.: The application of a den-
dritic cell algorithm to a robotic classifier. In: de Castro, L.N., Von Zuben, F.J., Knidel, H.
(eds.) ICARIS 2007. LNCS, vol. 4628, pp. 204–215. Springer, Heidelberg (2007)

12. Oates, R., Kendall, G., Garibaldi, J.: and. Frequency analysis for dendritic cell population
tuning: Decimating the dendritic cell. Evolutionary Intelligence: Special Issue on Artificial
Immune Systems (2008)



Artificial Immune Systems and Kernel Methods

T.S. Guzella1,2, T.A. Mota-Santos2, and W.M. Caminhas1

1 Dept. of Electrical Engineering, Federal University of Minas Gerais,
Belo Horizonte (MG) 31270-010, Brazil
{tguzella,caminhas}@cpdee.ufmg.br

2 Dept. of Biochemistry and Immunology, Federal University of Minas Gerais,
Belo Horizonte (MG) 31270-010, Brazil

tomaz@icb.ufmg.br

Abstract. In this paper, we focus on the potential for applying Kernel
Methods into Artificial Immune Systems. This is based on the fact that the
commonly employed “affinity functions” can usually be replaced by ker-
nel functions, leading to algorithms operating in the feature space. A dis-
cussion of this applicability in negative/positive selection algorithms, the
dendritic cell algorithm and immune network algorithms is conducted. As
a practical application, we modify the aiNet (Artificial Immune Network)
algorithm to use a kernel function, and analyze its compression quality
using synthetic datasets. It is concluded that the use of properly adjusted
kernel functions can improve the compression quality of the algorithm.
Furthermore, we briefly discuss some of the future implications of using
kernel functions in immune-inspired algorithms.

Keywords: Artificial Immune System, Affinity Functions, Kernel Meth-
ods, Immune Network, aiNet.

1 Introduction

Recently, Artificial Immune Systems (AISs), have emerged as a novel soft com-
puting paradigm [1], seeking inspiration in the immune system for the develop-
ment of computational models for solving problems. Most algorithms employ the
concept of a so called “affinity function”, which describes the degree of matching
between two entities (a cell or antibody and an antigen). Usually, these affinity
functions are obtained by adapting corresponding distance functions, so that the
affinity between two entities is inversely proportional to their distance in some
metric space, and the algorithms can be described in terms of distances.

In the framework for designing AISs proposed in [1], the design of the affin-
ity function(s) follows the definition of the representation used for cells and
molecules. In the case of systems employing real-valued representations, the Eu-
clidean distance is one of the most commonly used affinity measures. This is
inspired by early theoretical work by Perelson and Oster [2], which proposed the
concept of a shape space, a metric space for quantifying the chemical interactions
between molecules, where the Euclidean distance was originally used. However,
in accordance with the convention followed in the machine learning community,
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we will use the term input space when referring to the shape space. This use of
general affinity functions, without taking into consideration the characteristics of
the target problem, has been recently criticized by Freitas and Timmis [3], who
highlight the need to follow a problem-oriented approach in designing an AIS,
in which the adoption of a certain affinity function is justified by characteristics
of the target application.

The impact of using some affinity functions has been recently studied by some
researchers. Hart [4] has shown the effects of the affinity function in idiotypic
networks based on real-valued representations, influencing the size and dynamics
of the resultant networks, pointing out the importance of carefully defining the
affinity function and network parameters when applying a network to solve a
problem. Recent work by Hart et al. [5] provides additional evidence of effects on
the topology of the network, influencing its properties. In the context of negative
selection algorithms, Stibor et al. [6] have conducted an in depth analysis of the
use of the Euclidean distance, showing that coverage problems arise when dealing
with high-dimensional data.

In parallel, kernel-based learning algorithms have been gaining an increasing fo-
cus in research, such as Support Vector Machines (SVMs) [7] and kernel PCA [8].
Kernel methods are based on mapping an input data point into a suitable Hilbert
space, termed the feature space, allowing for very general representations of char-
acteristics of the data being analyzed, and then performing computations in this
new space. The underlying theory allows the manipulation of data in the poten-
tially infinite-dimensional feature space without explicitly knowing the map from
the input to the feature space.

In considering that several AISs can be seen as similarity-based algorithms,
due to the use of distance functions, we analyze the application of kernel methods
in immune-inspired models, discussing, in an informal way, how some algorithms
can be modified to work in the feature space. Argued by Timmis [9] as an
important line of investigation to allow the advancement of AIS, theoretical
aspects have been receiving an increasing interest (see review in [10]). Therefore,
grounding the use of affinity functions into a proper theoretical framework is an
important step towards the design of new algorithms.

This paper is organized in the following way: section 2 presents a brief overview
of the theory of Reproducing Kernel Hilbert Spaces, which provides a theoretical
basis for the application of kernel functions. In sequence, section 3 discusses the
applicability of kernel methods in some immune-inspired algorithms. As a prac-
tical application, section 4 derives and evaluates a kernel-based version of aiNet
(Artificial Immune Network) [11]. Finally, section 5 presents the final conclusions
of this work, along with future research directions.

2 Theory of Reproducing Kernel Hilbert Spaces

This section presents a brief discussion of the basic concepts of the theory of
Reproducing Kernel Hilbert Spaces (RKHSs), closely following [8]. Throughout
the discussion, we assume that the input space X is a non-empty set, and restrict
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the presentation to real-valued kernels. In addition, the dot product between two
vectors x and y is represented by 〈x, y〉. The dot product is the starting point
in the theory of kernel methods due to the fact that it allows the generalization
of several geometrical operations (such as projection, distances and the angle
between two vectors). In learning algorithms, it is used to derive a notion of
similarity between two elements (not necessarily vectors).

Definition 1. (Positive Definite (PD) Kernel) A kernel function k : X ×X → �
is a PD kernel if, for any X = {x1, x2, . . . , xn} ⊂ X , the n × n matrix with
elements ki,j = k(xi, xj) is positive definite.

In particular, for a PD kernel, k(x, x) ≥ 0, ∀x ∈ X , k(x, y) = k(y, x) and
the Cauchy-Schwarz inequality |k(x, y)|2 ≤ k(x, x)k(y, y) holds (from which the
triangle inequality can be derived). Defining a map φ : X → H, where H is
the space of functions mapping X into � (usually referred to as the feature
space), φ(x) can then be seen as a function that assigns the value k(x, y) to
y ∈ X , thereby transforming each point x into a function. Given an arbitrary
set X = {x1, x2, . . . , xn} ⊂ X , considering the vector space defined by linear
combinations f(·) =

∑n
i=1 αik(·, xi), the dot product can be computed as:

〈f, f〉 =
∑
i,j

αiαjk(xi, xj) ≥ 0 (1)

where the non-negativity follows from the fact that the kernel k is PD, implying
that 〈·, ·〉 in the feature space is also a PD kernel. The concept of the space
where the mapped patterns φ(x) lie is formalized through the definition of a
Reproducing Kernel Hilbert Space.

Definition 2. (Reproducing Kernel Hilbert Space (RKHS)) A Hilbert Space of
Functions H is a RKHS with kernel function k : X × X → �, possessing a
dot product 〈·, ·〉 and a corresponding norm ‖f‖ =

√
〈f, f〉 if the following two

conditions are satisfied:

1. k has the reproducing property:

〈k(x, ·), f〉 = f(x) ∀f ∈ X (2)

and, in particular:
〈k(x, ·), k(y, ·)〉 = k(x, y) (3)

2. k spans H, or, in other words, k(x, ·), as a function of x ∈ X , belongs to H

Due to the requirement of positive definiteness, the denomination kernel is usu-
ally used when referring to PD kernels, a convention followed by this paper from
this point on. Using the reproducing property shown in equation 3, it can be
verified that:

〈φ(x), φ(y)〉 = k(x, y) (4)

and applying the kernel function to points x and y is equivalent to calculating
the dot product between the mapped points φ(x) and φ(y). Therefore, kernel
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functions allow the calculation of dot products in the resultant RKHS, without
explicitly knowing the map φ. In addition, it is possible to calculate the distance
between two mapped points, through the relation:

‖φ(x) − φ(y)‖2 = k(x, x) + k(y, y) − 2k(x, y) ≥ 0 (5)

which is non-negative due to the fact that k is PD. However, it should be noted
that there is a larger class of kernels than can be used to determine the distance
in the feature space (referred to as conditionally positive definite kernels, [8]),
although requiring some additional adaptations.

Finally, we present some examples of commonly used PD kernels, such as
Gaussian:

k(x, y) = exp
(

− 1
2σ2

‖x − y‖2

)
(6)

polynomial:
k(x, y) = (〈x, y〉 + c)d (7)

and the inverse multiquadric kernels:

k(x, y) =
(√

‖x − y‖2 + σ2
)−1

(8)

The parameters σ > 0, c ≥ 0 and d ∈ N determine the shape of the mapped
points in the feature space, and their appropriate adjustment is crucial for a good
performance of the algorithms employing such kernel functions. In addition, due
to the fact that the choice of a kernel for an application is rather arbitrary, there
is an increasing focus on the development of kernel functions incorporating prior-
knowledge (e.g. [8]).

3 Applicability of Kernel Functions in Immune-Inspired
Algorithms

In this section, we briefly discuss the applicability of the theory of RKHS in
various immune-inspired algorithms. A potential advantage of using kernel func-
tions is that these allow for more general representations of data dependencies,
which can improve the performance of some algorithms. In addition, from the
discussion presented in the previous section, it follows that the only theoret-
ical requirement is that X is a non-empty set. As AIS are not restricted to
real-valued representations (see [3] for a discussion of the representations used
in some models), the framework of kernel methods fits, initially, nicely in this
area. In the following paragraphs, we center the discussion in three families of
algorithms: positive/negative selection, the dendritic cell algorithm and immune
network approaches, focusing on real-valued representations.

3.1 Positive and Negative Selection

In positive/negative selection approaches (e.g. [12]), a set D, containing detec-
tors, is checked against a test point x to determine if it is indicative of normal or
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anomalous behavior (usually referred to as self and non-self, respectively). This
procedure can be described for both algorithms by equation 9:

f(x) = θ

( ∑
si∈D

θ (bi − d (x, si))

)
(9)

where θ(·) is the step function defined by θ(x) = 1, if x > 0 or 0, other-
wise, and bi is the activation threshold of the i-th detector. The expression
θ (bi − d (x, si)) represents the activation of the i-th detector, which happens if
its distance for the test point x is smaller than the threshold bi. In positive
detection schemes, it follows that, if f(x) = 1, then x is classified as normal,
while, in negative detection algorithms, f(x) = 1 indicates that x is anomalous
(non-self).

An analysis of equation 9 indicates that replacing the commonly used Eu-
clidean distance in positive/negative selection algorithms with a kernel function,
so that the distance is evaluated in feature space (i.e. equation 5) should have
a minor impact in the performance of such algorithms. Due to the fact that
the activation of one detector does not influence the remaining detectors, the
evaluation of the distance in feature space merely alters the recognition region
of each detector in the input space (defined by Si = {x : d(x, si) ≤ bi, x ∈ X}).
As an example, using the Gaussian kernel (equation 6) to calculate the distance
can be seen as merely changing the radius of detection in comparison with the
one obtained with the Euclidean distance.

3.2 Dendritic Cell Algorithm

The Dendritic Cell Algorithm (DCA) [13] is a recent proposal in the area of
AIS. It is based on the behavior of dendritic cells sampling antigens and signals
from the environment, and assuming a migration behavior depending on the
sampled signals. Given four input signals (danger, PAMP, safe and an inflam-
matory signal), three output signals are derived, indicating the co-stimulation
of each dendritic cell, along with a mature (a pro-inflammatory phenotype) and
a semi-mature output signal (anti-inflammatory phenotype). In the case that
the inflammatory signal is constant, the output signals can are given as a linear
combination of the input signals:

Ψcs = wcs
d Id + wcs

p Ip + wcs
s Is (10)

Ψmt = wmt
d Id + wmt

p Ip + wmt
s Is (11)

Ψsm = wsm
d Id + wsm

p Ip + wsm
s Is (12)

where Ψcs, Ψmt and Ψsm are the co-stimulation, mature and semi-mature out-
put signals, Id, Ip and Is are the danger, PAMP and safe input signals, and
the w’s are constants. It can be seen that, in this setting, the output signals can
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be represented as dot products1 between a vector containing the input signals
(I =

[
Id Ip Is

]T ) and another vector containing the appropriate constants:

Ψcs = 〈wcs, I〉 (13)
Ψmt = 〈wmt, I〉 (14)
Ψsm = 〈wsm, I〉 (15)

In this case, it follows that each output signal is obtained by multiplying the
length of the appropriate weight vector by the projection of I onto the weight
vector (‖I‖ cos (α), where α is the angle between I and the w vector).

Therefore, even though the DCA does not employ affinity functions, kernel
functions could be applied to it, replacing the dot products in equations 13-15.
However, the meaning of such modification is not clear at present, due to the
fact that the relevant parameters of the algorithm have been derived from exper-
imental data. It should become clearer as the general mathematical properties
of the algorithm are investigated.

3.3 Idiotypic Network Algorithms

Idiotypic network algorithms (also called immune network algorithms) are based
on a network theory of the immune system. Two examples are aiNet, proposed by
de Castro and Von Zuben [11], and the network-based AIS presented by Timmis
et al. [14]. The use of kernel functions in these algorithms should have a noticeable
impact on these algorithms, due to the fact that the affinity between antibodies
or B cells and antigens usually affects the structure of the networks (e.g. [4]). In
particular, in the next section, we consider, as a practical example of the incor-
poration of kernel functions in AIS, the derivation of a modified aiNet algorithm,
which operates in the feature space, and analyze how its performance is influenced.

4 A Practical Application: aiNet

4.1 Derivation of Kernel-Based Version of aiNet

In this section, we present a kernel-based version of aiNet, an immune network
algorithm proposed in [11]. This algorithm was chosen due to the recent work
of Stibor and Timmis [15], which investigates its compression quality, using the
originally proposed Euclidean distance as affinity function. In that work, it was
verified that aiNet may face problems when dealing with datasets containing
dense regions, and it was argued that these problems are due to the optimization
criterion used in the algorithm for suppression between clones, aimed at elim-
inating redundancy. They have suggested that it should be feasible to modify
such criterion to overcome the problem. However, considering that the criterion
was inspired by the Idiotypic Network Theory [16], in that a clone is suppressed
1 It should noted that this was first pointed out by Dr. T. Stibor during the technical

discussions at ICARIS-2007.
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if recognized by another clone, such modification may not be straightforward,
and may affect the biological inspiration of the algorithm. This motivates us
to investigate another modification: the affinity function. As we do not go into
details regarding aiNet, the reader is referred to [11] and [15] for details of the
algorithm. In addition, we follow the same notation of the parameters used in
the algorithm as in [15]. Finally, it should be kept in mind that, because kernel
methods can be applied to very general representations (for which a PD kernel
is defined), not only vectors, the adapted version of aiNet considered here is not
a true kernel method, as it requires a real-valued vector representation.

The aiNet algorithm is based on a set of interconnected antibodies, which
represent internal images of antigens to which the network is exposed, modeling
the competition for antigenic recognition, while eliminating antibodies that rec-
ognize each other. An affinity measure, which, in [11], was originally based on
the Euclidean distance, is used to quantify the interaction strength between an
antibody and an antigen and, also between two antibodies. The affinity measure
results from an adapted distance function, such that the affinity is maximum
when the distance is minimum. Therefore, in the following discussion, we con-
sider how such distance function can be modified. Assuming that the input data
lie in an input space X = �p, with an antigen x ∈ X and denoting a population
of n antibodies as A = {A1, A2, . . . , An} ⊂ X , the Euclidean distance function
is used in three steps in the algorithm:

1. for determining the affinity between an antibody Ai ∈ A and the antigen x:

di = ‖Ai − x‖ (16)

2. for mutation of an antibody Ai, generating a mutated clone A∗
i :

A∗
i = Ai − β‖Ai − x‖W (Ai − x) (17)

where W is a p×p diagonal matrix, whose diagonal is an independent random
vector, with elements independently and uniformly distributed in the interval
(0, 1], and β is the hyper-mutation rate. The term −(Ai − x) in equation 17
is the search direction that minimizes the distance between the antibody Ai

and the antigen x, and is related to the negative gradient of the square of
the distance function 16. The matrix W adds a random component to the
direction of search, and, due to its properties, it follows that, for some vector
v, Wv lies in the same orthant as v. Therefore, the introduction of diversity
(i.e. mutation) in aiNet is achieved through one step of gradient descent with
learning rate β‖Ai−x‖, where the negative gradient is randomly “distorted”
by the operator W .

3. for determining the affinity between two antibodies Ai and Aj :

di,j = ‖Ai − Aj‖ (18)

The derivation of the kernel-based version of aiNet follows from simply sub-
stituting the Euclidean distance function used in steps 1 and 3, along with the
mutation operator employed in step 2, and is based on the EF-KSOM kernel
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self-organizing map discussed in [17]. Let k : X × X → � denote a (PD) kernel
function, so that Jy(x) = ‖φ(x) − φ(y)‖2 is the squared distance in the feature
space between the mapped versions of x and y (which can be calculated using
equation 5), and let ∇Jy(x) = ∂Jy(x)

∂x denote the gradient of Jy(x). For conve-
nience, we consider the use of squared distance measures, so that the three steps
previously discussed are given, respectively, by the following equations:

di = Jx(Ai) (19)

A∗
i = Ai − β

√
Jx (Ai)W∇Jx (Ai) (20)

di,j = JAj (Ai) (21)

In this formulation, the original implementation presented in [18] can be ob-
tained by using a kernel function k(x, y) = 〈x, y〉 (so that Jy(x) = ‖x − y‖2 and
∇Jy(x) = 2(x − y)), and through an appropriate scaling of the distance-related
parameters σs and σd (suppression and pruning thresholds, respectively) and the
hyper-mutation rate β. Then, using equation 5, it can be observed that ∇Jy(x)
can be written as:

∇Jy(x) =
∂k(x, x)

∂x
− 2

∂k(x, y)
∂x

(22)

and mutation is, therefore, performed according to:

A∗
i = Ai − β

√
Jx (Ai)W

(
∂k(Ai, Ai)

∂Ai
− 2

∂k(Ai, x)
∂Ai

)
(23)

The resultant algorithm then attempts to obtain a population with a non-
redundant population of memory antibodies (using the suppression threshold),
so that the distance to the input antigens, calculated in the feature space, is
minimized. In particular, all distance-related operations (calculation of affinities
for the antigen, suppression and pruning) are conducted in the feature space.

Finally, consider the case when a translation invariant kernel function is used,
such that the corresponding distance can be written as Jy(x) = f(‖x − y‖2)
(which happens when the Gaussian or Inverse multiquadric kernels are used),
where f : �+

0 → �+
0 is a differentiable monotonic function. Then it is gen-

erally possible to obtain values for the distance-related parameters σs and σp

(suppression and pruning thresholds, respectively), which, if used with the Eu-
clidean distance, may lead to the same results as those obtained using such kernel
functions. This may happen because the major difference (in addition to a small
variation in the number of clones generated during the mutation phase) between
using such kernel function or the Euclidean distance is the learning rate, which,

in the former case, is equals to
√

f(‖Ai−x‖2)

‖Ai−x‖
df(z)

dz

∣∣∣
z=‖Ai−x‖2

times that of the

latter, assuming that Ai �= x. Therefore, if this term is approximately equals
to one throughout the execution, then it follows that operating in the feature
space does not bring anything new to the dynamics of aiNet. Moreover, if the
effects of different learning rates are negligible, then the results obtained using
either version may be very similar. In the next section, we report on this possible
equivalence.
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4.2 Experimental Results

To analyze the impact of the use of kernel functions, we consider the experiments
reported by Stibor and Timmis [15], used to assess the compression quality of
aiNet. Drawing ideas from non-parametric density estimation, they have used a
simplification of the Kullback-Leibler divergence (also known as relative entropy)
to quantify how close the memory antibodies, returned by aiNet, were to the
input dataset.

Let X = {x1, x2, . . . , xnx} ∼ P be an input and R = {r1, r2, . . . , rnr} be a
reduced dataset, where X is distributed according to some generally unknown
probability distribution P , such that X, R ⊂ X = �p. In the case of aiNet, X and
R are the input (antigens) and output (memory antibodies) of the algorithm,
respectively. Then, the simplified expression for the calculation of the entropy
value is [15]:

J̃ =
1
nx

nx∑
i=1

⎧
⎨
⎩ln

⎡
⎣ 1

nr

nr∑
j=1

kG
h (xi, rj)

⎤
⎦ − ln

⎡
⎣ 1

nx

nx∑
j=1

kG
h (xi, xj)

⎤
⎦

⎫
⎬
⎭ (24)

where kG
h (x, y) is the normalized Gaussian kernel with width h:

kG
h (x, y) =

1(√
2πh

)p exp
(

− 1
2h2

‖x − y‖2

)
(25)

where a large entropy indicates that R is relatively close to X . Due to the fact
that equation 24 is a simplification of the original expression for calculating the
Kullback-Leibler divergence, it follows that J̃X,R can assume any real value, not
being, therefore, restricted to non-positive values (as in the case of the Kullback-
Leibler divergence). Therefore, by applying aiNet to a given input dataset and
calculating 24, it is possible to evaluate the compression quality in a quantitative
way. However, due to the fact that the obtained value is a relative quantity,
it is necessary to have a reference value, which is used as a baseline for the
comparison. In the experiments conducted in [15], as the probability distribution
P is known, the reference value was obtained by sampling a reference dataset
Rref from P , with cardinality equals to the mean cardinality of the reduced
datasets obtained with some parameter set θ. Using this dataset, J̃ref was used
as a reference entropy value, such that when J̃ was close to J̃ref , the compression
quality was acceptable.

To conduct the experiments, the same four two-dimensional synthetic datasets
used in [15], shown in table 1, were used. The influence of the suppression thresh-
old was evaluated, using the values σs ∈ {0.5, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001},
with the remaining parameters being used as in [15]. In addition to the Eu-
clidean distance, as in the original aiNet algorithm [11], the Gaussian and in-
verse multiquadric kernels, with σ ∈ {0.25, 0.5, 1, 2} (equations 6 and 8), and the
polynomial kernel with c ∈ {1, 2} and d ∈ {2, 3, 4} (equation 7) were used in the
experiments. Investigation of the equivalence between the results obtained with
the Gaussian and inverse multiquadric kernels (see the end of section 4.1) was
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Table 1. Synthetic datasets used in the experiments (see [15])

Dataset Description

1
Gaussian distribution with mean

[
0 0

]
and covariance matrix I2 =

[
1 0
0 1

]

2
Mixture of six Gaussian distributions

3
Mixture of two Gaussian distributions, with both means equals to[

0 0
]

and covariance matrices I2 and 1
4I2

4 Sin/cos-based distribution, composed of two U-shaped distributions

conducted by performing a paired t-test comparing the relative entropies and
the memory population sizes. It was found that the only results not different at
a 5% significance level were those obtained with Gaussian kernel with σ = 1 and
σs ≤ 0.1. The input datasets were taken with 400 points, and each execution
of aiNet was repeated 500 times to consider the mean and standard deviation
in the results. Finally, to report the results, we present plots of the relative en-
tropy versus the cardinality of the reduced dataset, along with the corresponding
reference entropy values. In particular, this graphical representation makes the
interpretation of results obtained with multiple distance functions easier, and al-
lows to visualize how the entropy value scales with the cardinality of the reduced
datasets.

Fig. 1. Obtained results for different distance functions in the four synthetic datasets.
J̃μ

ref and J̃σ
ref denote the mean and standard deviation of the reference entropy values,

respectively.
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The entropy values obtained for the experiments conducted are shown in
figure 1, where decreasing the value of σs leads to increasing values of nr, and the
shaded regions represent one standard deviation in the reference entropy values.
In each graph, only the results obtained with the kernel functions which were su-
perior to those obtained with the original implementation are presented, to make
the visualization easier. It can be verified that, in the case of datasets 1 and 3, the
results obtained with the Gaussian, inverse multiquadric and polynomial kernels
are considerably superior to those obtained with the Euclidean distance, although
the Gaussian kernel (σ = 0.25) can lead to large memory population sizes, espe-
cially for small values of σs. The inverse multiquadric kernel, with σ = 0.25, results
in relatively small population sizes, varying from 60 to 80 (dataset 1) and 50 to
100 (dataset 3). Finally, in these two datasets, the polynomial kernel with c = 1
and c = 2, respectively, and d = 4 is the one which attains the best results, with
positive entropy values superior to the corresponding reference values. However,
in the case of datasets 2 and 4, especially the latter, it was difficult to obtain re-
sults superior to those obtained with the Euclidean distance. In particular, this
was clear for the polynomial kernel, whose entropy values were very low, usually
smaller than −1. Upon closer investigation, it was verified that this is related to
the numerical properties of the polynomial kernel with un-normalized data, which
can be alleviated by the use of small hypermutation rates. For datasets 1 and 3,
which are centered around zero, this problem does not arise.

While care must be taken in interpreting some of these results, due to the fact
that the approximated entropy values are not non-positive (indicating that the
density estimated was closer to the true probability distribution than the den-
sity estimated using a dataset obtained from the true distribution), the general
trend is that the use of some kernel functions can lead to results better than
those obtained with the Euclidean distance. Therefore, we argue that the inad-
equate results reported in [15] are not only due to the optimization criterion,
but appear to be related also to the characteristics of the Euclidean distance in
some datasets.

5 Conclusions

In this paper, we have considered the connections between AISs and Kernel
Methods. After a brief presentation of some of the theoretical results used in the
latter, its applicability in positive/negative selection algorithms, the dendritic
cell algorithm and immune networks was discussed. While it is suggested that
not much differences should arise in the case of positive/negative selection, kernel
functions could have a significant impact in the dendritic cell algorithm and
immune network approaches. However, in the case of the dendritic cell algorithm,
further studies of its theoretical properties should precede the application of
kernel functions. Finally, as a practical application, a kernel-based version of
aiNet was presented, and experiments with synthetic datasets were conducted,
indicating that, in some cases, properly tuned kernel functions may improve the
compression quality of the algorithm.
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While the results presented in this paper can be considered as preliminary in
the context of the use of kernel functions in immune-inspired algorithms, it may
have important consequences, especially in the motivation of future work. As pre-
viously discussed, as the kernel function and its parameters define the properties
of the feature space induced, these have a major impact on the performance of
the algorithms. In this sense, the argument raised by Freitas and Timmis [3],
advocating the use of data representations and affinity functions tailored to the
target problem suggests an interesting line of research. The theoretical aspects,
along with the experimental results reported here inspire the developments of
algorithms employing adaptive similarity functions, as suggested in [3]. In the
context considered here, such algorithms would be able to adjust the kernel func-
tion and/or kernel parameters, allowing for automatically tuned representations,
which can be seen as partitioning the input space into regions, and projecting
the patterns falling into each region into a corresponding feature space.

Acknowledgments. The authors would like to thank Dr. T. Stibor for providing
additional information on the original experiments. This work has been supported
by UOL (www.uol.com.br, process number 20060519110414a), FAPEMIG and
CNPq.

References

1. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational
Intelligence Approach, 1st edn. Springer, Heidelberg (2002)

2. Perelson, A.S., Oster, G.F.: Theoretical studies of clonal selection: minimal an-
tibody repertoire size and reliability of self-non-self discrimination. J. Theor.
Biol. 81(4), 645–670 (1979)

3. Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems
for data mining. IEEE Trans. Evol. Comput. 11(4), 521–540 (2007)

4. Hart, E.: Not all balls are round: An investigation of alternative recognition-region
shapes. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005.
LNCS, vol. 3627, pp. 29–42. Springer, Heidelberg (2005)

5. Hart, E., Bersini, H., Santos, F.C.: How affinity influences tolerance in an idiotypic
network. J. theor. Biol. 249(3), 422–436 (2007)

6. Stibor, T., Timmis, J., Eckert, C.: On the use of hyperspheres in artificial immune
systems as antibody recognition regions. In: Bersini, H., Carneiro, J. (eds.) ICARIS
2006. LNCS, vol. 4163, pp. 215–228. Springer, Heidelberg (2006)

7. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, Chichester (1998)
8. Schölkopf, B., Smola, A.J.: Learning with Kernels, 1st edn. MIT Press, Cambridge

(2002)
9. Timmis, J.: Artificial immune systems - today and tomorrow. Nat. Comput. 6,

1–18 (2007)
10. Timmis, J., Hone, A.N.W., Stibor, T., Clark, E.: Theoretical advances in artificial

immune systems. Theoretical Computer Science. Theoretical Computer Science (in
press) (2008), doi:10.1016/j.tcs.2008.02.011

11. de Castro, L.N., Von Zuben, F.J.: aiNet: An artificial immune network for data
analysis. In: Abbass, H.A., Sarker, R.A., Newton, C.S. (eds.) Data Mining: A
Heuristic Approach, pp. 231–259. Idea Group Publishing (2001)

www.uol.com.br


Artificial Immune Systems and Kernel Methods 315

12. Esponda, F., Forrest, S., Helman, P.: A formal framework for positive and negative
detection schemes. IEEE Trans. Syst. Man, Cybern. B 34(1), 357–373 (2004)

13. Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection
with the dendritic cell algorithm. Information Fusion(in press) (2008)

14. Timmis, J., Neal, M., Hunt, J.: An artificial immune system for data analysis.
BioSystems 55, 143–150 (2000)

15. Stibor, T., Timmis, J.: An investigation on the compression quality of aiNet. In:
Proc. IEEE FOCI-2007, pp. 495–502 (2007)

16. Jerne, N.K.: Towards a network theory of the immune system. Ann. Inst. Pasteur.
Imm. 125C, 373–389 (1974)

17. Lau, K.W., Yin, H., Hubbard, S.: Kernel self-organising maps for classification.
Neurocomputing 69, 2033–2040 (2006)

18. de Castro, L.N.: aiNet implementation (2000) (visited in January/2008),
ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/lnunes/demo.zip

ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/lnunes/demo.zip


Boosting the Immune System

Chris McEwan, Emma Hart, and Ben Paechter

Napier University, Edinburgh, Scotland
{c.mcewan,e.hart,b.paechter}@napier.ac.uk

Abstract. Much of contemporary research in Artificial Immune Sys-
tems (AIS) has partitioned into either algorithmic machine learning and
optimisation, or modelling biologically plausible dynamical systems, with
little overlap between. Although the balance is latterly beginning to be
redressed (e.g. [18]), we propose that this dichotomy is somewhat to
blame for the lack of significant advancement of the field in either direc-
tion. This paper outlines how an inappropriate interpretation of Perel-
son’s shape-space formalism has largely contributed to this dichotomy,
as it neither scales to machine-learning requirements nor makes any op-
erational distinction between signals and context.

We illustrate these issues and attempt to derive both a more bio-
logically plausible and statistically solid foundation for an online, unsu-
pervised artificial immune system. By extending a mathematical model
of immunological tolerance, and grounding it in contemporary machine
learning, we minimise any recourse to “reasoning by metaphor” and
demonstrate one view of how both research agendas might still com-
plement each other.

1 Introduction

Perelson’s “shape-space formalism” has become the de facto representational
abstraction in AIS. Briefly: ligands and receptors are represented as points in an
abstract space, with a contiguous region of recognition surrounding each point
to account for small differences. Ligands and receptors that have intersecting
regions are said to have affinity. Although biologically unrealistic, the shape-
space has a certain heuristic value in place of the complex bio-chemical process
of protein binding.

This abstraction has been adopted wholesale by the AIS community as iso-
morphic with the vectorial representation of a data-set: each data-point being
an artificial antigen, perhaps falling under the recognition region of some ar-
tificial lymphocytes. Whilst pragmatic from a computational perspective, this
abstraction both distances algorithms from the underlying biology and essen-
tially reduces to augmented, classical memory-based methods of machine learn-
ing; methods that have largely fallen out of favour, because they are unscalable
in terms of both the dimensionality and size of the dataset.

AIS algorithms are typically built on very weak immunological analogies, pro-
viding no insight into the mechanisms and dynamics they claim to be inspired
by. Though there is a tension over what should be abstracted from the biology;
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often one finds a complete departure from the view of the immune system as
an autonomous, self-regulating system. Key ideas are externally and arbitrar-
ily imposed (e.g. self-nonself) and dynamical processes are replaced with trivial
simplifications (e.g. threshold based deletion and memory).

We advocate that by trying to better marry key ideas from both contemporary
machine learning and theoretical immunology, it should be possible to produce
novel contributions relevant to both fields. Therefore, in this paper we attempt a
small step in this direction. The paper outlines a biological basis that affords an
alternative problem representation, and draws a parallel between the statistical
and computational learning concept of boosting [8] and immune learning. Finally,
we illustrate how these aspects can be combined in an approach which exploits
the uniquely immune notion of tolerance to induce an adaptive, nonlinear feature
selection and topic-tracking algorithm.

1.1 The Non-immune-inspired Foundations of AIS

Memory-based methods (such as nearest-neighbour classifiers and density esti-
mators) are flexible, non-parametric and, as such, have a fairly natural mapping
to bio-inspired ideas: the population is the model and classification is performed
at runtime. By exploiting a sense of locality between data-points they tend to be
able to fit arbitrary complex decision boundaries or represent dense, nonlinear
regions in unlabelled data.

How well memory-based methods perform depends crucially on just how local
this sense of locality is. This is where the curse of dimensionality hits hardest:
as the dimensionality of the space increases, its volume increases exponentially
faster. Any metric defined across this volume becomes increasingly meaningless,
as all points tend to become equidistant. The unintuitive effects of the curse
have been discussed extensively in the machine learning and statistics literature
(e.g. [10,1,2,9]) and an AIS perspective is given by the work of Timmis and Sti-
bor in the context of negative/positive-selection algorithms [17]. However, these
undesirable effects have much broader scope, affecting any AIS that involves
affinity metrics based on recognition-regions in a high-dimensional shape-space.
This generally includes idiotypic networks and clonal selection algorithms.

In an n-dimensional shape-space, the immune repertoire must be of the order
O(cn) where c is a constant (e.g. c = 2 in a binary space). This exponential
scaling is computationally abhorrent for the typically large n involved in machine
learning. Even if we assume that the active repertoire is a sparse sampling of
the shape-space, an exponential increase in volume means that antigen are also
distributed sparsely. Such a sparse sampling is of little practical use, unless we
can access exponentially more antigen to fill the void. This further antagonises
scalability as memory-based methods must keep all (or a representative majority)
of the dataset in memory for runtime performance.

Any AIS that builds on these foundations has some formidable theoretical
issues to attend to before justifying any immune inspiration. One might argue
that such scaling issues do not effect the real immune system, due to its massive
parallelism and high cell turnover. We find this argument unconvincing; the
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dimensionality of the biological shape-space is likely orders of magnitude smaller
than typical machine-learning datasets1. The real problem, is that ligands-as-
data-points may be an inappropriate abstraction.

2 Biological Inspiration

In [5] Carneiro observed that deriving the dimensionality of a shape-space from
empirical protein affinity matrices is an ill-posed problem. Conversely, construct-
ing a theoretical shape-space that is consistent with empirical affinity matrices
is equally difficult. In either case, his experiments demonstrate that comple-
mentarity is not the only factor in ligand binding: there is a relational aspect.
Instead, he proposed that (in the meantime) immune models should be robust
to the nature of the affinity matrix. In his own work, this took the form of lig-
ands and receptors binding probabilistically, rather than under the ubiquitous,
over-simplified geometric lock-and-key metaphor. The result is that affinity is
no longer constrained to contiguous, isotropic regions surrounding a point in
shape-space – recognition can occur at multiple locations in the space.

Secondly, Carneiro recognised that much of the well-documented paradoxical
and limited dynamics of existing immune network models, with respect to in-
ducing tolerance and immunity, stemmed from the symmetry of complementary
receptor/ligand interactions [3,4]. Without any method to break that symmetry,
he could find no convincing way to induce models that simultaneously captured
both the structure and function of the immune system. By integrating the role of
T-Helper cells in activating induced B-Clones (and the secretion of complemen-
tary B-Clones in suppressing T-Help), Carneiro could break the symmetry of
interactions and realise a model consistent with Varela’s self-affirming network
[19] and Coutinho’s central and peripheral immune system [16], where tolerance
is an active process, dominant over the default immune response.

Carneiro’s insights into the relational aspects of an affinity measure and the
role of T-Clones in activating the immune response provide the key inspirations
for the biological basis of our approach.

2.1 Ligands and Receptors Are not Data-Points

Ligand binding is an extremely complex process and active area of research in
bio-informatics. It is currently not feasible to produce a biologically realistic
model of the protein folding and binding dynamics, and it is not clear that such
a model would be of any benefit to machine learning abstractions. However,
an often unexplored feature of immune recognition is the different processes in
antigen recognition carried out by different immune components. Integrating T-
Cells allows us to model these processes and, in turn, redefine our method of
problem representation.

Briefly, proteins are long chains of smaller peptides ; which are themselves,
chains of amino acids. Any specific protein has a chain of peptides that make up
1 E.g. Carneiro estimated ten to twenty dimensions [5].
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its primary structure – the long chain. The protein then undergoes a complex
folding process which results in a three dimensional surface – it’s secondary struc-
ture – where some peptides are buried inside the structure and others brought
together on the surface. To quote Janeway [11]:

Antigen recognition by T-cell receptors clearly differs from recogni-
tion by B-cell receptors and antibodies. Antigen recognition by B cells
involves direct binding of immunoglobulin to the intact antigen and [...]
antibodies typically bind to the surface of protein antigens, contacting
amino acids that are discontinuous in the primary structure but are
brought together in the folded protein. T cells, on the other hand, were
found to respond to short contiguous amino acid sequences in proteins.
These sequences were often buried within the native structure of the pro-
tein and thus could not be recognised directly by T-cell receptors unless
some unfolding of the protein antigen and its ‘processing’ into peptide
fragments had occurred.

To reiterate: T-Cells recognise contiguous aspects of the protein without ref-
erence to secondary structure. B-Cells and antibody recognise surface patterns
across the secondary structure, without reference to primary contiguity: im-
munoglobulin binding depends on both abstract proximity in shape-space and
physical proximity of peptides on the protein surface. This significantly alters
the representational and scaling complexity of the immune repertoire and goes
some way toward curtailing the curse of dimensionality.

2.2 An Alternative Abstraction

Assuming competitive exclusion, we might expect of the order O(N) viable T-
Cells, each able to recognise one of N peptides. If we also assume that a B-Clone
can recognise β nearby surface features2, then we can also expect of the order
O(N(N − 1)...(N − (β + 1))) viable B-Cells. This scaling is slower than the
polynomial O(Nβ) in the worst case: a worst case that is only realistic if each
peptide is uniformly likely to appear close to another. This is almost certainly
false from both the biological and computational perspective as redundancy is
typically rife. It is this redundancy that makes learning feasible.

Note that in this form, recognition is no longer a function of an affinity
metric in high dimensional space. T-Clone populations reflect the density of
independently presented antigenic peptides. B-Clone populations reflect the den-
sity of peptides that co-occur on the protein surface. This immune system is
feature-driven. Affinity is down-graded to a low dimensional measure of binding
strength and degeneracy between peptide “features”, rather than a metric over
high-dimensional feature vectors. Recognition now has an implicit temporal and
spatial aspect.

Intuitively, the immune system does not classify or cluster protein, but rather
learns to tolerate signals that are not indicative of pathology. This recognition
2 The notion of a fixed β is unnecessary, but simplifies our analysis here.
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must be (i) sensitive to differences in morphology, as proteins are structurally
flexible and degenerate; and (ii) be sensitive to the context of peptide occurrence,
because pathogen are often made of the very same stuff as the self. There is
simply no way to integrate these ideas in the traditional kernel-based abstraction
of affinity, because it lacks any distinction between signals and context.

3 Statistical Inspiration

We now consider a formalisation of these ideas in terms of online, unsuper-
vised learning; presented in the context of information retrieval and filtering.
We somewhat concur with Jerne [12] that language is a reasonable metaphor for
the problems the immune system faces, though we intend to traverse that link
in the opposite direction.

Given an arbitrary m × n data matrix A of m features (e.g. words) and n
contexts (e.g. documents) there is a limited set of data-derived relations that can
be used to induce learning methods. For typical AIS, and memory-based methods
in general, these tend to revolve around the n × n kernel/affinity matrix K
that represents measures between contexts (e.g. K = A′A). These measures are
computed via the pairwise comparison of features (e.g. dot-product, Euclidean
distance, co-variance etc) and as such, the scalar measures in Kij are inherently
m-dimensional. If m is large, which we will assume it is, any non-trivial metric
may be subject to the curse of dimensionality.

By duality, many equivalent results can be derived from the m × m matrix
G that represents measures between features (e.g. G = AA′). This is neatly
encapsulated in the singular value decomposition, which factorises A into the
product of three matrices, derived from the eigen-decomposition of K and G:

A = USV ′ where
G = AA′ = US2U ′

K = A′A = V S2V ′

and S is a diagonal matrix of the square roots of the shared eigenvalues, U and
V are the left and right eigenvectors, respectively. As an example of this duality,
a well-known result applied in machine learning is that projection of A onto the
basis vectors U (i.e. principal component analysis, see e.g. [10] for details), can
be equivalently expressed as a projection of K onto V :

Â = U ′A = (S−1V ′A′)A = (S−1V ′)(A′A) = αK

The significance of this indirection is that certain well-defined modifications
of the dot-products in K can be shown to be equivalent to dot-products in an
implied higher-dimensional space; without the burden of processing the high-
dimensional U and A. If the data becomes linearly separable in this implied
space, then a standard linear classifier can be induced to perform non-linear
classification in the explicit space.
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However, this ingenious technique for turning low-dimensional, non-linearly
separable data into high(er) dimensional linearly separable data is of question-
able utility when the explicit data is already high-dimensional: the implicit dot-
product is typically derived from the explicit dot-product or Euclidean distance,
which are already cursed. Furthermore, K is not conducive to online, continuous
learning: it scales in the order O(n) for updating and O(n2) for storage, where
n → ∞.

3.1 Moving Away from High Dimensional Notions of Affinity

For many modern learning and data-analysis tasks, the significant problem is
that we have too many dimensions. Furthermore, these dimensions are often
not independent, because of e.g. variations in word morphology and usage pat-
terns. Much like the immune-system, it can be the compound structures that are
implicit, not the features they consist of.

In contrast to the kernel K, G is more suited to online learning. It can be
updated in essentially O(1) time3. Each insertion or removal of context in A can
be efficiently reflected in G by an internal comparison between that context’s
features. In other words, as a sum of outer-products of the columns of A:

G = AA′ =
∑

i

AiA
′
i

which, translated into an online setting, reads:

Gt+1 = Gt + (At+1A
′
t+1)

Note that this online updating is impossible with K as this contradicts the
physical nature of incoming context that contain features. To perform this type
of update with K would require incoming context vectors for each feature, which
is logically absurd. Updating K requires an O(n) comparisons between the new
and all previous contexts, and any attempt to optimise this by exploiting locality
is subject to the curse of dimensionality. This distinction in the duality of matrix
analysis is often overlooked when A is considered static and given a priori.

The cost of this alternative is that G scales in the order O(m2) for storage,
and m is usually much greater than n. However, the reality of this cost is entirely
dependent on the sparsity of G, and the sparsity of G is entirely dependent on
what is considered a “context”. Because this granularity is implicit in our im-
mune model, we have control over this sparsity. In fact, we might favour a highly
sparse representation to satisfy biological plausibility as well as computational
tractability: clearly, correlation on the surface of a protein is a much more fine-
grained notion of context than correlation on, e.g., the same pathogen. In other
words, the immune repertoire may only consider short range correlations, which
typically promotes sparsity.
3 Actually, O(f2) where f is the number of features present in a given context. For

many tasks this is significantly less than the total number of features and is inde-
pendent of the size of the dataset and its dimensionality.
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Essentially, we are stating the immune system is performing some sort of
feature selection and invite the reader to compare this with the traditional data-
vector based interpretation. We now consider what modern machine learning
can contribute to this idea of immunological learning.

4 Boosting the Immune System

Boosting [8,10] has emerged as one of the most radical and successful instantia-
tions of the recent trend in machine learning of ensemble learning. The general
goal of ensemble methods is to improve on the classification performance of a
single learning machine, by integrating the results of many diverse learners4.
The radical aspect of boosting is the formal demonstration of the equivalency
of weak and strong learnability: a weak learner, performing only slightly better
than random guessing, can be aggregated into a strong learning algorithm:

y0 = strong(x0) =
∑

i

αiweaki(x0)

The relation to basis expansion methods (as discussed above) is also clear:

y0 =
∑

i

αiUi(x0)

where Ui are the basis “functions”. The canonical basis are the eigenvectors
derived from G, but this functional form is quite general and powerful: accom-
modating arbitrary functions of x0, augmentations of x0 and any additional
per-function parameters. In the case of boosting, each basis is a weak classifier.
Intuitively, this can be seen as the integration of base heuristics that will often
fail, rather than of fully trained classifiers as employed by ensemble methods
in general. We invite the reader to consider an analogy with the immune sys-
tem, particularly Cohen’s co-respondence, where coherent system-wide responses
emerge from the interactions of unintelligent cells with randomly generated speci-
ficity [6]. We also note that there are currently few theoretical models which
underpin this concept, despite it often being exemplified in AIS.

The key to boosting’s success is that learner diversity is augmented by reweight-
ing the training data and sampling proportionally to these weights. Successfully
classified data have their weight decreased, forcing newer learners to compensate
their predecessor’s bias and concentrate on data that is causing continued clas-
sification error. This additional diversity in the data, allows the boosted system
to perform better than its single best component. Again, we invite the reader to
consider an immunological interpretation of these ideas, where antigen population
and antibody production are in a constant feedback cycle with antigen presenta-
tion and clone activation.
4 Where diversity can be specified in different ways: different learning algorithms;

the same algorithm with different parameters or trained on different subsets of the
training data...etc.
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4.1 B is for “Basis”

Boosting departs from our immunological ideas insomuch as it is performed in a
stage-wisemanner.That is,ateach iteration,aweak learner isgeneratedandtrained
on the current data, which is then reweighted based on that learner’s performance.
Thisvastly simplifies thefittingof thealgorithm’sparametersas itdoesnotattempt
tofitallparameters inparallel (e.g.as inNeuralNetworks).Oncea learner’sparame-
tersarefit,theydonotchangeasnewlearnersareaddedtotheensemble.Theprocess
terminates when a learner can do no better than random guessing.

We propose an immune-inspired augmentation to boosting: replace stage-wise
fitting with the meta-dynamics of B-Clone creation and deletion. Intuitively,
we can envisage the B-Clone repertoire, with its multi-point recognition, as a
massive set of randomly generated basis functions, or weak classifiers. This gives
us a rich, and adaptive, method of constructing problem representations from
viable sub-components (the basis). Viability is determined by clonal selection
of the overlapping repertoire. Representational complexity is then regulated by
competitive exclusion over available T-Help.

Note that there is no computationally difficult, parallel parameter fitting in
this model. A B-Clone’s receptor is simply a trivial, unweighted β-subset of all
possible features. In contrast to, say, Neural Networks, these components are
simply out-competed and replaced, rather than adjusted to fit incoming data
with a desired response.

4.2 T is for “Tolerance”

We alluded earlier that Carneiro’s model, based on earlier work by Varela and
Coutinho et al., is a model of immunological tolerance. We suggest that in a
computational intelligence context, the plasticity and adaptation involved in
tolerance may prove to be a more attractive mechanism than isolated notions
of immunity based on clonal selection, negative/positive selection and idiotypic
memory. Indeed, our model indirectly subsumes each of these ideas.

In our own experiments and extensions of Carneiro’s model [13,14] we have
highlighted that the model can be induced to perform a sort of habituation to
antigen that’s interaction dynamic with the immune response displays a certain
persistence. This is almost certainly true of the ubiquitous and regenerative
proteins of the self, and is consistent with the well-known phenomenon of high
and low dose tolerance. The essential dynamics of our model can be summarised
as this: There is a window of opportunity for an unfettered immune response to
antigen, after which the suppressive, tolerance-inducing anti-response of antigen-
like complement-of-a-complement antibody initiates. Once both responses are
engaged, the outcome of tolerance and immunity is ultimately decided by the
success of T-Help in activating B-Clones that opsonise antigen (i.e. immunity), or
anti-B-Clones that suppress T-Clones (i.e. tolerance). Between these extremes,
the response dynamics depend largely on the magnitude and dynamics of the
antigen (see [14] for further details).

The key mechanism for unsupervised learning is this: as features become to-
lerised, the topology of G is actively modified, which in turn, partitions the viable
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repertoire. This adaptive process is based on very specific criteria of inductive
bias. We finish by discussing these criteria and pulling the previous sections into
a consistent picture of a learning dynamical system.

5 The Noisy Self

Traditionally, the self-nonself distinction has often been treated as a two-class
classification problem, with somewhat arbitrary class labelling based on the ap-
plication area: e.g. spam-notspam. This will not hold under our interpretation.
Firstly, our system is based on the correlative and morphological relationships
between features, not feature vectors. Secondly, if the self is habituated against,
then the self is a very particular type of noise – persistent signals that become
perceptually ignored.

This makes some biological and semantic sense. If the immune repertoire is
a reflection of the antigenic environment of the host, then one might expect
two hosts from the same environment to have similar levels of tolerance toward
aspects of self and nonself. These levels of tolerance would roughly subsume both
the hosts’ position in a phylogenic (e.g. antigen unique to human, earlier species
and mammals) and ontogenic (e.g. antigen unique to western European, British,
city dwellers) taxonomy. We find essentially similar requirements in statistical
learning, where a feature’s discriminatory and aggregatory power is very much
problem and dataset specific (e.g. English language documents; about computer
science; about algorithms).

Further, it is well known that both protein [15] and term co-occurrence [7]
networks follow a roughly power-law degree distribution with high clustering-
coefficient. The bell-shaped dose-response curve of the immune system, with
its high and low dose tolerance, has an intuitive interpretation in these environ-
ments: weakly connected features are random noise and can be passively tolerated;
highly connected features are too ubiquitous to distinguish non-self and should be
actively tolerated. For a power-law distribution, this filters out a massive propor-
tion of the features: the many that make up the distribution’s tail, and the few
that account for the majority of the peak of the curve.

The bulge in the middle, where an immune response freely develops, presents
an opportunity for a non-linear, adaptive method for clustering features, tracking
their evolving relationships, and decomposing datasets into base contexts.

5.1 Implicit Learning Via Explicit Tolerance

In a network with a power-law degree distribution and high cluster-coefficient,
with passive tolerance to weakly significant features and active tolerance toward
weakly discriminatory features, the remaining network quite naturally begins
to emphasise, and partition into, cohesive sub-nets of correlated, significantly
discriminatory, features (see Figure 1). The exact nature of this process is still
under analysis. Though a detailed treatment is outside the scope of this paper,
an appeal to intuition is straight forward.
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Fig. 1. Snapshot of the evolution of tolerance and immunity on a word-based feature
network. Left: the magnitude of response is represented by opacity with passive tol-
erance around the weakly connected periphery; active tolerance (highlighted) in the
dense centre; and a gradient of active responses in-between. Right: removing tolerated
nodes from the network illustrates the decomposition of the network into contextually
dependent sub-components.

Each connected component is a loose federation of actively responding B-
Cells, bound together by idiotypic interactions via overlapping β-subset recep-
tors. These can be considered as implicit higher-order basis functions:

y0 =
∑

k

αkFk(x0) =
∑

k

αk

∑
i

βiclonei(x0) (1)

where extracting this implicit basis is a simple process of breadth-first search.
This search is of the same computational complexity as Eq. 1, with the exception
that it allows us to identify when we transition between different connected
components. In other words, the higher-order structure is entirely fluid: resizing,
partitioning, and merging as G and the immune repertoire co-evolve.

Note that this strategy is not fitting hyperplanes between clusters, hyper-
ellipsoids around clusters, or centroids at the heart of clusters. We are not a
priori constraining the clusters to a fixed number, a fixed shape, a fixed pro-
portion of the space, or any other arbitrary criteria of good clusterness to be
optimised. The tolerance mechanism habituates to non-discriminatory features
in the network, which, in turn, induces partitions of contextually dependent fea-
tures. These partitions can be used to decompose compound structures (e.g.
high-dimensional document vectors) into a sum of low-dimensional base topics
that are learned and tracked autonomously.

Clearly, this is not possible when the high-dimensional compound structure
is the abstraction of ligand and receptor shape.

6 Conclusion

We have discussed the theoretical and conceptual difficulties surrounding the
common AIS abstraction of shape-space. High dimensional kernel-based notions
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Table 1. Comparison of conceptual ideas in boosting and immunology

Boosting Immune System
Weak Learner/Basis B-Clone with β-subset receptor

Strong Learner Immune repertoire

Weighted majority to increase confi-
dence and reduce variance

System-wide coherent responses via
cell co-respondence

Reweighting data to increase accu-
racy and reduce bias

Feedback between antigen presenta-
tion and antibody production

Regularisation to manage representa-
tion complexity

Competitive exclusion over available
T-Help to focus the repertoire

Stage-wise fitting Parallel metadynamics

Decision surface e.g. y ∈ {+1, −1} Competing complementary responses

of affinity may be a poor abstraction: they do not scale to large computational in-
telligence domains; are biologically implausible; and they cannot make an opera-
tional distinction between context and signals necessary to realising constructive
problem representations in an online setting.

Moving away from high-dimensional kernel-based notions of affinity, we have
interpreted the immune system as performing adaptive feature selection via a
tolerance mechanism inspired from theoretical immunology. This change of per-
spective opens up a wealth of previously unavailable theoretical results in com-
putational and statistical learning, most notably, boosting and the strength of
weak learnability. We find the correspondence between these theoretical results
and common immunological learning ideas quite natural and appropriate (see
Table 1). Both perspectives may have something to offer each other, without
compromising their individual contributions.
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Abstract. In previous work we derived a mathematical model which
allows the frequency response of a dendritic cell to be predicted. The
model has three, key limitations: the model assumes that the intermedi-
ate co stimulatory molecule signal is constant; it is only possible to make
predictions for a single cell and the model only takes into account the sig-
nal processing element of the dendritic cell algorithm, with no attempt
to explore the antigen presenting phase. In this paper we explore the
original model and attempt to extend it to include the effects of multiple
cells. It is found that the complex interactions between the cells creates
a one to many relationship between the input frequency and the out-
put frequency. This suggests that traditional frequency-based techniques
alone are unlikely to yield an effective automated tuning mechanism.

Keywords: Dendritic Cell Algorithm, Frequency Analysis, Tuning.

1 Introduction

The dendritic cell algorithm (DCA) is a relatively new addition to the field of
artificial immune systems (AIS). The DCA can be viewed as a binary decision-
making algorithm, for making Boolean choices in uncertain problem environ-
ments. Despite being successfully applied to several problems [1,6,7] little work
has been carried out to characterise the operation of the algorithm. In [4] the high
sensitivity of the algorithm to its input parameters is discussed. However, too
little is known to automatically tune these parameters for a given application.
Currently trial and error is used to identify the appropriate input parameters for
new applications. This can be time-consuming and does not guarantee to find
an optimal parameterisation. An automated tuning algorithm would be able to
find an good quality set of input parameters for a given application and would
provide a good basis for future comparisons between the performance of the
DCA and other techniques. To derive such a tuning methodology it is important
to mathematically characterise the behaviour of the algorithm. In [8] a mathe-
matical model of a simplified version of the DCA was derived using frequency
analysis. This model provides an accurate prediction of what information an in-
dividual cell will use to make decisions. The simplified model makes three, key
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assumptions: the co stimulatory molecule (CSM ) signal is assumed to be con-
stant; the model only provides the response of a single cell and the correlation
between signals and antigen is assumed to be trivial so is not modelled. A ‘triv-
ial’ correlation between signal and antigen implies that the delay between an
antigen appearing in the system and its affects appearing in the input signals is
constant and negligible. It was proposed that such a model would be able to pro-
vide a tuning methodology for the DCA’s input parameters, based on removing
those frequencies that were deemed to contain misleading, noisy data. However,
a preliminary tuning methodology based on the original model provided mixed
results. The low quality of the tuning results has been attributed to the model’s
over-simplification of the algorithm.

An extension of the original mathematical model proposed in [8] should yield
a more accurate estimate of the algorithm. Such an improvement could be the
basis of a superior tuning methodology.

This paper is organized as follows. Section 2 provides an overview of the
implementation of the DCA. Section 3 explains how the DCA can be modelled
as a filter and the benefits of doing so. Section 4 discusses the limitations of the
original model and provides some justification for these assumptions. Section 5
explores an extension of the original model to incorporate multiple cells, the
results of which are given and discussed in Section 6.

2 Simplifying the Dendritic Cell Algorithm

The original dendritic cell algorithm is inspired by the biological dendritic cell. As
a result many of the original parameters and signals were named after biological
signals. For an introduction to the relevant biology, the interested reader should
refer to [1,4]. In [8] a simplified version of the algorithm was presented which
reduced the amount of processing carried out per cell. This optimisation also
provides the basis for later extensions that make the frequency analysis of the
algorithm possible.

2.1 The Original Dendritic Cell Algorithm

A full description of the original DCA is outside the scope of this paper. The in-
terested reader is referred to [2] for pseudocode and a detailed description of the
algorithm’s implementation. In this section we provide a brief overview of the
operation of the algorithm. The DCA attempts to assign a value to each input
symbol between 0 and 1 that describes the likelihood that the antigen is a mem-
ber of a target set. The algorithm has two parts: a decision making process and a
state correlation process. A block diagram of the original dendritic cell algorithm
is given in Fig. 1. The algorithm receives four inputs from the problem environ-
ment, a stream of enumerated symbols (termed ‘antigen’) and three normalised
signals generated by application-specific heuristics. The output of the algorithm
is a stream of enumerated symbols, each associated with a score between 0 and
1. The score is the algorithm’s ‘decision’ about that symbol. The meaning of the
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decision depends on the application that the algorithm is being applied to and
the input heuristics being processed. The input enumeration stream provides an
asynchronous list of symbols which represent the state of the problem environ-
ment. The three input heuristics convey the pertinent information for decision
making from the problem environment to the dendritic cell population. These
signals are expressed as real-numbers. Min-max normalisation is used to keep
each heurisitic output within the range 0 and 1. The PAMP heuristic identifies
situations that only occur when a positive output is required. The Safe heuristic
identifies situations that only occur when a negative output is required. The na-
ture of uncertain decision making environments means that these are rarely the
inverse of one another. The Danger heuristic identifies situations that always oc-
cur when a positive decision is required, but can occur when a negative decision
is required. All information that is provided to the algorithm from the problem
environment is stored in a collection of asynchronous buffers termed ’tissue’. In
the decision making element of the algorithm, the cells accumulate three internal
signals based on weighted sums of the input signals. These internal signals are
all real-numbers. The IL-10 signal increases proportionally to the Safe signal.
The IL-12 signal increases proportionally to the PAMP and Danger signals, but
can be decreased by the Safe signal. The CSM signal increases proportionally to
the sum of all signals. When the accumulated CSM signal in a given cell reaches
a cell-specific migration threshold, the cell makes a decision. If the accumulated
IL-10 signal is greater than the accumulated IL-12 signal, the decision is neg-
ative. Otherwise the decision is positive. During the sampling life of the cell,
it also collects samples of the symbols presented by the enumeration stream.
The algorithm can be run continuously in real-time as when a cell finishes its
sampling phase, it is removed from the population and a new cell is put in its
place, maintaining a constant population of sampling cells. The state correlation
element of the algorithm performs statistical analysis on the symbols collected
by each cell and each cell’s output decision. This correlation is designed to spot
patterns between periods of signal activity and the presence of certain antigen.

A crucial factor in the performance of the algorithm is the probability dis-
tribution used to allocate migration thresholds to the cell population. If set too
high the cells in the population will spend a large amount of time collecting
antigen samples before making a decision. This means that correlation becomes
an intractable problem as all cells will contain samples of almost all antigen.

If set too low, cells will be vulnerable to noise and in applications where there is
a lag between antigen presentation and signal generation, the correlation process
will fail.

2.2 Similarities to Neurons

The computational implementation of dendritic cells and neurons both involve
performing weighted sums of input signals which are ultimately thresholded to
produce a binary output. However, there are key differences between this algo-
rithm and perceptrons. Firstly, perceptrons require supervised training periods
to calculate the weightings for a given application, while the DCA uses expert
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Fig. 1. A representation of the original DCA. The decision is made when the cumulated
CSM is greater than the cell-specific migration threshold. The decision is positive if
the cumulated IL-12 signal is greater than the cumulated IL-10 signal, otherwise the
decision is negative.

knowledge to form the input heuristics. The pros and cons of supervised learning
vs. encapsulation of expert knowledge are beyond the scope of this paper. Sec-
ondly, perceptrons form N −1 dimensional hyperplanes, (where N is the number
of inputs) and perform linear thresholding using that hyperplane to make deci-
sions. The output from each dendritic cell can also be viewed as the result of
applying a hyperplane threshold to the signals that it has been exposed to. How-
ever, the dimensionality of the hyperplane is a function of signal strength, as the
number of samples taken before migration is determined by the accumulation of
the CSM. Finally, the DCA processes both signal and antigen over varying size
time windows which is not the case with a perceptron.

2.3 The Optimised Dendritic Cell Algorithm

By rearranging the block diagram in Fig. 1 it is possible to make improvements
to the performance of the DCA. The final comparison between IL-10 and IL-
12 can be replaced by comparing the difference between the two signals with
zero. As the two signals are both weighted sums of the same three input sig-
nals, the instantaneous difference between the two can be expressed as a single
weighted sum. The new abstract signal is termed K. Finally, all calculations
that require no persistent state can be calculated per population rather than
per cell, significantly reducing the number of calculations required to implement
the algorithm. The optimised algorithm is illustrated in Fig. 2. It is estimated
that for a population of 100 cells this reduces the number of operations per it-
eration from 180 (3 multiplications and 3 additions for 3 signals per cell) to 12
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Fig. 2. A representation of the optimised DCA. More processing has been moved into
the tissue and fewer calculations are required for the intermediate signal generation.

(3 multiplications and 3 additions for 2 signals per cell). This estimate is only
based on arithmetic operations, not assignment operations.

3 Modelling the Dendritic Cell Algorithm as a Filter

It is hoped that by modelling the DCA as a filter it is possible to gain an insight
into the workings of the algorithm that will make automated population tuning
possible. In the optimised version of the DCA, the tissue now provides 2 input
signals to the DC population, K and CSM. These signals are both weighted
sums of the input heuristics. K represents the information used to make the
decision and CSM is a control signal which affects how long the cell will remain
sampling K. The tolerance of the algorithm to noise, as discussed in [7], suggests
that not all frequencies of the K signal are processed by the DC population. In
order to gain some insight into which frequencies are used and which frequencies
are ignored, it is possible to reconstruct the K signal from samples taken by the
DC population. Comparing the magnitudes and frequencies of the reconstructed
signal K̂ and the input signal, K allows a model to be produced of what in-
formation is passed through the cell. Note that this estimation of K̂ is not a
suggested extension or improvement to the algorithm, merely a tool to analyse
the standard algorithm. In order to estimate K̂ it is necessary to keep track of
how long each cell samples for. By dividing the accumulated K signal by the
length of time each cell samples for it is possible to estimate K̂ for a given cell.
The full derivation of the model can be found in [8]. The final result, relating
migration threshold Mi, the constant CSM signal, C and the frequency response
of the cell is given by:
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H(ω) =

∑WL−1
g=0

∑WL−1
b=0 e−jb((ω+(2gπ)))

W 2
L

(1)

where ω is the frequency of the input signal, j is the square root of −1 and WL

is defined as:

WL =
⌈

Mi

C

⌉
(2)

3.1 Verification of the Model

To verify the model, the response generated by the model was compared to the
output of a DC. To measure the frequency response of a DC, sine waves with an
amplitude of 1 were presented as inputs, at varying frequencies. The maximum
magnitude of the output was used as an approximation of the gain of the cell for
each frequency. Figs. 3 and 4 show the results of these experiments. In every case
the model is evaluated in the range from 0Hz to half of the sampling frequency
of the system. The Nyquist frequency of any system is 1

2fs where fs is the
sampling rate. It is only necessary to examine the system within this range, as
accuracy up to the Nyquist frequency guarantees the same level of accuracy for
all frequencies. For details please see pages 41-43 of [5].
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Fig. 3. The Effects of Varying the Migration Threshold. For these experiments the
value of the CSM is held at 20 and the migration threshold is 30 (dashed line), 60
(dotted line) and 120 (dot-dashed line0). In each case the corresponding actual response
is shown as a solid grey line. Data taken from [8].

The model predictions are reasonably accurate across the range of input pa-
rameters. Some transient drops in the algorithm’s response are not predicted
but the general shape of the response is well matched.
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Fig. 4. The Effects of Varying the CSM Value. For these experiments the value of the
migration threshold is set to 60 and the CSM value is 10, (dashed line) 20, (dotted
line) and 30, (dot-dashed line). In each case the corresponding actual response is shown
as a solid grey line. Data taken from [8].

4 Limitations of the Frequency Model

The assumptions made to derive the model limit how useful the results are for
predicting the response of the DCA. Here we discuss the key assumptions and
the effects that these assumptions have on the model.

4.1 Constant Co Stimulatory Molecule (CSM )

The model assumes that the CSM signal is kept constant over the lifetime of
the cell. This is unlikely, as the K signal and the CSM signal are both weighted
sums of the same three input signals, so whilst it is possible for one to move
independently of the other, it is highly unlikely. However, it is doubtful that
this is a factor in the model’s accuracy. The CSM signal is accumulated by a
cell over its lifetime. This means that any constant model of CSM is equivalent
to any selection of the CSM signal with the same accumulated total over the
lifetime of the cell. The implication of this is that the model allows the user to
inspect the cell’s behaviour for a small range of CSM values. Thus any tuning
methodology based on this model would be valid if the selected CSM was a good
representation of important regions of activity for the application.

4.2 Antigen Correlation

The model makes no attempt to take into account the antigen correlation of the
algorithm, so it can make no predictions about how this element of the algorithm
is effected by the input parameters. For applications where the correlation be-
tween antigen presentation and signal presentation is trivial this is unimportant.
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For example, if there is no delay between the antigen being presented and its
effects being felt, the results of the model would be adequate for representing
the application’s needs. However, when there is a delay between antigen presen-
tation and the resulting signal presentation, or where the relationship between
antigen presentation and signal presentation is combinatorial, (i.e. no one anti-
gen is responsible for a positive decision, but certain combinations of antigen can
cause this to happen) the model will not provide enough information to select
the migration threshold range. It is of note that there are no applications of the
DCA in the literature where combinatorial effects have been investigated. The
model could be used in the future to investigate the effects of Mi on cases where
there is a time delay between antigen presentation and signal presentation, as
the phase of the K̂ signal will provide information about the lag introduced by
the algorithm and thus, the largest possible time between sampling an antigen
and ceasing to process signal.

4.3 Single-Cell Modelling

The model only considers a single cell operating in isolation from the rest of
the population. This is considered to be the most significant drawback to the
practical use of this model for migration threshold tuning. The DCA relies on the
use of a population of cells to ensure that samples are processed frequently and to
gather a wide range of data from multiple frequencies. By ignoring the interaction
between a population of cells it is likely that the model is an oversimplification.
For this reason it was decided to extend the model to incorporate multiple cells.

5 Extending the Frequency Model

In order to model multiple cells in the frequency domain, it is necessary to
specify how they will interact during the normal operation of the algorithm. To
produce a population-wide K̂ we must find a reliable way of combining the data
from a population of cells. For the purposes of this investigation it was decided
to simply periodically sample the cell population and check for migrated cells.
The K̂ output from each migrated cell would be averaged together to produce
a population-wide estimate of K for that window. By averaging together the
output from multiple cells, the process of generating a multi-cell model is made
much easier. In the frequency domain, the averaged output from multiple filters
can be modelled as simply the sum of the gains. The averaging process has no
effect on the shape of the response, but scales it to be in the range 0-1. To explore
the effects of this multi-cell model a 2 cell system was created using one cell with
a migration threshold of 90 and one cell with a migration threshold of 110. The
CSM signal was held at 20 and the sampling rate was held at 1Hz. The output of
the cells was checked every algorithm cycle. All of the experiments were carried
out using the Octave environment. Fig. 5 shows the frequency responses for the
single cell models using an Mi of 90 and 110 respectively.
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Fig. 5. The frequency responses of the single cell models for a migration threshold of 90
and 110. The dotted-line illustrates Mi = 90 and the dashed-line illustrates Mi = 110.
In both cases the corresponding solid, grey line is the actual response.

6 Results and Discussion

Fig. 6 shows the frequency response of the actual system and the predicted
output. The two lines clearly diverge more than the other models. The source
of the difference is a combination of the asynchronous nature of the dendritic
cell algorithm and the way in which the actual system gain is calculated. To
calculate the gain of the actual system, the peak value of the output is recorded
by the simulator. As the cells have different migration thresholds there will be
occasions when one cell reports and the other does not. On other, rarer occasions,
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Fig. 6. The frequency response of the two cell system. The dashed line is the predicted
response and the solid, grey line is the actual response.
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Fig. 7. The frequency response of the two cell system. The dashed line was generated
by using the largest gain out of the two, single cell predictions for each frequency. The
solid, grey line is the actual response.

both cells will synchronise and report at the same time. As the maximum peak is
recorded as a measure of gain, the cell with the larger gain for that frequency will
dominate the results from the simulator. This can be verified by comparing the
measured response from the algorithm with the maximum of the two single-cell
model predictions. In Fig. 7 the output from the actual system clearly follows

Fig. 8. An example of the output for a two-cell DCA. The sample frequency is 1Hz
and the input frequency is a sine wave at 0.125Hz with a magnitude of 1. The first
peak is the gain of the cell with a migration threshold of 90 (approximately 0.48), the
second peak is the gain of the cell with a migration threshold of 110 (approximately
0.31) and the third peak is the average gain of each cell (approximately 0.40).
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the maximum path of the two model predictions. Fig. 8 shows an example of
the asynchronous system outputting three different sized gains for a single input
frequency.

The construction of a model capable of predicting the response of a population
of DCs is a non-trivial task. The asynchronous nature of the population means
that the differing phases of the cells will have a significant effect on the output
of the system. Effectively the relationship between gain and input frequency has
ceased to be expressible using conventional means, as the gain for a given fre-
quency is a range of values, depending on the relative phases of the cell population.
For a two cell system there are four possible gains for each frequency, the gain of
cell 1, the gain of cell 2, the average gain of cell 1 and cell 2 and a gain of zero, when
neither cell migrates. It is possible to derive that the number of possible gains for
a single input frequency, for a population of cells is given by:

Ng = 2P (3)

where Ng is the number of possible gains and P is the number of cells in the
population. This is a worst-case that assumes that it is possible for all cells to
simultaneously drift in and out of phase with one another. For a standard 100
cell implementation of the DCA this evaluates to approximately 1.27 × 1030.
Whilst it is possible to calculate the average response, it is questionable if this
will be sufficient to provide enough information to effectively tune the system.
It is possible that the cells drifting in and out of phase with one another adds
another level of filtering to the system. A transient spike will be picked up by
some, but not all of the cells migrating at a given interval, thus the average
output over the population will potentially remove some of the noise from the
inputs.

7 Conclusions and Future Work

These results cast doubt on the usefulness of traditional frequency-based tech-
niques for modelling the DCA. An effective, multi-cell model, potentially needs
to be able to take into account the differing phases of the cells, but even for
standard implementations the space of possible gains is huge. The average re-
sponse could be calculated with knowledge of how often combinations of cells
drift in and out of phase with one another. This is calculable for a constant
CSM system by using the different values of WL. Such a model would only be a
guideline for the general case of the algorithm and the computational complexity
of evaluating such a model could potentially outweigh the benefits of automated
parameter tuning vs. the trial and error approach.
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Abstract. We present an empirical investigation of a mathematical
model of cytokine and cell interactions, as derived by Hone and van
den Berg, with the intention of ascertaining its potential for deployment
in an engineering context. The model’s behavioural robustness regarding
various patterns of input is assessed, as is it’s scope for manipulation
through parameter adjustments. Based on these observations we make
an addition to the system and attempt to deliberately engineer partic-
ular behavioural properties. Finally, the system’s suitability for use in
engineering is assessed.

1 Introduction

Hone and van den Berg [1,2] presented and Artificial Cytokine Network (ACN), a
mathematical framework for the modelling of cytokines. Their framework utilises
ordinary differential equations, and proposes mechanisms through which cells,
cytokines, and external stimuli can be modelled and interact. We are interested in
the potential application of the ACN in an engineering context. Stepney et al [3]
propose a structured framework for the exploitation of biology in the derivation
of biologically inspired algorithms. We adhere to this framework’s methodology,
and present here an initial empirical investigation of the ACN.

Our paper is structured as follows. In Section 2 a numerical instantiation
of the ACN is introduced (hereafter referred to as ‘the system’), this is used
as the basis for our investigations. Section 3 details those properties of any
system that we deem critical for deployment in an engineering domain. Section 4
reports the ACN’s behaviour when perturbed with a variety of input patterns.
In Section 5 we investigate the behavioural impacts of varying the system’s
parameter values. Section 6 details our proposed additions to the system, and
we attempt to deliberately engineer particular behaviours. In Section 7 we assess
the system’s suitability for deployment in an engineering context. Finally, we
conclude our work in Section 8.

2 Simple Cytokine Network

Hone and van den Berg’s work [2] presented a general framework for the instan-
tiation of particular cytokine networks. The number of cytokines, cell, sources

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 340–351, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Empirical Investigation of an Artificial Cytokine Network 341

of external stimuli, and their interactions may all be varied between instantia-
tions, and the framework comprises a large number of parameters. The scope
for complexity is huge and an exhaustive study is not feasible, hence we adopt
the relatively simple ‘numerical instantiation’ presented in Section 4 and Figure
4 of [2] as our baseline for these investigations.

The system comprises variable concentrations of a single cell type v, and
two antagonistic cytokine types u1 and u2. Their dynamics are defined by the
following equations (we retain the symbols of the original paper).

u1 concentration change u̇1 = ψ1(u1, u2, s)v − ν1u1,
u2 concentration change u̇2 = ψ2(u1, u2, s)v − ν2u2,
cell concentration change v̇ = (φ(u1, u2, s) − μ)v,

cytokine secretion ψj(u1, u2, s) = ψ̄jS(
∑

k=1,2 Wjkuk − θ̃j),
cell proliferation φ(u1, u2, s) = s u2 exp(−γ u1), γ > 0
sigmoid function S(x) = 1/(1 + exp{−x})

ψj denotes the secretion rate per cell of cytokine j, and is influenced by the
concentrations of cytokines and input stimulus in the system. Cytokine concen-
tration increase through secretion is offset by decay, defined as a fixed proportion
of the population by νj . Similar mechanisms control cell proliferation, φ repre-
senting the number of offspring a single cell produces, which is offset against a
decay rate μ. The maximum level of cytokine j secretion by any single cell is
denoted by ψ̄j . S(x) is a sigmoid function that determines what proportion of
ψ̄j is secreted. Wjk represents an interaction matrix that denotes the effect that
the presence of cytokine k has on the secretion of cytokine j. Threshold values
θ̃j must be overcome before significant secretion of cytokine j can commence.
Input stimulus s and presence of cytokine u2 promote cell proliferation, while
u1 hinders it. γ scales the effect of u2.

All the system’s parameters are listed in Table 1. During the course of the ex-
perimentation carried out below, parameters take the default values in this table
unless otherwise stated. u1(0) designates a value at the start of the simulation.
The interaction matrix W is set as follows:

W =
(

W1 1 W1 2

W2 1 W2 2

)
=

(
−1 1
1 0

)

Hence, the presence of u1 strongly discourages its own secretion, presence of
both u1 and u2 promote each others secretion, and the presence of u2 has no
effect on its own secretion.

The system can be perturbed by manipulating the amplitude and temporal
properties of the input stimulus s. The change in cell concentration is interpreted
as the system’s output. It is the relations between inputs and outputs that form
the behaviours we investigate.

3 Criteria of Investigation

The following system properties and behaviours are deemed desirable for deploy-
ment in an engineering context.
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Table 1. Parameters, and their default values. Taken from [2], Section 4 and Figure
4. The ‘standard system’ is a system with all parameters configured according to this
table.

Parameter Value Parameter Value
u1(0) 6.5 ψ̄1 1
u2(0) 12.5 ψ̄2 1
v(0) 12.5 W1 1 -1
ν1 2 W1 2 1
ν2 1 W2 1 1
μ 10 W2 2 0

θ̃1 6 γ 0.1

θ̃2 11

Responsivity towards diverse inputs. A system that is reactive towards a
wide variety of inputs will be suitable for a diverse set of engineering domains.

Behavioural stability given input instability. The system should exhibit
predictable, stable, and recoverable behavioural changes to anomalies in its
input stream, rather than becoming unstable and erratic.

Scope for behavioural change. It is important that the dynamics of the sys-
tem can be altered. A system with one fixed behaviour will not be applicable
to a diverse set of problem domains.

Scope for predictable behavioural adjustment. It is important that the
system can be tailored towards a particular problem domain, thus we desire
that varying parameters have a reliable and predictable effect on the system’s
behaviour.

4 System Response to Input Patterns

The experiments carried out by Hone and van den Berg [2] utilised either a
continuous, or only two distinct inputs. It is fair to assume that in any online
scenario the system will be perturbed with multiple, asynchronous input stimuli
which vary in amplitude. We wish to ascertain the standard system’s stability
and responsiveness to these more complex types of input pattern.

Though not as complex as a potential online application, the experiments that
follow should collectively provide an indication of the system’s response to more
complicated patterns. It should be noted that in these simulations the system
is always started with an input present. For convenience the period, duration,
and amplitude of input stimulus s are denoted P , D , and A respectively. Unless
otherwise stated, D = 0.2 time units in all cases.

Square Wave Inputs
The system remains responsive to inputs of P ≤ 2.3 and A = 8.0. For peri-
ods greater than, or amplitudes less than, these values, system wide decay of all
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variables ensues. Conversely, larger Awill extend the maximum period for which
the system remains responsive, and smaller P will remain responsive despite
smaller A .

As P approaches D = 0.2, the height of cellular proliferation peaks decreases,
and the height of proliferation troughs increases. For P = D , i.e. constant input,
all variable concentrations experience initial fluctuations but converge on con-
stant values. Maintaining P = D , A ≤ 3.2 induces system decay, whilst larger
values increase the post-fluctuation concentration levels.

Very small periods of P > 0.2 produce cell proliferation peaks for every input
event. For 0.5 ≤ P ≤ 1.2 proliferation occurs for every other input, the remaining
inputs inducing no response.

Square Waves with Linear Amplitude Increase
The input pattern utilised here has P = 2.0, D= 0.2, and an initial A= 8.0 which
is increased by some constant c with each successive input. For all constants c, the
system reacts to the increasing stimulus with approximately linearly increasing
concentrations. However, when the inputs reach an amplitude of around 50 the
proliferation peaks become erratic.

This phenomenon can be attributed to the nonlinear influence that u1 exerts
on the system. There will come a point (when A ≈ 50) when sufficient u1 still
resides in the system so as to prevent any cell proliferation from taking place
when an input occurs. This in turn prevents cytokine concentration increase, and
when the next input arrives the cytokine levels will be abnormally low resulting
in an extremely large spike.

Square Waves with Exponential Amplification
The system’s reaction to exponential increase in input amplitudes are similar to
those of linear increase. Increases in peak size correlating to the increase in input
amplitudes are observed, and erratic behaviour ensues once input magnitudes of
over 50 are reached.

Square Waves with Amplitude Anomaly
This input pattern is identical to the standard square waves above (P = 2.0,
D = 0.2, A = 8.0), save for a single anomalous input whose amplitude can can
be varied. The experiments here are to examine how the system reacts to an
anomaly in an otherwise regular and stable series of inputs. The anomaly is set
to occur when the system has settled into a stable pattern.

An anomaly amplitude of 4.0 causes the system to decay immediately. An
amplitude of 5.0 causes some instability following the anomaly, and system de-
cay follows shortly. An Amplitude of 5.3 allows system resuscitation, though it
requires time to return to the original stable pattern. Large anomaly amplitudes
do not cause decay, the system’s reaction is a large spike, which if sufficiently
large causes temporary instability as result of the considerable quantities of u1

generated.
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5 Parameter Investigations

This Section investigates the effect of varying parameters. Unless otherwise
stated, parameter settings are fixed to those values detailed in Table 1, and the
input pattern used is the standard square wave detailed above, with P = 2.0,
D = 0.2, and A = 10.0. This input pattern is chosen because it induces ‘typical
behaviour’ for the standard system, which is depicted in Figure 1.

Fig. 1. Systems response to square wave of period 2.0, duration 0.2, amplitude 10.0

Parameters: u1(0), u2(0), and v(0).
Effects: If chosen incorrectly, i.e. u1 too large, or either u2 or v too small, system
wide decay of variables ensues. Otherwise, these variables adjust the instability
of the system at time 0. Sufficient disequilibrium will cause large fluctuations
in all variable concentrations before the system settles. These variables have no
bearing on system behaviour beyond initial instability.

Parameters: ν1, ν2, and μ.
Effects: The system is quite sensitive to alterations of either νi decay rates. To
instil a stable robust behaviour ν1 must hold a value roughly double that of ν2.
The exact relative difference dictates the quantities of each cytokine that linger
following an input, which affects the minimum period to which a response is
induced by every input, and the heights of cell proliferation peaks. Given a fixed
P , too small a difference induces system wide decay through higher persisting
concentrations of u1. Too large a difference and the system behaves erratically,
with small u1 concentrations allowing huge cellular proliferations, which in turn
generate sufficient u1 to suppress the inputs that follow.
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μ adjusts the gradient of proliferation peaks, with small μ creating flatter
‘sawtooth’ like patterns and very large μ inducing system wide decay, since
cells decay at such a rate that non remain to proliferate. Thus, μ adjusts the
maximum period to which the system remains reactive, and the minimum period
for which each individual input induces proliferation. Note that the effects of μ,
ν1, and ν2 are linked; variable persisting cell concentrations induced by adjusting
μ will affect cytokine concentrations through secretion, which in turn affect the
number of cells that proliferate as a result of inputs. Hence, adjustments to μ
change the height of proliferation peaks; smaller values will generally reduce
heights. However, if alternate input reactions are suppressed by high levels of
lingering u1, the height of the remaining peaks will be significantly greater.

Universally scaling values of ν1, ν2, and μ allows cytokines and cells to linger
in the system for adjusted periods of time. This can alter the periods for which
responses can be mounted for every input, and the maximum period for which
the system does not decay. Note that uniformly scaling these parameters does
not maintain peak heights.

Examples: If ν1 < 1.8 system wide decay ensues, with smaller values inducing
more rapid decay. ν1 = 3 provides peaks that are an order of magnitude larger
than those produced by ν1 = 2. Values of ν1 > 4 causes notable initial insta-
bility, and alternate proliferation peaks have an order of magnitude difference
in height. At this setting the system lies near instability, a single anomalous
input of amplitude 20 as opposed the regular amplitude of 10 induces unstable
behaviour despite the normal inputs that follow. For ν1 = 4.2 the regular input
pattern induces exponential and unstable population explosion.

Small alterations to ν2 cause drastic changes in behaviour. At 1.3 graceful
system wide decay is induced. At 0.5 seemingly chaotic behaviour ensues, with
many orders of magnitude separating peaks prompted by identical inputs.

Values of μ ≥ 15 incite system wide decay. For sufficiently small values, for
example μ = 2.0, reactions to inputs can be suppressed.

Under the standard system an input of P= 4.0 quickly induces system wide de-
cay. However, when all the decay rates are halved regular responses are achieved.
Likewise, responses to every input of P = 1.0 can be achieved by doubling all de-
cay parameter values; under standard system parameters a response is mounted
to alternate inputs only.

Parameters: θ̃1 and θ̃2

Effects: Reducing θ̃1 significantly, even to negative values, has little effect other
than the speed with which the system settles; smaller values induce small initial
proliferation peaks which take longer to stabilise. Large values cause large initial
proliferation peaks, but the system always settles. Extremely large values induce
erratic behaviour.

As with θ̃1, adjustments to θ̃2 cause initial instability. The heights of stable
proliferation peaks can be slightly reduced with larger θ̃2. Very large values of
θ̃2 can incite system wide decay.
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These parameters yield no significantly exploitable effects. Adjustments can
instil minor alterations to peak heights, and significant adjustments will induce
either erratic behaviour, else system decay. They dictate how quickly cells start
producing cytokines through manipulation of the input to the sigmoid function
S. To have any significant effect on behaviour, the system should be engineered
such that the outputs from S reside mainly between 0.0 and 1.0 rather than at
those values themselves. Engineering such a system is difficult, and changes to
any of the other parameters will quickly throw S’s output back to the extremes.

Parameters: ψ̄1 and ψ̄2

Effects: Significant reduction of ψ̄1 produces erratic behaviour, with huge fluc-
tuations in cell proliferation peak heights. Smaller reduction induces proliferation
peaks of alternating heights. Larger values reduce peak heights, and may cause
system wide decay if set excessively large.

Very small values of ψ̄2 prevent sufficient u2 from entering the system, and
system wide decay ensues. Large values can set the system off in an instability,
which takes time to settle, and also cause alternating peak heights. Anomalous
but regular inputs of increased amplitude have differing effects on a system
exhibiting alternating peak heights. If the anomaly falls on what would be a tall
peak, the shorter peaks are completely suppressed and the remaining tall peaks
that follow experience amplification while the system settles into its previous
behaviour. If the anomaly calls on a short peak, all peak heights average out
initially, but return to their normal behaviour.

Maintaining equal, but larger values of ψ̄1 and ψ̄2 reduces the height of cellular
proliferation peaks. Smaller values increase proliferation heights. These effects
are attributed to the nonlinear influence of u1.

Parameters: Wj k

Effects: The variables comprising the interaction matrix are highly complex,
and system behaviour is collectively dependent on all of their values. They af-
fect how much stimulus each cell receives regarding the secretion of a particular
cytokine, which determines the rates at which cytokine concentrations can ac-
celerate. These cytokine concentrations in turn affect the quantity of cells there
are that produce them. External stimuli have no direct impact on secretion; the
only variable terms in determining secretion rates are cytokine concentrations
themselves. Thus the cytokine secretion rates are linked. It is easy to set up the
interaction matrix in such a manner that system wide decay ensues, however
unbounded explosion is impossible: explosion in one cytokine concentration will
soon lead to explosion in the other.

In general, equal concentrations of the two cytokines will prevent cellular
proliferation and can prompt system wide decay, because of u1’s nonlinear effect.
For this reason, the initial concentration of u1 is lower, and its decay rate higher.
Setups in which u2 accelerates more quickly (and from a higher concentration)
than u1 allows for bursts of cell proliferation before u1 reaches a counteracting
concentration. As the two acceleration rates close on each other the height of
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cell concentration peaks will reduce. If u1 acceleration is allowed to exceed that
of u2, system decay will usually follow.

Reducing u1 secretion stimulation though setting values of W1 1 to large nega-
tive numbers (u1 suppresses itself) increases the size of peaks. Excessive negative
values causes unstable behaviours to emerge, since the accelerations of the two
cytokines are so far out of step that their concentrations experience very large
fluctuations. Positive values yield no alteration in behaviour.

Small values of W1 2 < 1 provide taller peaks in cell proliferation; extend the
maximum period for which the system can remain responsive; and make the
system more responsive to inputs of shorter period, with discernable reactions
to every input as opposed to every few. However, these proliferations can vary
in size considerably and do not display a stable pattern, indicating a shift to-
wards erratic behaviour. Larger values of W1 2 > 1 are not as reactive for small
periods as small values, but the resulting behaviours are more stable, otherwise
no significant effect is apparent.

Small values of W2 1 < 0.4 induce system wide decay, since initial thresholds
for cytokine secretion are never sufficiently overcome; u1 discourages its own
secretion, and u2 only receives stimulus from the presence of u1 (W2 2 = 0).
Hence, if W2 1 is set too small, no bootstrapping occurs. Values of W2 1 > 1 have
no effect on the peak sizes, and do not significantly affect the maximum period
of responsiveness.

Setting W2 2 < −0.5 induces system wide decay, and W2 2 > 0.5 has no sig-
nificant effect. Between these values, increasing W2 2 induces larger proliferation
peaks.

Scaling all Wj k values equally can slightly alter the height of peaks. Scalars
≥ 1 converge towards relatively large but fixed peak heights. Small scalars affect
peak heights in a nonlinear manner; factors smaller than 0.3 cause decay, and a
factor of 0.5 induces smaller peaks than factors of 0.3 and 0.7 do.

Parameter: γ
Effect: γ controls the effect that a particular concentration of u1 has on cel-
lular proliferation. The system is highly sensitive to this parameter, very small
adjustments can drastically alter behaviour.

Large values of γ allow relatively small concentrations of u1 to strongly ham-
per proliferation, thus reducing peak heights. Reduced proliferation peaks gener-
ates fewer cytokines whose concentrations curtail sooner. Hence, larger γ reduces
the maximum period to which the system remains responsive, and also renders
the system more responsive to small periods, with each input inciting prolif-
eration. When perturbed with a single anomalous but regular input of greater
amplitude large γ will provide a dampening effect on the resultant proliferation.

For smaller γ, the opposite applies. Sufficiently small γ will induce erratic
responses to equal and regular inputs.
Examples: γ = 0.05 maintains stable responses at a period of 3.5, whereas the
original value of 0.1 quickly decays at this period. A value of 0.15 causes system
wide decay for a period of 2.0, while smaller values remain responsive.



348 M. Read, J. Timmis, and P.S. Andrews

When perturbed with an anomalous input of double the amplitude (20 as as
opposed to 10) larger values of γ provides a dampening effect, reducing oscillation
in proliferation peaks to later stimuli. Small values of γ are more sensitive to
such anomalies, requiring more time to resettle into a stable output pattern, and
exhibiting greater fluctuations in doing so.

6 Alterations to Model

Based on the parameter investigations carried out above, observations are made
about the system’s behaviour and alterations are made to enhance its behaviours
with respect to the criteria of Section 3.

6.1 Excessive Decay Is Detrimental

A prominent facet of the system is it’s tendency to decay. If insufficient stimulus
is provided over a period of time, cytokine and cell concentrations decay such
levels that resurrection requires an abnormally strong input. From an engineering
perspective this behaviour is undesirable. We wish to induce a response to a
standard input regardless of the delay preceding it. In other words, we wish for
the memory and behavioural dynamics provided by cytokines to have a bounded
temporal reach beyond which a default behaviour will ensue.

The most prominent amendment that will correct this behaviour is the intro-
duction of baseline concentration levels. Any decay that will reduce a concen-
tration to below this predetermined level is disregarded. Baselines for all three
variables are required: if either u2 or v concentrations drop too low, cellular
resurrection becomes impractical; if u1 drops too low, then ensuring a default
behaviour is impossible since proliferation would go unchecked.

We set baseline values and initial concentrations to the same values. This
prevents the creation of additional parameters for implementation, and starts
the system in ‘default behaviour’ rather than the frequent instabilities observed
above. It also removes any requirement that an input be present at system
startup to prevent decay.

6.2 Engineering Cytokine Memory

With the addition of baseline concentrations, we attempt to manipulate the
effect of cytokine memory. Given an anomalous input arriving either early or late
with respect to an otherwise regular pattern, the effect of cytokines might be to
dampen or to amplify the system’s reaction to this anomalous input. Examples
of both these behaviours are demonstrated in Figures 2 and 3 respectively. Note
that the period used here is 4.0, longer than the system without baselines could
remain responsive towards. Following the regular input at time 16, an anomalous
input occurs after a delay of 1.6 time units (as opposed to 4.0). After this anomaly
regular inputs of period 4.0 continue.

For the specific timing anomaly described, both the dampening and amplify-
ing behaviours could be induced. ν1 was increased to 5.0 to provide amplification,
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Fig. 2. Using concentration baselines to suppress reaction to early inputs. All param-
eter hold default values.

the standard system already provides dampening. When these settings are in-
vestigated in the context of other timing anomalies, the engineered behaviour is
found to be inconstant. For the dampening system an anomalous delay of 1.0
induces no reaction. Increasing this delay causes a reaction of increasing mag-
nitude, reaching a maximum for a delay of 2.4. Hereafter the system’s reaction
reduces in size again, reaching a low at a delay of 3.2. At 3.6 all variables have
decayed to baseline values and default behaviour ensues.

For the amplification behaviour, at a delay of 0.4 or less no reaction is induced
by the anomalous input. As the delay preceding the anomalous input increases
past 0.6 an initially very small, but quickly increasing reaction is observed. By 0.8
the anomalous reaction peak magnitude exceeds that of the default behaviour.
However, by 1.4 this peak starts to decrease in size, and by 2.8 is half the size
of default behaviour peaks. Thereafter an increase to default behaviour ensues.
Closer examination of this dip in peak size for a period of 2.4 reveals that when
the anomalous input arrives concentrations of cells and u1 have reached baseline
levels, while u2 resides at nearly 3 times its baseline level. One would expect this
to result a strong proliferation, but it instead serves to hamper the reaction. The
explanation is that the high levels of u2 prompt speedy secretion of u1, which
prematurely stumps proliferation.

6.3 Realistic Decay Rates

The decay rates selected in the original paper, and utilised in the experiments
above, are not biologically plausible. In vivo, cytokines decay at a significantly
quicker rate than that at which cells die. Preliminary experiments with the ratios
between cytokine and cell decay rates inverted yielded the following observations.

The temporal reach of cytokine memory is hugely reduced, and without base-
line concentrations system wide decay is commonplace. Cellular proliferations ex-
hibit very flat ‘sawtooth’ patterns. To avoid simply inciting ‘default behaviour’
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Fig. 3. Using concentration baselines to amplify reaction to early inputs. ν1 = 5.0.

input periods must be very short, at which point cell proliferation peaks and
troughs are almost indistinguishable.

7 Suitability for Engineering

In this section we examine the system’s suitability for use in an engineering
context based on the experiments and alterations reported above and the criteria
of Section 3.

Early experiments reported system wide decay in all variables was possible by
‘starving’ the system of sufficient input over time. This is generally undesirable.
System wide decay could perhaps be harnessed in an anomaly detection setting,
but one struggles to find additional value in employing this system over more
conventional means. The introduction of baseline concentrations corrected the
problem, providing a ‘default behaviour’ to late inputs, and ensuring reactivity
to inputs of infinite delay. Conversely, reactivity to very short period inputs can
be tailored as described above. Behavioural stability following anomalies in the
input stream is possible, the extent to which is found to be largely dependent
on the system’s particular parameter values.

Regarding the requirement that system behaviour be malleable by adjustment
of parameters, there does exist scope to affect system behaviour. However, there
is a significant level of redundancy and pleiotropism in the parameters them-
selves. Adjustment of several parameters can bring about the same effect, for
example, the height of proliferation peaks can be adjusted through independent
manipulation of ν1, ν2, μ, ψ̄1, ψ̄2, W1,1, W1,2, W2,2, or γ. However, adjustment to
any one of these parameters will have cascade effects such as altering the maxi-
mum period for which the system remains responsive, the responsiveness to very
low period inputs, or the time taken for the system to reestablish a stable be-
haviour following an anomalous input. Engineering an exact behaviour requires
adjustment of several, if not all, parameters simultaneously. Care must be taken
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when adjusting certain parameters, such as γ or W2,1 as small adjustments have
yielded considerable behavioural change.

The system’s reaction to increasing inputs is initially good, with stable be-
haviour ensuing. However, the erratic reactions that follow from inputs of mag-
nitudes > 50 are unwelcome. Deployment in an engineering field would require
consideration regarding the magnitude of inputs generated.

Concentrations of cytokines and cells in the system residing above the base-
line values exert a short term memory, and the value of deploying such a system
for engineering lies in the ability to tailor the effect of this memory. However, in
its current format the system is too challenging to accurately engineer, with an
abundance of parameters which simultaneously affect several aspects of system
behaviour. A reduction of the number of system parameters, and their cascade
effects, through the replacement of finite predetermined constants with dynam-
ically assessed ratios between system variable concentrations could potentially
correct this problem.

8 Conclusions and Further Work

In this paper we introduced the work of Hone and van den Berg [2], and an em-
pirical investigation of the dynamics exhibited by their ‘numerical instantiation’
was conducted. Analysis of the system’s reaction to various patterns of input,
and parameter adjustments was reported. Given these results, the addition of
baseline variable concentrations was deemed necessary. The system’s suitability
for deployment in an engineering context was assessed, and was not deemed to be
suitable in its current standing. A potential avenue for correction has been sug-
gested. Spatial constraints have prevented us from displaying all our empirical
evidence, these will be made available to interested parties on request.

The investigations carried out here are preliminary, and there is a great deal of
scope for further work. This could include deliberately engineering into the sys-
tem other properties of cytokines: pleiotropism; redundancy; antagonism; and
synergy, which could prove useful for control systems which monitor multiple
data sources. The addition of another cell type, and the system’s dynamics con-
cerning context switching between the two (interpretable through cell prolifera-
tions) presents an interesting path of investigation.
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Abstract. Affinity functions play a major role within the artificial im-
mune system (AIS) framework and crucially bias the performance of
AIS algorithms. In the problem domain of self/non-self discrimination
by means of negative selection, affinity functions such as the Hamming
distance or the r-contiguous distance are frequently applied to measure
distances in binary data. In recent years however, several limitations
and problems with these distance measurements in negative selection
have been identified. We propose to measure distances in binary data by
means of probabilities which are modeled with a kernel estimator. Such
a probabilistic model is preeminently applicable for the self/non-self dis-
crimination problem. We underpin our proposal with an empirical study
on artificially generated and real-world datasets.

1 Introduction

Self/non-self discrimination models are discussed intensively in immunology and
also in the artificial immune system (AIS) community. In the field of AIS the
negative selection is a popular, however also a controversial approach to dis-
criminate self from non-self [1],[2]. The discrimination capability of negative
selection is biased by the chosen shape space and the used affinity functions. In
binary shape space (also called Hamming shape space) all immune components
are represented as bit strings. The affinity between any two bit strings is mea-
sured with affinity functions such as the Hamming and r-contiguous distance.
In recent years, however, research revealed that affinity functions used in neg-
ative selection induce manifold problems. The problems can be summarized as
follows. Poor generalization capabilities, that is, the accurate self/non-self pre-
diction of unseen bit strings [2]. Infeasible computational complexity of finding
detectors [2]. To overcome these problems, it seems reasonable to look beyond
the “classical” affinity functions proposed in the field of AIS.

The problem of self/non-self discrimination can be stated as follows. Given
self data, that is, a sample S of bit strings which characterizes self:

– Does an unseen bit string u belong to self?

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 352–363, 2008.
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This problem is usually tackled by using negative selection and corresponding
affinity functions for binary data. Observe that this problem cannot be answered
satisfyingly without giving a clear specification of self. In other words, the prob-
lem cannot be fitted in any machine learning framework.

By considering this problem from a statistical point of view, it can be equiva-
lently formulated as follows:

– Does u originate from the same probability distribution as bit strings in S?

This second question can be answered by assuming that S is i.i.d. generated by
some unknown distribution which corresponds to self and that self data occurs
concentrated. This leads to the problem of estimating the underlying probabil-
ity distribution which generates S and finally to the rejection of data of low
probability. Once the underlying probability distribution is properly modeled,
membership queries, that is the first question, can be also answered.

In their seminal paper Kullback and Leibler stated [3]:

“We are also concerned with the statistical problem of discrimination by
considering a measure of the “distance” or “divergence” between statis-
tical populations in terms of our measure of information.”

By reviewing known problems in negative selection, it seems therefore reason-
able to tackle the self/non-self discrimination problem by means of a statistical
approach which will be discussed and empirically investigated in this paper. We
structure the paper as follows: The kernel estimator method for binary data is
explained in section 2. An experiment on artificially generated data is provided
in section 2.1. The statistical discrimination function is presented in section 3.
In section 4, an additional experiment is performed to explore whether regions
where most of the self data is concentrated can be appropriately modeled. Results
of detecting corrupted handwritten digits are presented in section 5. Conclusions
and outlooks are provided in section 6.

2 Kernel Estimator for Binary Data

Kernel estimators belong to the class of non-parametric models and are well-
known methods for estimating densities for continuous domains [4],[5]. For binary
data, that is discrete data, kernel estimators such as Parzen Window or Nearest-
Neighbor are not applicable due to their continuous nature. Aitchison and Aitken
proposed a kernel estimator for binary data [6].

Given sample S = {xt}N
t=1 from {0, 1}l and kernel function

Kh(x|y) =

⎧
⎨
⎩

hl−d(x,y)(1 − h)d(x,y) for 1
2 ≤ h < 1{

1 (x = y)
0 (x �= y) for h = 1

(1)
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Fig. 1. Coherence between kernel function Kh(·|·) and Hamming distance d(·, ·). The
Hamming distance from 0111 to all bit strings sitting on the same ring is related to the
probability mass function Kh(·|0111). Note that the Hamming distance is increasing
from center 0111 to bit strings sitting on the outer rings at one bit per ring.

where

d(x,y) = (x − y)T (x − y) ≡
l∑

i=1

xi XOR yi

is the Hamming distance, and h the bandwidth parameter. The true underlying
probability distribution which corresponds to sample S can be estimated by:

P̂ (x|S) =
1
N

N∑
i=1

Kh(x|xi). (2)

The kernel function Kh(x|y) is a probability mass function and is related to the
Hamming distance between x and y (see Fig 1). Loosely speaking, the smaller
the Hamming distance the larger the probability. Analogous to continuous kernel
estimators, the bandwidth parameter h in (2) controls the smoothness, i.e. the
influence of the surrounding bit strings. The smallest bandwidth h = 1/2 gives
the uniform distribution P̂ (x|S) = (1/2)l for all x ∈ {0, 1}l, whereas the largest
bandwidth h = 1 gives the distribution of the relative frequencies.

To find an appropriate value of bandwidth parameter h such that consistency
properties are obeyed, Aitchison and Aitken proposed to maximize:

N∏
i=1

P̂ (xi | S \ {xi}) (3)

whereS\{xi}denotes sampleSwith excludedbit stringxi (leave-one-outmethod).
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Note that (3) can lead to numerical instabilities for large sample sizes. To avoid
such a problem, one can also maximize the corresponding log-likelihood value:

N∑
i=1

log P̂ (xi | S \ {xi}). (4)

It is worthwhile to notice that by maximizing (3), (4) respectively, one mutually
minimizes the Kullback-Leibler divergence [3]:

N∑
i=1

G(xi) log

(
G(xi)

P̂ (xi|S)

)
. (5)

The Kullback-Leibler divergence can be considered as a closeness measure be-
tween the true underlying probability distribution G(x) and the estimated dis-
tribution P̂ (x|S). The smaller the value of (5), the more “similar” are the true
and estimated probability distribution.

2.1 Experiment on Data Generated by Mixture of Multivariate
Bernoulli Distributions

For creating binary self data, it is helpful to use a generative model such that
samples can be generated from the true underlying distribution which is specified
by some parameters. A multivariate Bernoulli distribution is a generative model
and fulfills this criterion. To be more precise, the distribution is specified by
parameter vector Θ ∈ [0, 1]l and takes binary values xi = 1 with probability
Θi and xi = 0 with the complementary probability 1 − Θi, for i = 1, . . . , l. It
therefore has probability mass function:

P (x|Θ) =
l∏

i=1

Θxi

i (1 − Θi)1−xi . (6)

To model higher order correlations in the generated samples, it is necessary to
combine mixtures of multivariate Bernoulli distributions:

P (x|Θ, α) =
M∑

m=1

αm P (x|Θm), (7)

where the mixture proportion α ∈ R
M has to obey the convex combination∑M

m=1 αm = 1 with αm ≥ 0 and Θ is composed of (Θ1, Θ2, . . . , ΘM ).
In this experiment we specified M = 3 mixtures of multivariate Bernoulli

distributions with following parameters:

α :=

⎡
⎢⎣

1
9
3
9
5
9

⎤
⎥⎦ , Θ =

⎡
⎢⎣

Θ1

Θ2

Θ3

⎤
⎥⎦ :=

⎡
⎢⎣

1
10

4
5

3
5

1
5

1
5

7
10

3
10

1
10

1
2

1
5

2
5

7
10

4
5

3
5

1
10

2
5

7
10

1
10

3
10

1
5

1
2

7
10

1
2

3
5

⎤
⎥⎦ ,

and denote the true underlying distribution as G(x) ≡ P (x|Θ, α).
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Fig. 2. Coherence between kernel parameter h and Kullback-Leibler divergence (left),
and log-likelihood evaluation by means of the leave-one-out method (right). The value
of h which maximizes (4) corresponds to the smallest Kullback-Leibler divergence value.

In non-parametric models no parametrized distribution has to be fitted in the
samples; therefore, one has to determine only the suitable bandwidth parameter
h. In this experiment the parameter h is run from 1/2 to 1. The corresponding
value of (4) as well as the Kullback-Leibler divergence between G(x) and P̂ (x|S)
are depicted in Figure 2.

One can observe that by maximizing (4) one mutually minimizes the Kullback-
Leibler divergence between true the probability distribution and the kernel esti-
mated.To say it the otherwayaround, givena sampleSwhich characterizes self and
bandwidthparameterhwhichmaximizes (4).One canmodel theunderlyingproba-
bilitydistributionwhich corresponds toS andhence is able todiscriminate self from
non-self by means of probabilities. Note that the Hamming distance is still used as
a measurement, however expressed in terms of weighted kernel estimated probabil-
ities. This allows the modeling of smooth discrimination boundaries, whereas the
plain Hamming distance does not offer such degrees of smoothness (see [7]).

3 Statistical Discrimination in Binary Data

Let S be a sample which characterizes self and h the bandwidth parameter which
is found such that (4) is maximized. A probabilistic discrimination function for
the self/non-self problem1 can be defined as follows:
1 In the field of machine learning this equivalent problem is termed outlier detection

or novelty detection.



An Empirical Study of Self/Non-self Discrimination in Binary Data 357

D(x, t) =
{

P̂ (x|S) ≥ t, self
otherwise, non-self

(8)

where x is the to classified bit strings and t some threshold. By specifying a
value for t, one obtains enclosed decision region(s) such that most of the support
of the distribution is captured. In other words, if x is within the region(s) where
most of the self data is concentrated, then x belongs to self otherwise it belongs
to non-self. It is worthwhile to mention that discrimination function D can be
extended to a multi-class decision function by assigning x to that class where
the corresponding class-conditional probability is largest.

4 Experiment on Data Generated by Mixture of Gaussian
Distributions

Due to the fact that mixtures of multivariate Bernoulli distributions are hardly
to visualize, a second experiment is performed. In this experiment we explore
whether regions, where most of the self data is concentrated, can be appropri-
ately modeled. Therefore, self data is generated by a mixture of 2-dim. Gaussian
distributions with different mean vectors and covariance matrices and consists
of 5000 data points. The generated self data is visualized in Figure 3(a), the
corresponding density image is depicted in Figure 3(b).

One can see in Figure 3(a) that self data is concentrated in regions of high
density. This coincidence with our assumption and leads to the problem of finding
regions where most of the self data is concentrated.

Note that the domain of (2) is {0, 1}l. We therefore use the mapping from
R

2 → {0, 1}l proposed in [8]. That is, the data is min-max normalization to
[0, 1]2 and discretized to bit strings of length l = 16

b1, b2, . . . , b8︸ ︷︷ ︸
bx

, b9, b10, . . . , b16︸ ︷︷ ︸
by

,

where the first 8 bits encode the integer x-value

ix := �255 · x + 0.5	
and the last 8 bits the integer y-value

iy := �255 · y + 0.5	,
that is,

[0, 1]2 → (ix, iy) ∈ (1, . . . , 256) × (1, . . . , 256)

→ (bx, by) ∈ {0, 1}8 × {0, 1}8.

By means of the leave-one-out method bandwidth parameter h = 0.909 is deter-
mined. The corresponding density image is depicted in Figure 4(b), where each
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Fig. 4. Coherence between different bandwidth values and estimated models

pixel in the 256 × 256 grid represents a bit string of length l = 16. The color
corresponds to the probability P̂ (x|S). For the sake of comparison, two addi-
tional density images of bandwidth value h = 0.55 and h = 1 are depicted (see
Fig. 4(a), 4(c)). One can observe that the true underlying distribution can be
closely approximated if an appropriate value of h is determined. For a too over-
smoothed bandwidth value h = 0.55 the resulting model is underfitted, whereas
for h = 1 the model is overfitted. For h = 0.909 the probability distribution is
appropriately modeled, thus good generalization is obtained.
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5 Handwritten Digit Recognition Experiment

Recognizing handwritten digits is a challenging real-world problem in the field
of machine learning. In this experiment, we focus on the problem of outlier
detection, that is, the detection of digits which are corrupted. In the language of
self/non-self discrimination, self of each digit is modeled as shown in section 2
and corrupted digits are detected by means of decision function (8).

To obtain meaningful results regarding the robustness of the kernel estimator
method, experiments on two popular handwritten digits datasets (USPS and
MNIST database) are performed.

The USPS database2 contains handwritten digits scanned from envelopes by the
U.S. Postal Service. The digits are size-normalized in a 16× 16 fixed image of gray
color values in the range [−1, 1]. The database consists of 7291 training examples
and 2007 testing samples which are partitioned in digit sets 0 to 9 (see Table 1).

Table 1. Number of digits in training and testing set in the USPS database

digit 0 1 2 3 4 5 6 7 8 9

training set 1194 1005 731 658 652 556 664 645 542 644

testing set 359 264 198 166 200 160 170 147 166 177

The USPS database contains a number of corrupted digits, which not even
humans can correctly classify (human error rate 2.5%) and therefore is a chal-
lenging benchmark. However, the database is also criticized due to their noisy
nature [9].

The MNIST database3 contains also handwritten digits. However if one com-
pares the two databases, then one can observe that the MNIST database has
cleaner digits thus becomes the state of the art benchmark database in recent
years. The digits in the MNIST database are centered and size-normalized in
a 28 × 28 fixed-size image of gray color values {0, 1, . . . , 255}784. The MNIST
database consists of 60000 training examples and 10000 testing samples which
are partitioned in digit sets 0 to 9 (see Table 2).

Table 2. Number of digits in training and testing set in the MNIST database

digit 0 1 2 3 4 5 6 7 8 9

training set 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949

testing set 980 1135 1032 1010 982 892 958 1028 974 1009

To obtain comparative results between the two databases, digits in the USPS
database are min-max normalized from [−1, 1] to gray color values
{0, 1, . . . , 255}256. Both databases are finally binarized by means of:
2 Available at: http://www-stat.stanford.edu/∼tibs/ElemStatLearn/datasets/
3 Available at: http://yann.lecun.com/exdb/mnist/index.html
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B(z, tbw) =
{

zi ≤ tbw , 0
otherwise , 1 (9)

where threshold tbw = 128 is chosen and z ∈ {0, 1, . . . , 255}256 (USPS database),
z ∈ {0, 1, . . . , 255}784 (MNIST database), respectively.

The bandwidth value h of each digit class for both training sets is determined
by means of the leave-one-out method and results in:

digit 0 1 2 3 4 5 6 7 8 9

USPS h 0.917 0.99 0.871 0.888 0.906 0.877 0.92 0.938 0.889 0.93
MNIST h 0.94 0.984 0.928 0.935 0.945 0.936 0.946 0.956 0.929 0.95

5.1 Results

Both testing sets contain no information regarding the magnitude of corruption
of the digits. As a result, it is difficult to obtain meaningful outlier detection
results. Due to such difficulties, the digits of each class are ranked. To be more
precise, the digits of each class are ranked in descending order regarding their
class-conditional probabilities (see Fig. 5). One can see that corrupted digits have
small class-conditional probabilities and hence can be recognized as outliers by
decision function D with regard to some threshold value t. Furthermore, one can
observe that some less corrupted digits (“7”) which are written according to the
European standard have small probabilities. This is an undesirable result and is
caused by the fact that the training set contains an underrepresented amount
of those digits. This problem can be addressed by tuning the corresponding
bandwidth parameter towards more smoothness. Moreover, one can observe that
in the USPS database the mislabeled digit 1 has a large estimated probability
and thus can not be detected as an outlier.

Table 3. State of the art classification results on testing sets USPS and MNIST. For
a detailed overview see [9], pp. 219 and pp. 341.

Database Classifier Error rate (%)

USPS

Linear SVM 8.9
Relevance Vector Machine 5.1
Hard margin SVM 4.6
SVM 4.0
Hyperplane on KPCA features 4.0
Kernel Fisher Discriminant 3.7
Virtual SVM 3.2
Virtual SVM, local kernel 3.0

MNIST

Linear classifier 8.4
3-Nearest-Neighbor 2.4

...
...

Virtual SVM with 8 VSVs per SV 0.6
Virtual SVM with 12 VSVs per SV 0.6
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large probability small probability

(a) Digits in USPS database ranked according class-
conditional probabilities in descending order.

large probability small probability

(b) Digits in MNIST database ranked according class-
conditional probabilities in descending order.

Fig. 5. First six digits of each class (testing set) ranked according to the largest, small-
est class-conditional probability, respectively. One can see that corrupted digits have
smaller probabilities compared to “clean” digits having larger probabilities.
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In terms of the overall classification error rate4, the following results are ob-
tained on the testing sets: USPS database 7.47 % and MNIST database 3.92 %.
Compared to the state of the art classification results (see Table 3) our achieved
results are limited competitive. However, one has to mention that the best
achieved classification results are obtained with highly tuned classifiers which
are invariant regarding translation and rotation. Furthermore, we used binary
features rather than gray color values from {0, 1, . . . , 255} and therefore utilized
a poorer feature representation due to the operation on binary data. On the
other hand one should mention that kernel based estimation methods suffer of
high computational complexity. This results from the fact that each bit string is
used to evaluate term (2). However there exist different techniques for reducing
the computational complexity of kernel based estimation methods (e.g. [10],[11]).
These techniques can be also applied to reduce the computational complexity
of term (2). Additional improvements regarding the detection accuracy could be
obtained by applying different binarization techniques.

6 Conclusion

Self/non-self discrimination in binary data is a challenging problem in the field
of AIS. It has been tackled with negative selection and affinity functions such as
the Hamming and the r-contiguous distance. Research results in recent years,
however, revealed manifold problems in negative selection with regard to the
generalization capability, and with regard to the computational complexity. We
proposed to model self by means of a statistical approach, namely by estimating
the underlying probability distribution which corresponds to self with a kernel
estimator. The proposed method was motivated by the fact that the self/non-
self discrimination problem can be clearly specified from a statistical view point.
Such a statistical method is far from any immune-inspired paradigms, however,
overcomes known problems in the immune-inspired negative selection method.
From our point of view it is worthwhile to introduce such a statistically founded
method in the field of AIS. It allows us to consider problems formulated in the
field of AIS from a mathematically founded perspective, rather than by bio-
logically motivated arguments. Observe that in the early days the term “neural
network” was motivated towards modelling networks of real neurons in the brain.
Nowadays:

“The perspective of statistical pattern recognition, however, offers a much
more direct and principled route to many of the same concepts.” [Neural
Networks for Pattern Recognition, C. M. Bishop]
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Abstract. The natural world has developed very effective methods for
dealing with pathogens that are invading an organism. By taking inspira-
tion from the in-built, innate, response this paper develops a newalgorithm
that mimics activation path of the Alternative Pathway of Complement.
TheAlternativePathway is triggeredby cell surfaces. If the surfacesdisplay
safe characteristics then a strong suppression process prevents activation.
In the case of non-safe surfaces a positive feedback loop rapidly identifies
the location marking it for removal by phagocytosis.

1 Introduction

This position paper is about solving a difficult engineering problem using tech-
niques inspired by biological systems, viewed at both the organism population
level and the organism cellular level.

The problem itself is generic. A collection of fallible engineering entities is
required to interact to achieve some behavioural goals. Through mutual obser-
vation of their behaviours, they must be able to recognise a failure, locate the
one of more failing entities and subsequently respond to re-establish goal di-
rected, normal network behaviour. Typical target system could include swarms
of Unmanned Aerial Vehicles (UAVs) operating co-operatively to render a mis-
sion successful, ad-hoc heterogeneous communications networks which respond
to loading variations or node failures [1] and any distributed control system
which relies on may rely on a combination of subsystems and sensors such as
power distribution networks [2].

1.1 Socially Attentive Monitoring

The recognition of failure through mutual observation has been considered in
a social population context under the guise of Socially Attentive Monitoring.
The concept of Socially Attentive Monitoring uses observed aspects of human
social behaviour as a driving force for identifying the health of a system. Socially
Attentive Monitoring was first investigated by social scientists. Festinger [3] pro-
posed three hypothesis about how humans react in a social situation. The first
hypotheses states that “there exists, in the human organism, a drive to evaluate
his opinions and his abilities” - therefore any human carrying out a task wishes
to work out how well they conduct that task.

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 364–375, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Festinger’s second hypothesis states that “to the extent that nonsocial means
are available, people evaluate their opinions and abilities by comparison respec-
tively with the opinions and abilities of others”. Therefore humans seek out
those that they see as having abilities or opinions in the same area and then
judge themselves accordingly.

The third hypothesis acts to limit this desire for comparison stating that “the
tendency to compare oneself with some other specific person decreases as the
difference between his opinions or ability and one’s own increases”. Therefore
humans only compare themselves to those that they see of a similar ability or
opinion, therefore effectively searching out peers for accurate comparison.

Festinger’s work has been picked up by the Distributed Artificial Intelligence
community and used in several different applications. Kaminka and Tambe [4,5,6]
have investigated the use of Socially Attentive Monitoring in the concept of agent
coordination.

In control engineering a key property of a system are the natural modes.
A collection of continuous, complex exponential values that determine how a
system responds to a given input. This work uses the identified modes of each
network component as a signature representing how that element is behaving at
that moment in time. From this point the immune inspired algorithm is used to
identify the affected element.

The remainder of this paper focusses on extending the idea of signatures using
inspiration from the complement system to identify point(s) of failure. Subse-
quent action will be application specific, but we develop a simple mechanism to
demonstrate the principles.

The paper is organised as follows. We begin by describing the current views of
the three biological complement pathways as a focus for inspiration. In Section 2
the Alternative Pathway is introduced; from this an Algorithm is developed in
Section 3 and compared to the equivalent biological route. Finally method for
comparing the natural modes is outlined in Section 4.

2 The Complement Process

The complement system is named because it was believed to aid the antibody
recognition process. However, it is an important system in its own right with a
central role in the inflammatory response of the immune system [7,8,9], being
sensitive to small amounts of pathogen. However, it has been found to be ef-
fected earlier in the process of the immune response than during any antibody
action. The complement process is a combination of many different chemicals
that produce a wide range of effects across the immune process.

There are three top level routes into the complement process, namely the Clas-
sical Pathway, the Mannose-Binding Lectin (MBL) Pathway and the Alternative
Pathway. Each of these pathways uses a variety of different chemicals during the
process, but at the centre of each process is the C3 Convertase. The basic com-
plement components are labelled C1 to C9, although, in addition, the MBL
Pathway uses mannose-binding-lectin-associated serine proteases (MASP-1 and
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MASP-2) and MBL. The Alternative Pathway uses another group of chemicals
whose shorthand names are denoted by capital letters. In the common notation,
when a Cx element is cleaved it is split into two components denoted Cxa and
Cxb, where x represents the number. The Cxb component is the larger fragment.

2.1 Classical Pathway Trigger

The Classical pathway is started by the C1 complement component. C1 is a
complex of C1q and the inactive enzymes C1r and C1s. The Classical path-
way starts when the C1q component either binds to antigen or the surface of
a pathogen [10]. When the C1q head binds, it activates C1r which in turn, ac-
tivates C1s. Activated C1s is capable of cleaving both C2 and C4 [11]. Firstly
C4 is cleaved into C4a and C4b. C4b may attach to the pathogen surface. C4b
binds C2 which can then be cleaved by C1s to form the C3 convertase C4b2b
which remains bound to the pathogen surface [12].

2.2 Mannose-Binding Lectin Pathway Trigger

The MBL Pathway is initiated by pathogens containing Mannose and similar
sugars [13] on their surface. Mannose is a good indicator of pathogen as, in
vertebrates, the substance is typically shielded by sialic acid [12]. Although MBL
is similar in structure and lineage [14] to the C1 protein [15], experimentation
has shown it to be different, operating with less specificity [16].

Upon binding to a pathogen surface Mannose Associated Serine Protease
(MASP)-2 becomes activated this cleaves C4 with the C4b element remaining
attached. C2 binds to the C4b and is readily cleaved to C2b by MASP-2 forming
the C3 convertase C4b2b [12,17].

2.3 Alternative Pathway Trigger

The Alternative Pathway of complement differs significantly from the other
routes as it leads to a different C3 convertase [12]. The Alternative Pathway
also differs as it is not triggered by just a pathogen, it is activated by the pres-
ence of any surface with regulation to ensure that the host is not harmed. In
addition it possesses a different set of proteins that trigger the process, namely
Factors B, D, H, I and Properdin. Figure 1 shows the process of the Alternative
Pathway. At the heart of the Alternative Pathway of complement is the natural
and spontaneous process of the conversion of C3 to C3(H2O) [20,21] in fluid, a
functional equivalent version of its cleaved component C3b in binding to Fac-
tor B although similar in structure to C3 [19]. The hydrolysed C3(H2O) binds
to Factor B in the presence of Magnesium ions forming C3(H2O)B, whereupon
Factor B in this compound is cleaved by Factor D to form the short-lived fluid
phase C3 Convertase C3(H2O)Bb [19].

The fluid phase C3 convertase cleaves local C3, the C3a produced diffuses away
from the site. C3b attaches to a cell surface. This process must be completed
quickly as C3b is rapidly inactivated [12]. The C3b on the surface binds to Factor
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Fig. 1. Alternative Pathway of Complement (Adapted from [18] using [12] and [19])

B which is acted on again by Factor D to form the C3 convertase C3bBb attached
to a cell surface.

Up to this point in the process there has been no differentiation between the
surface of an invading pathogen and the host. It is the nature of the surface
that determines whether complement is activated. This recognition is controlled
through the β1H globulin known as Factor H [22,23]. In host cells Factor H
preferentially binds to C3 convertase on the surface of a cell [24] which promotes
inactivation by Factor I [25]. This inactive form, iC3b, is further acted upon by
Factor I to produce C3c and C3dg [21] that can then be removed.

If Factor H does not act on the C3 convertase, properdin, acts to stabilise the
compound. This reduces any potential effect of Factor H [26] providing it with
a significantly longer half-life [27].
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2.4 C3 Convertase to the Membrane Attack Complex

The result of the triggering of all three pathways is the production of C3 conver-
tase which is capable of cleaving more C3 which then acts to re-enforce the Alter-
native Pathway providing a strong amplification loop via positive-feedback [27].
Any C3 cleaved by the C3 Convertase covalently attaches to the surface leaving
the pathogen coated in C3b.

The next step in the process is the formation of the C5 convertase which
results from the binding of an additional C3b molecule to the C3 convertase.

The C5 convertase cleaves C5 into C5a and C5b. The C5b molecules attach
to the C5 convertase whereas the smaller C5a migrate away from the site of the
pathogen. The small components of complement (C3a, C4a and C5a) are known
as anaphylatoxins, as they can cause inflammation at the site. These small compo-
nents diffuse away from the site of infection. Anaphylatoxins are also chemotaxins:
phagocytes follow the diffusion gradient and so are attracted to the infection site.
Effectively phagocytes are guided to the infection site by the distribution of the
smaller complement components. The C3b attached to the surface of the pathogen
acts as an opsonin, promoting phagocytosis of the pathogen by the phagocytes
that have been recruited to the site by the anaphylatoxins.

The remainder of the complement components are involved in the terminal
phase of the process. C6, C7 and C8 successively bind to C5b bound to the
C5 convertase to produce a compound which results in the formation of a C9
polymer which crosses the membrane causing cell lysis [12].

2.5 Factor H

Factor H [28] is crucial in the identification of danger within the Alternative
pathway of complement. It exists in high concentration in the blood plasma
of humans [29] and its absence or mutation can result in serious harm to the
host [30]. It acts to start the process of inactivation of C3 convertase only if
found on host surfaces. Once this has been achieved it promotes the binding of
Factor I to complete the inactivation.

Several experiments have been conducted examining the effect of Factor H on
C3 Convertase bound to surfaces. The first molecule reported to influence C3b de-
position on a surface was Sialic Acid [31]. Further investigation revealed that other
polyanionic molecules such as the glycosaminoglycans and sulphated polysaccha-
rides [29], of which heparin is a notable case - being a strong polyanion.

This binding of polyanions and sialic acid is especially significant as it provides
host cells with a method for protecting themselves from Alternative Pathway
complement attack. The presence of Factor H gives this key ability to differenti-
ate host and pathogen surfaces [32]. Therefore any surface expressing polyanionic
molecules will be deemed as not being dangerous to the host and so inhibit com-
plement activation. The inability of molecules to express these key compounds
can result in unchecked action of the complement cascade resulting in damage
to the host [33].

The host possesses a method for suppressing complement activation via the
Alternative Pathway by expressing polyanionic molecules. However, pathogens
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have developed methods for using such tactics to avoid detection [34] by, for
example, binding sialic acid or Factor H to their own surfaces [35] in order
to mask themselves from the Alternative Pathway. Therefore the Alternative
Pathway is capable of protecting the host unless the invading pathogens become
“host-like” [36].

3 Applying Ideas from the Innate Immune System

The review of the Innate Immune System has revealed a collection of complex
processes that co-operate together to provide not only an accurate and reliable
indication of pathogen infiltration but are also capable of directing the initial
stages of the immune attack to the infected area. Therefore the Innate Immune
System provides a system worthy of investigation in its ability to protect a group
of individual units. In order to protect such a group it would be beneficial to
utilise joint information between the separate units. This scheme is typical of
Socially Attentive Monitoring (SAM) [3,4]. By sharing information, the members
of the group are then capable of identifying failures within their network. To this
end, we have devised the Alternative Pathway Algorithm.

3.1 The Dynamic Element Swarm Problem

The problem considered in this paper consists of a fallible swarm network. A set of
dynamic swarm elements must navigate a simple slalom course as a coherent group
within a time limit. Should any element change dynamic behaviour characteristics
such that the swarm interactive behaviour impedes the collective group temporal
goal achievement, it must be identified and corrective action taken.

3.2 The Alternative Pathway Algorithm

This algorithm is based around the interactions at surfaces during the Alterna-
tive Pathway of complement and the utilises several key features:

– The Alterative Pathway relies on having large numbers of molecules of the
element C3 circulating in the blood stream that are then allowed to interact
with any surface that they meet. The process is widely distributed. Not all
of the possible sites are compared at once - and there is no need to compare
one site with every other in order to make a local decision, since knowledge
about safe factors is widespread.

– The interaction with surfaces is non-deterministic but is influenced by the
state of the surface at that time. If the surface is in the process of being
identified as harmful, it is more likely that deposition will occur.

– The process of deposition is modified by the presence of expressible polyan-
ionic molecules by the surface. These can prevent further deposition, causing
inactivation and removal of the initial C3 from the bloodstream.

– The process of expression of the molecules is dependent on the nature of the
surface. Pathogens may acquire Factor H or sialic acid which masks their
true nature and prevents further activation.
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– Failure to inactivate the deposition results in rapid, exponential growth
through positive feedback which alerts the body to the problem location,
attracting more deposition of C3b and attracting neutrophils as a result of
release of chemoattractants from the process.

The implementation of the algorithm focuses on the process of message pass-
ing between software agents. The key features of the algorithm can be directly
compared with the process of the Alterative Pathway:

– The elements are widely dispersed but have natural paths of communication
between each other. There is no need for specific comparison in such a group.
An element need not compare itself to the entire group at once. Therefore
the comparison can be allowed to circulate information around the group.
However, attention needs to be directed towards problem areas in a similar
method to the release of chemoattractants.

– The process relies on the ability of each agent to identify a picture of how
it is behaving at that instant in time. These signatures can be viewed as
encapsulating the behaviour style of the agent for that period of time. In
essence, their behaviour is similar to C3, which is allowed to flow freely
around the network randomly, selecting a surface.

– These signatures can be used to modulate the behaviour of the network. A
mismatch between a local signature and one received from another agent
implies that all is not correct. Therefore, a matching function is required
which can measure the separation between two signatures. If they are close,
the process is similar to polyanionic expression, allowing inactivation. As the
distance increases, the desire to compare with neighbours must be increased,
as there is the potential that a problem has occurred but further investigation
is required. This is analogous to the stabilisation of C3 convertase on the
surface by properdin with additional release of chemoattractants.

Algorithm 1, reflects these basic properties found in the Alternative Pathway.
The algorithm is implemented on each agent separately, within the context of
an agent framework such as the Java Agent Development Framework [37]. The
basic terms used in the algorithm are outlined below:

– sigself (t) - The signature of the agent running the algorithm at time t rep-
resenting the surface of the agent.

– sigpeer(t − x) - The signature of another agent in the system at a time x
units prior to the present time. This represents circulating components of
C3, free to move in the blood stream, eventually coming into contact with a
surface.

– C3self - The stress of the agent at that time through complement deposition.
This is linked to how likely an agent will accept a signature for comparison
from a peer in the network. The lower the value the more likely a comparison
is to take place. Therefore its level acts as an attractant for signatures circu-
lating in the network, like an anaphylatoxin. The variable gives an indication
of the level of stabilised C3 Convertase deposition on the surface.
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– match() - This function acts to generate a score indicating how similar the
signature from a peer is to the agent at that time.

– R - A value representing the result of the matching function. The nearer to
unity the value then the more similar the two pairs. Therefore, it acts as
a stimulant for polyanionic compounds. At values close to unity, it will be
more likely that the signatures match and that the surfaces are safe.

– C3inc - If signatures match C3self is incremented by this constant value.
This results in suppressed activation of the cascade following a successful
surface match.

– C3max - Maximum value of agent stress, representing the minimum level of
C3 deposition on the cell. In order to maintain some comparison, the level
must be set to less than unity so that there is some probability of comparison.

– C3dec - The decrement equivalent of C3inc. It promotes activation of the
cascade on an unsuccessful surface match.

– TMaxSig - Maximum age of a signature. Any signature older than this limit
is removed from the system.

4 The Matching Problem

It is essential that signatures from other peers are correctly compared at each
agent location. Therefore a matching function is required that can successfully
cope with a variable length list of complex valued numbers. The basis for the
matching function is the Cauchy-Schwarz inequality [38] (1).

| < a, b > | ≤ ‖a‖2‖b‖2 (1)

Where < . > denotes the inner product and ‖.‖2 denotes a 2-norm. Therefore
any evaluation of the function in the form of (2) will provide a result that lies
between zero (no similarity) and unity (identical).

R1 =
| < a, b > |
‖a‖2‖b‖2

(2)

Selecting a random set of six eigenvalues of a discrete state space system to
be 0.9969, 0.9698, 0.9768 + 0.1456i, 0.9768 − 0.1456i, 0.9434 and 0.9234. The
effectiveness of (2) can be evaluated by moving the pair of complex poles around
the available space, the unit circle of the argand diagram achieving the result in
figure 2(a). A good match of eigenvalues can be achieved through (2) when the
two vectors are closely aligned. As the eigenvalues drift apart then the value of
R1 decreases but for very dissimilar vectors then there is insufficient distinction.

Additionally (2) does not give any distinction between a doubling of eigen-
values. The equation is normalised so that then providing that the shape of the
values contained in the vector are identical the result will be the same. There-
fore (2) can be modified to be adjusted to be normalised to the maximum norm
of the two vector of eigenvalues so that a doubling in the total eigenvalue will
produce a lower match.
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Algorithm 1. Algorithm to Mimic the Alternative Pathway of Complement
Evaluate sigself (t)
Send sigself (t) to random peer
Receive sigpeer(t − x) from peers
for All sigpeer(t − x) received do

if rand > C3self then
R = match(sigpeer(t − x), sigself (t))
if rand < R then

Signatures Match Inactivate Process
if C3self + C3inc < C3max then

C3self = C3self (t) + C3inc

end if
else

if C3self − C3dec > 0 then
C3self = C3self (t) − C3dec

end if
Store sigpeer(t − x) and sigself (t)

end if
else

Add sigpeer(t − x) to outbound queue
end if

end for
for All sigpeer(t − x) in outbound queue do

if (t − x)) > TMaxSig then
Delete signature

else
Send sigpeer(t − x) to random peer

end if
end for

The modified version is shown in (3). This removes the similarity in value for
similar shapes of different magnitude and produces a slightly improvement in
the ability to distinguish different vectors shown in figure 2(b).

R2 =
| < a, b > |

max(‖a‖2
2, ‖b‖2

2)
(3)

Although the corrected matching functions perform well they remain rela-
tively insensitive to the movement of one or two poles. Therefore it would re-
quire a large movement from the complete vector to bring about a low matching
score. In order to produce a matching function more sensitive to changes in pole
locations then a factor can be introduced that provides a non-linearity. This
modification is shown in (4).

R3 = eFR2−F (4)
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(a) Evaluation the Similarity of Com-
plex Vectors using (2)
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Fig. 2. Effectiveness of Basic Cauchy Equations shown in (2) and (3)
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(b) F = 25

Fig. 3. Affect of Varying F in (4)

In order to produce a higher variability in the result of the match an exponential
function is introduced to give a highly localised comparison. In order that result of
the function is bound between unity and zero an additional factor F is used to limit
the swing of FR2−F from zero to −F . In addition it allows the matching function
to have a variable component that allows the shape of the matching region to be
adjusted as suited to the problem area. Figures 3(a) and 3(b) shows the evaluation
of (4) over the unit circle in the complex plane. As can be seen (4) is sensitive to
changes in the evaluation of R2, but can be adjusted by varying F to give a sharper
region of suppression shown in Figures 3(a) and 3(b).

5 Conclusion

In this paper we have explored the possibility for an algorithm based on the
Alternative Pathway of Innate Immune system. The Alternative Pathway is trig-
gered by all cell surfaces. However, the surface of safe body cells strongly inhibit
the process by attracting Factor H. The algorithm is based around a network
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of homogeneous agents sharing information on how they are reacting to their
environment. This information is akin to the picture presented by a cell surface
in the Alternative Pathway. Further work is planned to exploit the algorithm in
the fallible swarm problem to remove rogue elements.

References

1. Schaust, S., Szczerbicka, H.: Artificial immune systems in the context of misbehav-
ior detection. Cybernetics and Systems 39(2), 136–154 (2008)

2. Wittig, T., Jennings, N.R., Mamdani, E.H.: ARCHON - A framework for intelligent
cooperation. IEE-BCS Journal of Intelligent Systems Engineering - Special Issue
on Real-time Intelligent Systems in ESPRIT 3(3), 168–179 (1994)

3. Festinger, L.: A theory of social comparison processes. Human Relations 7, 117–140
(1954)

4. Kaminka, G.A., Tambe, M.: Social comparison for failure detection and recovery.
In: Agent Theories, Architectures, and Languages, pp. 127–141 (1997)

5. Kaminka, G.A., Pynadath, D.V., Tambe, M.: The role of agent-modeling in agent
robustness. In: Proceedings of the conference on AI meets the real-world (1998)

6. Kaminka, G.A., Tambe, M.: What is wrong with us? improving robustness though
social diagnosis. In: Proceedings of the Fifteenth National Conference on Artificial
Conference on Artificial Intelligence AAAI 1998 Tenth Conference on Innovative
Applications of Artificial Intelligence, pp. 97–104 (1998)

7. Thurman, J.M., Holers, V.M.: The central role of the alternative complement path-
way in human disease. Journal of Immunology 176, 1305–1310 (2006)
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Abstract. The adaptable lymphocyte hypothesis is identified as a possi-
ble source of inspiration for artificial immune systems. Based on a number
of qualitative investigations we identify some properties of a theoretical
system (the tunable activation threshold model and excitability) that
could be applicable in an engineering domain. An example is shown of
how we could exploit these properties.

1 Introduction

The development of the majority of biologically inspired algorithms, such as
artificial immune systems (AIS), has been criticised [1] for lacking a rigorous
methodology to ensure that the algorithms are actually based on the biological
properties from which they have been inspired. To investigate this criticism, we
are following a process suggested by [1] to develop an AIS based on novel immune
ideas that tries to capture the essence of the immunology. In particular, this
paper focuses on one way in which we can take a theoretical immune property,
the adaptable lymphocyte hypothesis [2,3], and investigate how it could be used
in an engineering application.

In section 2 we describe some of our relevant previous work, then in section 3
the adaptable lymphocyte hypothesis is outlined. Sections 4 and 5 provide an
investigation of the suitability for engineering of the adaptable lymphocyte hy-
pothesis. Section 6 highlights a way in which we might use the adaptable lym-
phocyte hypothesis ideas for population dynamics in an AIS, and in section 7
we draw conclusions on our work.

2 Previous Work

In [4], we explored how AIS have been developed in recent years focusing on their
immunological inspirations. This led us to suggest that actively seeking out new
immune theories for providing AIS inspiration could be of benefit. One such theory
was identified as Cohen’s [5] cognitive immune system, which was shown to incor-
porate many appealing properties that could inspire an engineering system, such
as degeneracy and patterns of response. We also identified in [4] the conceptual
framework approach of Stepney et al. [1] as a methodology for exploiting a new
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immune theory from which you wish to take inspiration for building an AIS. This
framework aims to facilitate the development of bio-inspired algorithms in a more
principled way than has been previously observed. It suggests AIS are designed
through a series of observational and modelling stages in order to identify the key
characteristics of the immunological process on which the AIS will be based. The
first stage probes the biology using observations and experiments to produce a
partial view of the biological system under investigation. From this view, abstract
models of the biology are built, which are open to investigation and validation
techniques not available to the actual biological system. The insight gained from
these models should then lead to the construction of the bio-inspired algorithms
and frameworks. It is important to note that the process is iterative and allows
movement between stages depending on their outcomes. It is suggested that algo-
rithms developed in this way will be more biologically plausible and avoid being
a weak analogy of the process on which they are based having being developed
directly from (often naive) biological observations.

We have chose to follow the conceptual framework approach in an attempt
to develop a novel AIS, and to investigate the claim that algorithms developed
in this way are more biologically plausible. We began our investigations in [6]
with a model and simulation of degeneracy in a lymph node inspired by the
ideas of Cohen’s [5] holistic view of the immune system. Our partial view of
the biology was taken directly from the immunological research literature, from
which a model was extracted. This model was based on the process of TH cell
activation in the paracortex of a lymph node, in which the TH cell receptors are
assumed to be degenerate. Our results highlighted the ability of randomly gener-
ated detectors to collectively produce distinct patterns of response to antigenic
stimuli. However, one of the main outcomes of this work was that additional
immunology was needed to inspire a useful engineering application. Notably, we
were interested in finding a mechanism of adaptivity in T cells that could result
in interesting population dynamics that we could exploit in an AIS.

3 The Adaptable Lymphocyte

In response to a number of observations that contradict the classical view of
immunological tolerance, Grossman [2,3] presents the adaptable lymphocyte hy-
pothesis: the “responsiveness of individual lymphocytes to antigen and other
signals can be tuned and updated”[3]. From this hypothesis, Grossman [2] de-
rives the tunable activation threshold (TAT) model that assumes lymphocyte
activation thresholds are tuned internally by the cell based on the history of its
environmental stimulation. The key definitions from the TAT model are:

Excitation. a quantitatively expressed change in the metabolic state of a cell
induced as a direct result of an external stimulus.

Excitation Level. a positive scalar measure of the excitation.
Excitation Index. a time dependent, weighted average of the past excitation

levels of the cell.
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Perturbation. the difference between the current excitation level and the ex-
citation index upon an excitation event.

Activation Threshold. the excitation index plus a fixed critical value.

Grossman [2] suggests that the excitation index at time t, I(t), could be related
to the excitation, E(t) via equation (1):

dI(t)
dt

= αE(t)[E(t) − I(t)] (1)

where α is a positive constant.

Fig. 1. TAT model behaviour reproduced from [2]

Examples of the dynamics of the TAT model are shown in Figure 1, which has
been reproduced from [2]. This shows six distinct perturbations to the excitation of
a cell over a period of time with the corresponding evolution of the excitation index
and activation threshold are traced. Eachperturbation is labelled alongwith a sign
(+ or −) highlighting whether the excitation has breached the excitation index.
For activation to occur, the excitation level must exceed the activation threshold.
Of the six events shown, only the fourth would lead to activation. At time ts, acti-
vation can no longer occur as the activation threshold has exceeded the saturation
level, which is defined as the cell becoming temporarily anergic.

In addition to the TAT model, Grossman [3] incorporates tunable excitability
into the adaptable lymphocyte hypothesis, defining it as “a measure of the cell’s
capacity to communicate with other relevant cells”. It is described as being
directly promoted by excitation events and an enhanced excitability facilitates
the ability of the cell to proliferate and differentiate. It is further noted that the
kinetics of the excitation index and excitability determines whether a lymphocyte
will be activated.
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Theadaptable lymphocytehypothesishasanumberofappealingproperties from
an engineering point of view. This has also been identified by Guzella et al. [7] who
suggestusing tunableT cell thresholds aspartof anAISaimedat temporalanomaly
detection.Theyhighlight an initial architecture for aT cell inspired anomalydetec-
tion system attempting to incorporate previously non-utilised aspects of the natu-
ral immune system. They focus on the signalling machinery of T cells and the TAT
model,althoughtheTATmodel isnotyet integrated into their architecture.Guzella
et al. [7] also highlight the work of a number of TAT models from theoretical im-
munology [8,9,10]. Unlike these works we are not concerned with whether the TAT
equation (1), or any other more complicated equation, is biologically accurate, but
how we can exploit Grossman’s [2,3] ideas for AIS.

4 Investigating TAT Behaviours

The purpose of the investigations that follow is to first assess whether the TAT
equation (1) gives us the behaviour stated by Grossman [2,3] and summarised
in section 3, and then to investigate how we might use this in an engineering
context. Our goal is to translate the qualitative behaviour seen in the TAT
model into an engineering domain. The approach we have taken is to build a
simple computational model that we have used for the examples presented in
the next two sections. The model comprises two main components, a population
of detectors with tunable excitation indexes and a population of antigens used
to stimulate the detectors and provide the excitation. The model is iterative
and at each time step, t, each detector is exposed to an antigenic stimulus and
the following equation (2) (equivalent to equation (1)) is used to update its
excitation index:

I(t + 1) = I(t) + αE(t)[E(t) − I(t)] (2)

where the symbols are the same as those described for equation (1). The way in
which the detectors and antigens interact differs for each example that follows.

4.1 The TAT Equation

Here we look at each component of the update equation (2) to assess its effect
on the evolution of the excitation index. At each time step, the excitation index
is increased by the multiplication of three terms, a positive constant α, the
excitation E(t), and the size of the perturbation to the system [E(t)−I(t)]. This
perturbation is the only term that can be negative, thus a positive perturbation
will lead to an increase in the excitation index and a negative perturbation to
a decrease. The larger the perturbation, the larger this term will be. The α
parameter determines how quickly the excitation index tunes, the smaller it is,
the smaller the increment to the excitation index and the slower it tunes to the
value of the excitation. This parameter, therefore, controls the “memory effect”
of the excitation index: the lower the α value the longer term memory of past
excitations.
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Fig. 2. Effect of parameter α on the excitation index with a varying excitation

Figure 2 demonstrates how the excitation index of two tunable detectors with
different α parameters (0.1 and 0.025 respectively) changes given a varying exci-
tation. The excitation distribution was generated by two gaussian distributions
centred on iterations 200 and 500. These values were then applied to a detector
as the antigenic stimulus over time. This figure shows the excitation index is
behaving as described in section 3, being tuned by the excitation events that
are occurring. We can also see the effect of α with at lower value producing an
excitation index curve that adapts (tunes) at a slower rate.

Figure 2 also highlights the effect of the third term that influences the ex-
citation index increment, the E(t). This provides the behaviour whereby the
excitation index tunes more quickly at higher excitations. It is this term that
makes the TAT equation (1) differ from a simple sliding average of previous ex-
citations. As the excitation value falls, so does the tuning of the excitation until
at E(t) = 0 where no tuning occurs. In a biological setting, this lack of stimulus
may be unlikely to occur, however in an engineering context we need to be aware
of this behaviour as it could be an unwanted property if a constant background
level of excitation can’t be guaranteed.

As a final example, we generate an excitation distribution to visually match
the original figure of Grossman [2] (reproduced here in Fig. 1) to see if we
could re-create the behaviours of the excitation index and activation threshold.
The result is shown in Fig. 3, which provides a good visual match to Fig. 1.
We conclude from these observations that the TAT equation (1) is suitable to
produce qualitatively similar behaviours as those described by Grossman [2,3]
and summarised in section 3.
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Fig. 3. Reproduction of TAT behaviours graph using equation (1) and α = 0.0075

4.2 Simple Engineering Example

Our next step assessing the suitability of the TAT model for engineering, was
to investigate the behaviour with a detector and antigen representation similar
to those used in an AIS. Typically this involves providing each with a string of
symbols (normally binary or real numbers) that represent the molecular shape
of their binding regions. We therefore gave our detectors and antigens a vector of
real numbers, which is used to calculate their affinities based on their Euclidean
distance. This affinity is then multiplied by a concentration for the antigen to
transform it into an avidity measure, representing the excitation of a detector at
that point in time. For this example, we subjected two detectors with different
shapes and the same α parameter to the same antigen over a period of 1000
iterations. For the first 300 iterations, the antigen concentration was set at 20
to provide a background level of excitation. For the next 200 iterations, the
antigen concentration was 200 mimicking an excitation event. After this, the
concentration falls back down to 20. The results for an antigen with the shape
[0.7, 0.7, 0.7, 0.7, 0.7], detector 1 with [0.25, 0.25, 0.25, 0.25, 0.25] and detector 2
with [0.25, 0.25, 1.0, 0.5, 0.5] are presented in Fig. 4. This shows a qualitatively
similar excitation index tuning behaviour to the more abstract examples above
in section 4.1. This re-enforces our view that the TAT equation (1) can be used
effectively in an engineering setting.

5 Excitability

As noted in section 3, Grossman [3] describes the property of excitability as
part of the adaptable lymphocyte hypothesis. Unlike with the TAT model, no
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Fig. 4. Excitation level and index of two different randomly generated detectors ex-
posed to an antigen

equation is given to describe the behaviour of excitability, only that it is pro-
moted by excitation events and facilitates the ability of the cell to proliferate
and differentiate. Along with the excitation index, it determines whether a lym-
phocyte will be activated or not. Thus, if we are to use the ideas of the adaptable
lymphocyte hypothesis in an engineering system, then an equation to describe
excitability could be advantageous.

Based on the descriptions above and the dynamics of the TAT equation (1), we
propose that the following equation (3) can be used to describe the excitability,
X(t):

X(t + 1) =
{

X(t) + σ[E(t) − I(t)][μ − X(t)] if E(t) − I(t) > 0
δX(t) otherwise (3)

where t is time, E(t) is the current excitation, I(t) is the excitation index and σ, μ
and δ are all positive constants. This equation (3) is split into two cases: the first
applies when there is a positive perturbation to the system, otherwise the second
part is applied. This second case simply implements a decay of the excitability
over time if there are no positive excitation events, with δ acting as a parameter
that determines how fast this decay happens. The first case of the equation is
influenced by equation (1), and attempts to take into account the idea that a
positive perturbation will promote excitability, hence the inclusion of the [E(t)−
I(t)] term. σ acts as a parameter that determines how quickly the excitability
tunes, providing a similar behaviour to the α parameter of equation (1). The
last term, [μ − X(t)], provides a scaling to the excitability, where μ defines a
maximum excitability for the detector.
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Fig. 5. Typical excitability graph

Using the same excitation distribution in Fig. 2, Fig. 5 plots the excitability
for two detectors with different σ and δ values, but the same value for μ. Both
detectors are also given the same values for the excitation index, allowing us to
compare the effects of σ and δ on excitability. As with α, we see that at lower
values of σ, the excitability tunes more slowly. Conversely, the larger the value
of δ the slower the excitability decays. We also see the behaviour difference be-
tween the excitation index and the excitability. Both have similar qualitative
behaviours in the presence of a positive excitation event (controlled by their
respective tuning parameters α and σ). Their behaviour differs however in the
presence of a decreasing excitation event, and in the absence of excitation. In-
stead, the excitability decays at a controllable rate determined by δ and will
continue to tune downwards in the presence of no excitation.

6 Population Patterns

Having investigated the behaviours of the TAT model and a possible equation
for excitability in terms of their suitability for an AIS, we can start to examine
how to integrate tunable detectors into ideas from our previous work. In [4,6]
we have identified and investigated the idea of using patterns of a population of
degenerate detectors to provide immune specificity. In this section we show one
way in which we can augment this idea by adding adaptability to the detectors.

The excitation index and the excitability provide similar, but different dy-
namics, each in some way providing a memory of previous excitation events.
We propose that these can be used in combination to control the proliferation of
detectors undergoing a continued antigenic stimulus. Once the excitation level of
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Fig. 6. Population response of 7 detectors to a continued antigen presence
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Fig. 7. Total population pattern of active cells

a detector (determined by its avidity for the antigenic stimulus) rises above the
tuned activation threshold, the excitability is used to determine the probability
that it will proliferate. The higher the excitability, the larger this probability
would be. As the excitation index continues to tune, a point will occur when
the excitation level is no longer above the activation threshold and the clonal
detector population will stop expanding in size. Thus, the size of this population
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is determined by a function of the avidity of the detector for the antigen present
and the interplay between the excitation index and excitability. Given a ran-
domly generated population of these detectors we will get a clonal expansion
of the detectors occurring at different rates, producing a pattern of population
response that is typical of the antigen that induced it. As an example, Fig. 6
shows the populations of 7 randomly generated detectors expanding to the same
antigenic stimulus. For each detector the point at which it stops expanding is
different, and the sizes of the clonal population are also different. If we look at
total population of all detectors and plot the numbers of active cells (i.e. those
that are still expanding) we get the graph shown in Fig. 7. This provides us
with a single pattern of response for the entire population. It is this pattern that
could be incorporated into an AIS.

7 Conclusions

From the investigations presented in sections 4, 5 and 6 there are a number
of implications we can draw for designing AIS that would take advantage of
tunable detectors based on the adaptable lymphocyte hypothesis. Based on a
number of qualitative investigations, we have highlighted a way in which we can
translate properties of a theoretical system into behaviours that might be useful
for engineering. Additionally the process of investigating the TAT model and
excitability give us an understanding of the dynamics of the tuning equations
and the effects of their parameters. It is likely that an AIS based on these ideas
will have similar behaviours and parameters, thus our investigations would allow
us to better reason about the AIS.

In summary, we have followed on from previous work [4,6] aimed at following
the conceptual framework approach [1] to develop a novel AIS, and identified the
adaptable lymphocyte hypothesis of Grossman [2,3] as a possible source of AIS
inspiration. We have presented a qualitative investigation into the TAT model
and deemed it suitable for use in an engineering context. We have also presented
an equation (3) for describing the property of excitability. Using a combination of
the TAT model and excitability we have given an example of how the adaptable
lymphocyte ideas can be used to provide a population response from a set of
detectors. This process of investigation has given us insight into how we can
translate an immune theory into a property useful in an engineering. Further (as
yet unpublished) work has uses these ideas in an AIS for pattern classification
using patterns of a population of degenerate and adaptable lymphocytes.
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Abstract. In this conceptual paper, we discuss the relevance of cellu-
lar signaling pathways for immune-inspired algorithms. With complex
dynamics, the mapping of environment stimuli to cellular responses is
highlighted as a decision making capability. When considering applica-
tions which could benefit from these dynamics, the possibility of incor-
porating these pathways can be an interesting way to combine more
biologically-plausible algorithms and improved performance. The struc-
ture of the NF-κB (Nuclear Factor κB) and MAP (Mitogen-activated
protein) kinases pathways, and the pathways involved in signaling by
Toll-like receptors, are presented. As an example, we then consider how
these pathways could be incorporated in the Dendritic Cell Algorithm.

Keywords: Artificial Immune Systems, Signaling pathways, NF-κB,
MAP kinases, Toll-like receptor signaling.

1 Introduction

Nature has always been an interesting source of inspiration for engineers and
computer scientists. In recent years, it has lead to the proposal of important
computational tools, such as Artificial Neural Networks and Genetic Algorithms.
Based on the powerful cognitive capabilities of the human immune system, a
more recent development are Artificial Immune Systems [1] (AISs). AISs have
been used in various application areas, inspired by several processes taking place
in the immune system.

The immune system is often cited as possessing several interesting features
from a computational perspective, such as pattern recognition, memory, home-
ostatic stability, among others. However, in attempting to capture such features
in an algorithm, it should be kept in mind that they are “implemented”, at the
cellular level, by signaling pathways. This is further emphasized by the increasing
application of mathematical formulations to signaling dynamics in the immune
system [2], with the objective of unveiling their roles. Due to the fact that many
of these features of interest can be described as emerging from such pathways,
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along with inter-cellular interactions taking place in the immune system, under-
standing how these pathways are organized can have important consequences.
Thus, considering some of these features in a specific application might require
the understanding, at some level of detail (even if very simplistic), of how these
pathways shape the response of cells. From a conceptual point of view, this
requires looking at complexity at the cellular level, in addition to that at the
population level. This constitutes the main point of this paper: to discuss the
relevance of considering these pathways in immune-inspired algorithms, and to
suggest how this could be done. In line with our argument of the importance of
understanding the structure of these signaling pathways, we presented a reason-
ably detailed description of some of them.

In particular, in the area of neural networks, the importance of the dynamics
of neurons, due mainly to processes involving ion channels, has been receiving
increasing attention. In contrast to the Multi-layer perceptron (MLP), which
assumes that the information transmitted between two neurons is coded in the
average spiking rate, so that the neuron’s output is a smooth function of the
input, several recent models include the dynamics involved in the generation of
spikes. In addition to being more biologically realistic, such models have a wide
applicability in problems where dynamical aspects are important, such as sound
analysis [3] and robotics [4].

When it comes to more biologically-plausible models, a similar change is oc-
curring in AISs, with recent works advocating algorithms more realistic from
a biological point of view [5]. However, in doing so, the characteristics of the
algorithm should be tailored to the target application [6]. This process involves
several steps, such as the understanding of the biological processes of interest,
the construction of models for analysis of these processes and, then, the for-
mulation of an algorithm [5], based on characteristics of the target application,
thereby reinforcing the interdisciplinary characteristic of AISs [7].

This paper is organized in the following way: section 2 discusses the dynamics
of signaling pathways, and the emergence of decision making capabilities. In
sequence, section 3 presents two relatively well-known signaling pathways, the
NF-κB (Nuclear Factor κB) and MAPK (Mitogen-activated protein kinases),
followed by section 4, where the pathways involved in signaling by the Toll-like
receptors are considered. Section 5 then considers, as an example, how signaling
dynamics could be incorporated in the Dendritic Cell Algorithm [8,9], followed
by the final conclusions and future research directions in section 6.

2 Dynamics of Signaling Pathways

Signaling pathways are ubiquitous in several cell types, not limited to cells in
the immune system. They allow a cell to adapt in response to certain environ-
mental stimuli. A general description of the steps involved in the activation of
such pathways is shown in figure 1. The initial event is the binding of a ligand,
such as cytokines, hormones, an antigen or a peptide-MHC complex, to mem-
brane receptors. This activates downstream events taking place in the cytoplasm,
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which, usually (but not only) through possibly multiple phosphorylation or de-
phosphorylation (addition/removal of a phosphate group, respectively) steps
of one or more proteins, mediated by kinases and phosphatases, respectively,
leads to the generation of one or more multi-protein complexes. As indicated in
figure 1, some of the steps involved in a certain pathway may be shared with
another pathway, for example when an enzyme needed for the activation of one
pathway also mediates activation (or even inhibition steps) in another pathway.
At some point, the nuclear transport of certain species formed (or activated)
during the activation of the pathway takes place, where they influence the ex-
pression of certain genes. These genes can, in turn, lead to the expression of
proteins involved in one or more pathways or the secretion of soluble factors. In
the former case, the resultant proteins might up- or down-regulate the activated
pathway, through interaction with the receptors or by regulating some of the
steps during the activation of the pathway. It is also possible that the affected
genes induce the up- or down-regulation of the membrane receptors. In turn, the
secreted factors can stimulate another or even the same type of receptor initially
activated, resulting in the activation of other (or the same) pathway.

Fig. 1. Illustration of some of the general events involved in signaling pathways. The
dotted arrows indicate events that occur in response to activation of a pathway (see text).

While the previous discussion might give an impression that the activation
of such pathways is a linear, sequential, event, the realization that this is not
the case is a growing theme in the literature. It is being increasingly acknowl-
edged that the functioning of these pathways is extremely complex, due to the
interconnection between components taking place in several pathways, challeng-
ing reasonably simple chain of events following activation. One characteristic
of many of these pathways is combinatorial complexity, which results from the
combinatorial number of complexes that can be formed as a result of ligand stim-
ulation (e.g. [10]). In particular, this is one of the major obstacles for studying the
signaling networks in a cell. Nevertheless, the large number of connections and
the modularity [11] typical of such networks might allow them to perform com-
plex input-output mappings [12], in terms of the cellular responses (proliferation,
apoptosis, among others) to stimulation, highlighting the emerging information
processing and decision-making capabilities of these networks [13].
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Despite the difficulties involved in elucidating the molecular events taking
place in signaling pathways, the growing availability of technologies allowing the
study of such systems has allowed an increased understanding of such events.
In this context, an important aspect studied is the structure of these signaling
pathways, i.e. what are the components involved and how they are organized
during the response. This information is extremely important, due to the fact
that the structure of a pathway, represented by the interactions between compo-
nents involved in such pathway, shape the cellular response to stimulation. An
increasingly used tool to analyze this structure is mathematical modeling, which
allows a characterization of the emerging features of these pathways. Among the
approaches that have been used to model signaling pathways, the following can
be cited (although this list is far from complete):

– Differential equations, either ordinary (where the spatial distribution of com-
ponents is assumed to be homogeneous) or partial (which consider spatial
aspects). Sometimes, stochastic effects are also considered.

– Rule-based models [13], reviewed in [14].
– Algebra-based models [15].
– P-Systems, also known as membrane computing [16].

3 The NF-κB and MAPK Signaling Pathways:

In this section, we briefly present two pathways involved, among other functions,
in several aspects of the immune system: the NF-κB (Nuclear Factor κB) and
the MAPK (Mitogen-activated protein kinases) pathways. This discussion serves
two purposes: illustrating the complex dynamics of these two signaling pathways,
while paving the road for the next section, as these two pathways are involved
in signaling mediated by the family of Toll-like receptors (TLRs).

The NF-κB pathway, depicted in figure 2a, is believed to the “original signaling
pathway” (see the final words in [17]), given the widespread expression in inver-
tebrates of genes coding proteins involved in this pathway. In a stimulation-free
scenario, the majority of NF-κB dimers (complexes formed by two molecules of
NF-κB), indicated in figure 2a with the subscript d, are located in the cytoplasm,
associated with one of three IκB proteins (IκBα/β/ε), which precludes their nu-
clear translocation. The IκB proteins, on the other hand, constitutively translo-
cate between the cytoplasm and the nucleus. Stimulation of the NF-κB pathway
leads to the activation of IKK (IκB kinase), which triggers the phosphorylation
and degradation of the IκB proteins, allowing the NF-κB dimers to reach the nu-
cleus, where they regulate the activation of hundreds of genes (such as inflam-
matory genes), including the one coding IκBα. Once in the nucleus, the dimers
require association with IκB proteins in order to be transported back to the cy-
toplasm. The dynamics of this pathway can be analyzed using, for example, the
three-dimensional nonlinear model proposed by Krishna et al. [18]. These authors
have argued that the emergence of periodic spikes in the nuclear concentration of
NF-κB is associated with an increased sensitivity of the pathway, which could al-
low the differential regulation of certain genes.
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The MAPK pathway is another evolutionarily conserved signaling pathway,
featuring three pathways, mediated by JNK (JUN N-terminal kinase), p38 and
ERK (extracellular-signal-regulatedkinase), although a further distinction is usu-
ally made between some pathways involving ERK [19,20,21]. In the following dis-
cussion, we focus only on the first two pathways, as those have been implicated
in signaling by Toll-like receptors. Each one of the MAP kinase pathways can
be described in a general way as a three level cascade, as shown in figure 2b.
The first level is formed by the MAPK kinase kinases (MAPKKK), which are
activated by phosphorylation. The phosphorylated MAPKKKs mediate, in turn,
the double phosphorylation of MAPKKs (MAPK kinases, also known as MKKs),
which in a similar way, mediate the activation of MAPKs. In figure 2b, single-
and double-phosphorylation are indicated by the p and pp subscripts, respectively.
In these two levels, only the double-phosphorylated forms are capable of medi-
ating the activation of downstream substrates. In addition, phosphatases medi-
ate the de-phosphorylation of the activated species, shown in figure 2b as dotted
arrows, with the expression of some of those phosphatases influenced by the ac-
tivation of the MAPKs. Once activated, MAPKs mediate signaling in the cyto-
plasm or in the nucleus, leading to various responses, such as the production of
pro-inflammatory cytokines, the induction of cellular differentiation or apopto-
sis. After nuclear translocation, they affect the activity of transcription factors.
In the cytoplasm, they mediate the activation of downstream signaling pathways,
through the activation of kinases such as MAPKAPK-2 (MAPK-activated protein
kinases). The dynamics of a mathematical model [19] of the MAPK cascade indi-
cate an ultra-sensitive (step-like) response and bistability. In addition, when con-
sidering a negative feedback loop induced by activated MAPK that de-activates
the MAPKKK, sustained oscillations can arise.

a) NF-κB pathway b) MAPK pathway

Fig. 2. Structure of the NF-κB and MAPK pathways

4 The Toll-Like Receptor Signaling Pathway

The Toll-like receptors (TLRs) are one of the front-line mechanisms for the iden-
tification of pathogens by the innate immune system. These receptors, expressed
by cells such as macrophages and dendritic cells (DCs), recognize specific molecu-
lar patterns, and are crucial in the early response to pathogenic microorganisms.
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Recent results point out the existence of at least 12 mammalian TLRs [22], some
of which are expressed on the surface of cells, while others are present in intra-
cellular compartments. The former (TLRs 1, 2, 4, 5 and 6) recognize mainly
bacterial products (such as the recognition of LPS, produced by Gram-negative
bacteria, by TLR4) which are not made by the host, while the latter (TLRs 3,
7, 8 and 9) recognize nucleic-acid structures, which are not unique to pathogens,
but are not accessible to TLRs under normal conditions [23,24]. In addition,
each receptor is capable of recognizing several distinct ligands (e.g. in the case
of TLR4, LPS, heat shock proteins, fibrinogen and others [24]).

TLRs occur as either homo or heterodimers (complexes formed by two either
equal or different species, respectively), whose formation is ligand-independent.
In the case of TLR2, it associates with either TLR1 or TLR6, while the re-
maining TLRs mainly occur as homodimers. Following ligand stimulation, the
triggered TLRs recruit molecular adaptors, leading to the activation of down-
stream signaling cascades. Currently, five adaptors are known:

– MyD88 (Myeloid Differentiation Factor 88),
– TRIF (TIR-domain-containing adaptor protein inducing IFN-β),
– MAL (MyD88-adaptor-like protein), also known as TIRAP (TIR-containing

adaptor protein),
– TRAM (TRIF-domain-containing adaptor molecule),
– SARM (Sterile α- and armadillo-motif-containing protein).

The currently held model of TLR signaling, shown in figure 3, features two
main pathways, referred to as MyD88-dependent and -independent pathways,
where the former is shared with IL-1 (a pro-inflammatory cytokine), and the
latter is mediated by TRIF. The activation of these pathways depends on the
stimulated receptors. TLR3 uses only the MyD88-independent pathway, while
TLR4 uses both, with the remaining receptors activating the MyD88-dependent
pathway.

Fig. 3. Depiction of the TLR signaling pathway (see text for the description of the
steps involved)
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An important characteristic of the TLR pathway is that several steps involved
in signal transduction are shared between several receptors. Therefore, a major
question that arises is how response specificity is achieved, which can be de-
scribed as the activation of specific genes as a result of the stimulation of certain
receptors. Currently, it is believed that the specificity results from the extracel-
lular and intracellular interactions between TLRs. The former is related to the
dimerization of receptors, and the latter is due to the differential recruitment
of adaptors following stimulation. In addition to the activation of the MyD88-
dependent and TRIF-dependent pathways, TLRs 2 and 4 require the recruit-
ment of MAL before MyD88 is recruited (see figure 3), while the recruitment
of TRAM to TLR4 is necessary before the activation of the TRIF-dependent
pathway can take place. Finally, SARM, whose expression is increased follow-
ing TLR3/4 stimulation, inhibits downstream activation of the TRIF-dependent
pathway.

Following MyD88 recruitment, IRAK-4 (IL-1R-associated kinase) is recruited
and binds to MyD88. It then recruits and phosphorylates IRAK-1, associat-
ing with TRAF6 (TNF-receptor-associated factor 6). Following this, intermedi-
ate steps omitted in figure 3 involve the TRAF6-mediated activation of TAK1
(TGF-β-activated kinase), leading to the activation of the NF-κB and MAPK
pathways, which induce the expression of genes encoding pro-inflammatory cy-
tokines (such as TNF-α, IL-1β, IL-6 and IL-12). In case of the MAPK path-
way, this is mediated by the activation of the JNK and p38 cascades by TAK1,
which functions as a MAPKKK. In addition, following association with phos-
phorylated IRAK-1, TRAF-6 mediates the activation of IRF5 (Interferon regu-
latory factor 5), which also mediates the activation of pro-inflammatory genes.
Another pathway mediated by MyD88 is the activation of IRF1, which re-
quires the nuclear translocation of a MyD88-IRF1 complex, resulting in the
temporary sequestration of MyD88, and the up-regulation of type I IFNs
(IFN-α/β).

On the other hand, the TRIF-dependent pathway leads to the activation of
TRAF6, and the recruitment of TRAF3, which results in the activation of TBK1
(TRAF-family-member-associated NF-κB-activator-binding kinase). TRAF6 ac-
tivates the NF-κB pathway, up-regulating pro-inflammatory cytokines, while
TBK1 activates IRF3 and IRF7, the latter only in plasmacytoid DCs, inducing
the production of type I IFNs.

As a consequence of the intricate pathways involved in the signaling by TLRs,
interesting emerging features in the TLR pathway are cooperation, synergism
and antagonism, resulting from signaling from different receptors [22]. These fea-
tures include the non-additive production of TNF following simultaneous stimu-
lation of TLR2 and TLR4, the differential induction of genes resulting from the
combined TLR3/TLR9 signaling [25], and the secretion of anti-inflammatory
cytokines (such as IL-10) following TLR2 stimulation, which inhibit effects me-
diated by the subsequent stimulation with TLR3 or TLR4. Therefore, the com-
bination of signals and their particular timing can have a profound influence on
the cellular responses induced and the immune response.
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5 Conceptualization of Signaling Pathways in
Immune-Inspired Algorithms

As listed in the previous sections, the organization and dynamics of signaling
pathways can have an important consequence in the functioning of the immune
system. In this section, we look at the biological information presented and dis-
cuss how it may be incorporated into immune-inspired algorithms, taking the
dendritic cell algorithm (DCA) [8,9] as an example. In doing so, we formulate
a general agent-based representation of a cell, incorporating the dynamics of
signaling pathways. As agent-based representations are widely used (e.g. [26,8]),
this formulation should facilitate the incorporation of signaling pathways into
existing algorithms, in addition to providing a starting point for the develop-
ment of new algorithms. However, in considering the DCA, we do not present
a concrete approach to this incorporation, due to the fact that, as this work is
still ongoing, there are some theoretical aspects requiring investigation before
incorporating this information into the algorithm. One of these aspects is under-
standing to which degree the differential use of adaptors explains the emergence
of specificity in the response to different TLR ligands, which can suggest the
importance of additional mechanisms operating in these cells.

The need for more biologically-plausible algorithms is highlighted by Step-
ney et al. [5], which proposed a conceptual framework for the development of
such algorithms. This framework encompasses three main steps: probing the bi-
ological system, formulating a model incorporating some of the features of the
biological system, and, after validation, developing an algorithm. In turn, this
is an iterative process, because each step is amended to refinements. In partic-
ular, the intermediate step involving the development of models is particularly
important, as it can support the development of algorithms involving simplified
models of signaling pathways (e.g. where certain molecular species are neglected)
while, at the same time, allowing for a reasonable reproduction of the properties
of a given pathway. In addition, when dealing with complex systems (such as
signaling pathways), whose emergent behavior cannot be easily predicted from
simply looking at the biological system, the importance of formulating models
is further highlighted.

In fact, the development of biologically-plausible algorithms is a growing theme
in AISs. Twycross and Aickelin [27] discuss the possibility of using models inspired
on the immune systems of plants and invertebrates, which are relatively simpler
than those of vertebrates, and the need to consider systemic models, as most real-
world applications require systems based on a holistic view of the immune sys-
tem. The latter is, in fact, receiving an increasing focus, especially by researchers
working with homeostasis-inspired systems [28]. Finally, Guzella et al. [29] point
out some signal processing capabilities of T cells, and discuss the incorporating
of some of these mechanisms involved in a more biologically-plausible model of T
cells. In particular, this is an interesting candidate for the incorporation of signal-
ing pathways, which “implement” these signal processing capabilities. Additional
discussions on recent developments on new immune-inspired algorithms and in-
spirations can be found in recent reviews and position papers [7,30,31].
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In the following, we consider the DCA in greater details, although most of the
discussion applies also to the TLR algorithm [26]. In the DCA, signal processing
by DCs is incorporated in a simplified way (see chapter 4 in [8]), which can be
described by the following equation:

[
Ψcs(t) Ψmt(t) Ψsm(t)

]T = W (1 + If (t))
[
Id(t) Ip(t) Is(t)

]T (1)

where Ψcs, Ψmt and Ψsm are the co-stimulation, mature and semi-mature out-
put signals, If , Id, Ip, Is are the inflammatory, danger, PAMP and safe input
signals, and the W matrix is constant. In particular, one of the PAMP (and
also danger) signals in the natural immune system is the ligation of TLRs, a
view which is incorporated in the DCA. The output signals define the state of a
DC, which, through the application of a threshold function, determine if it will
migrate, and its phenotype (mature or semi-mature) upon migration. The in-
flammatory signal is generally held constant, so that system 1 becomes a linear
time-invariant dynamical system with dynamics faster than that of the input
signals (so that the transient response can be neglected). However, the dynam-
ics of cellular responses, which are mediated by signaling pathways, are neither
linear or time-invariant.

As a consequence of the use of this simplified model of DCs in the DCA, it
follows that DCs with different previous “experiences” process input signals in
the same way, which may be undesirable in some applications. In particular, as
discussed in section 4, the responses resulting from TLR ligation (which can be
interpreted in the DCA as Ip and Id) display features such as synergism (e.g.
the non-additive secretion of cytokines following the combined stimulation of
different TLRs) and antagonism, which can be attributed to nonlinearity and
the temporal sequence of receptor signaling, respectively. For example, consider
the application of the DCA in a simplified intrusion detection scenario, where
danger and PAMP signals are mapped to suspicious activities, while safe signals
indicate the normal operation of the network. In this case, a DC which has only
received danger/PAMP signals up to a certain instant, which has accumulated
evidence of suspicious activies, and should be more likely to acquire a mature
phenotype upon migration, and a DC which hasn’t received any signals yet, will
process an incoming input signal in the same way, in terms of the output signals
derived. By incorporating the dynamics of signaling pathways and the expression
of related genes, it may be possible to improve the integration of input signals,
so that if a danger-experienced DC receives another danger/PAMP signal it is
more likely to migrate due to synergistic effect of two of time-correlated danger
signals, even it its co-stimulation value is lower than the migration threshold.

To understand how some modifications could be incorporated, we follow the
general, but simplified, representation of an agent presented in figure 4. In this
representation, an agent is seen as an input-output mapping with an internal
state. The inputs are stimuli received from the environment or other cells, while
the output is the secretion of soluble factors. The internal state represents, collec-
tively, the states of signaling pathways (e.g. the concentrations of certain molec-
ular species), and the expression of genes, and is under continuous “update”.
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Fig. 4. A generic representation of an agent where the dynamics of signaling pathways
are considered

It also influences how an input signal is received (by modulating certain signal-
ing pathways). Upon stimulation, the internal state is modified by a response
mediated by the signaling pathways, changing the state of the cell (e.g. induc-
ing proliferation, apoptosis or other responses), in addition to the secretion of
soluble factors (such as cytokines or chemokines). Therefore, the two most imme-
diate modifications in the DCA, which would result in more biologically-plausible
models of DCs, are the consideration of the transient dynamics (i.e. through the
internal states), and accounting for how the internal states affect these dynamics,
by defining how the internal states affect the transduction of a given signal.

This section would not be complete if the argument that, due to the inherent
complexity of signaling pathways, their consideration in algorithms is not feasi-
ble at this moment, is not discussed. Although biological systems (such as the
immune or nervous systems) are immensely complex, this has not precluded their
use as inspiration for developing algorithms. In addition, due to growing techno-
logical advances, the biological understanding of many pathways is increasing in
a fast pace, such that sufficient information on several pathways (such as those
discussed in this paper) is starting to become available.

Another aspect noteworthy of discussion is an important difference between
spiking neurons and signaling pathway models, which can pose some difficul-
ties in the incorporation of the latter in computational algorithms. In contrast
to models of ion channels, which can usually be described by low dimensional
nonlinear systems (in the case of the FitzHugh-Nagumo [32] model, two dimen-
sions), making their analysis and implementation relatively easy, models of signal
transduction pathways may be very large, due to the usually large number of
molecular species involved. Nevertheless, through an appropriate study of the
key steps involved in the activation of a given pathway, it may be possible to
obtain simplified models.

6 Conclusions

This paper discussed the potential of incorporating cellular signaling pathways in
immune-inspired algorithms. In contrary to a simple linear, sequential, cascade,
most of these pathways have a complex behavior, being capable of decision mak-
ing in the face of a constantly changing environment. In the case of the immune
system, these pathways lead to a response to a signal (such as receptor ligation),
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initiating a quick and appropriate cellular response. We have discussed in rela-
tive detail the dynamics of Toll-like receptor signaling, which could be applied
in incorporating some new aspects into the Dendritic Cell Algorithm [8,9].

While this is definitely not a simple task, it is believed that incorporating, even
in a simplified way, how these pathways shape cellular responses can have an
interesting impact on AISs, especially on applications that can benefit from the
dynamics of these pathways. However, this incorporation should be conducted
with two important aspects in mind: the need for considering the character-
istics of the target problem (i.e. how these dynamics could be beneficial for
some application) and the need for formulating models for studying them be-
fore applying in an algorithm. The latter is particularly important, because the
emergent dynamics of signaling pathways are hard to be predicted from simply
looking at the biological system and, understanding them is required, especially
as emergent behavior is recently pointed out as being an evaluation criterion of
immune-inspired algorithms [31].
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Abstract. The General Suppression Control Framework (GSCF) is a framework 
inspired by the suppression hypothesis of the immune discrimination theory. The 
framework consists of five distinct components, the Affinity Evaluator, Cell Dif-
ferentiator, Cell Reactor, Suppression Modulator, and the Local Environment. 
These reactive components, each responsible for a specific function, can generate 
long-term and short-term influences to other components by the use of humoral 
and cellular signals.This paper presents the design and application of a GSCF 
based distributed wireless sensor network prototyping system for tracking mobile 
search and rescue robots. The main objective of this physical prototyping system 
is to demonstrate the possibility of applying advanced Zigbee sensors to form a 
network that can locate a small group of mobile robots within the wireless sensor 
network. Another important objective of the prototyping system presented is to 
identify potential technological constraints in the physical system. Referencing to 
the result obtained, future research can be formulated and realistic simulation en-
vironment can be developed. 

Keywords: Artificial Immune Systems, Humanitarian Search and Rescue, Robot-
ics, Wireless Sensor Networks. 

1   Introduction 

The unprecedented number and scales of natural and human-induced disasters in the 
past decade has urged the emergency search and rescue community around the world 
to seek for newer, more effective equipment to enhance their efficiency. Tele-
operated robotic search and rescue systems consist of tethered mobile robots that can 
navigate deep into rubbles to search for victims and to transfer critical on-site data for 
rescuers to evaluate at a safe spot outside of the disaster affected area has gained the 
interest of many emergency response institutions. Distributed wireless sensor network 
applied in many different fields including, medical [18], civil [17], and environment 
research [22], has demonstrated its value in conveying data over large area with high 
level of power efficiency, which is particular suitable for tracking the location of 
search and rescue robots in large search field. 
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This research demonstrates the possibility to implement GSCF, an AIS-based control 
framework, on a distributed wireless sensor network for tracking search and rescue robot 
in the open field. The goals of the research are to develop a physical prototype to demon-
strate feasibility of the proposed application and to acquire realistic data to be used as 
simulation parameters in future search and rescue research. 

This paper begins with an introduction to humanitarian search and rescue and ro-
botics search and rescue systems. Then the paper moves on to describe the basic 
specifications of the wireless sensor network system. An introduction to AIS and the 
implementation of GSCF into the mobile robot tracking prototyping system is also 
included in the second half of the paper. Conclusions and future works are discussed 
at the end of the paper. 

2   Humanitarian Search and Rescue 

Over the past decade, natural and human-induced disasters claimed millions of lives 
and demolished astronomical sum of assets around the world. Natural disasters such 
as the Hurricane Marilyn in 1995 [3], the Oklahoma Tornado in 1999 [15], the Indian 
Ocean Earthquake [23] and Hurricane Katrina in 2005 [8], and the Pakistan Earth-
quake in 2005 [2], all claimed deadly and costly tolls to the affected communities. 
Human-induced disasters such as the civil war between Uganda government and the 
LRA (Lords Resistance Army) that dragged on for nearly two decades since 1987, the 
long-running Somali civil war since 1986, and the never-ending Palestinian conflict in 
Hebron and the Gaza Strip caused much more causalities than nature has ever 
claimed. Natural disasters usually inflict one-off damage to the community. Human-
induced disasters continue to inflict damage well after the “main” conflicts have 
ceased. The Kosovo crisis between Albanians and Serbs as well as the crisis at Timor-
Leste (formerly known as East Timor) in 1999, took place for a relatively short period 
of time but landmines deployed during the conflicts continue to claim lives well after 
the crises settled. Searching and removing landmines during and after the war can 
reduce civilian casualty and sooth local tension. De-mining and defusing landmines 
after the settlement of a war is a humanitarian responsibility that war parties should 
bear. However, until today, yet-cleared minefields still scatter in countries like Viet-
nam and Cambodia, claiming lives of ill-fated civilians. 

Collapsed buildings are common field environment for humanitarian search and 
rescue operations. Earthquakes, typhoons, tornados, weaponry destructions, and catas-
trophic explosions can all generate damaged buildings in large scales. The use of 
heavy machinery is prohibited because they would destabilize the structure, risking 
the lives of rescuers and victims buried in the rubble. Only by hand should the pulver-
ized concrete, glass, furniture and other debris be removed (see Fig. 1). 

Rescue specialists use trained search dogs, cameras and listening devices to search 
for victims from above ground. Though search dogs are effective in finding human 
underground, they are as limited as human in the depth they can reach below the sur-
face of rubbles and are unable to provide a general description of the physical envi-
ronment the victim locates. Camera mounted probes can provide search specialists a 
visual image beyond voids that dogs cannot navigate through, however their effective 
range is no more than 4--6 meters along a straight line below ground surface. 
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Fig. 1. Pakistan earthquake 2005, locals attempting to search for survivors in a collapsed girl’s 
college. The structure was in unstable condition; excavation and lifting machineries were pro-
hibited from the site. (Pictures taken on site by author during mission) 

3   Robot Assisted Search and Rescue Systems 

Robots designed for search and rescue had been discussed in scientific literature since 
the early 1980’s [12]; however, no actual systems had been developed or fielded until 
2001. With the advancement in sensor miniaturizations and exponential increment in 
the speed and capability of microcontrollers, rescue robots small enough to thread 
through rubbles are rolling out of experimental laboratories into the catastrophic ar-
eas. The first real research on search and rescue robot began in the aftermath of the 
Oklahoma City bombing in 1995 [14].  Robots were not used at the bombing re-
sponse, but suggestions as to how robots might have been applied were taken. In 
2001, the first documented use of urban search and rescue robots took place during 
the 9/11 World Trade Center (WTC) disaster. Mobile robots of different sizes and 
capacities were deployed. These robots range from tethered to wireless operated, and 
from the size of a lunch box to the size of a lawnmower [21]. Their primary functions 
are to search for victims and to identify potential hazards for rescuers. 

4   Wireless Mobile Robot Tracking System 

The low-cost autonomous robotic search and rescue system presented in [11] was 
designed to cooperate in large quantity to search for survivors in rubbles. These ro-
bots were equipped with wireless communication module to facilitate data and 
video/audio transfer. These wireless robots, with no tethers, can navigate freely in 
obstructed environment but are difficult to track their locations once they wander out 
of the operators’ sights. The Zigbee communication module equipped in each of these 
mobile robots offers an opportunity to track down their locations. The following para-
graphs will describe how a Zigbee based sensor network interacts with the onboard 
Zigbee communication module on each robot to estimate their locations. 

ZigBee (http://www.zigbee.org/en/index.asp) is a wireless technology developed to 
address the need for a standards-based wireless networking systems for low data-rates, 
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and low-power consumption applications. ZigBee supports many network topologies, 
including Mesh. Mesh Networking can extend the range of the network through rout-
ing, while self-healing increases the reliability of the network by re-routing a message 
in case of a node failure. These unique features are highly desirable for search and res-
cue robots operating in unstructured environment. The ZigBee-based sensor network 
hardware employed in this research is based on the Chipcon 2431 (http://www.ti.com/ 
lit/gpn/cc2431) development kit (see Fig. 2). 

 

Fig. 2. Left: Two Zigbee modules, one connected to a battery-board, while the standalone one 
is ready to be connected to the AIS control board through serial communication. Right: Cus-
tom designed general purpose AIS control board installed in the two mobile robots. 

The sensor network built with the 12 Zigbee modules in the development kit has 9 
modules programmed as reference nodes, and 2 modules programmed as blind nodes. 
The 9 reference nodes were distributed around the laboratory roughly resemble a 
square grid as show in Fig. 3. The two blind nodes were installed on each of the two 
mobile robots. The last Zigbee module (or the first) of the 12 was gallantly sacrificed 
in short-circuit during programming. 

Reference 
nodes

Blind nodes 

 

Fig. 3. Zigbee modules in grid. Reference nodes are represented by blank circles, where blind 
nodes are represented by crossed circles. 
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Reference nodes are static nodes placed at known position and can tell other nodes 
where they are on request. Reference nodes do not need the hardware for location 
detection and do not perform any calculations. Blind nodes, on the other hand, are 
programmed to collect signals from all reference nodes responding to their request; 
then read out the respective RSSI values, feed the values into the location engine, and 
afterwards read out the calculated position and send to the control console. Since all 
location calculations are performed at each blind node, the algorithm is genuinely 
decentralized. This property reduces the amount of data transferred in the network, 
since only the calculated position is transferred, not the data used to perform the cal-
culation. The system is therefore highly scalable. 

The ZigBee modules used are embedded with 8051 8-bit single-cycle processor, 
128 KB in-system programmable flash, and 8 KB RAM, which adds up to roughly 8 
times the performance of a standard 8051. This processing power allows the blind 
nodes to use up to 16 reference nodes to estimate its current position. In theory, sig-
nals from 3 reference nodes is the least to make a sensible estimation, the more refer-
ence node signals received, the more accurate the estimation is. 

Algorithm used to estimate locations of the blind nodes within the sensor network 
is straightforward. To estimate its current location, the blind node on the mobile robot 
broadcast a specific signal to the surrounding. All reference nodes within range re-
sponse to the signal by sending a packet containing the reference nodes’ relative co-
ordinate. The algorithm uses Received Signal Strength Indicator (RSSI) values to 
estimate distance from each reference node. Since RSSI value decreases as distance 
increases, the blind node would chose the 8 nearest reference nodes by comparing 
RSSI values between all reference nodes in range. Based on the strength of these re-
turned signals and the origin of each signal included in the packet, position of the 
blind node can be estimated. 

5   Biological and Artificial Immune Systems  

Human immune system is a robust, efficient, and adaptive system. The immune sys-
tem continuously acquires new knowledge of non-self cells, adjusts its responses 
against foreign antigens, scales up defense mechanism to foil foreign attacks, sup-
presses destructive actions against self cells, converts emergent behaviors into organ-
ized memories, and stores distributed memories for global access. Artificial Immune 
Systems (AIS) [7] is a new computational intelligence paradigm built around inspira-
tions from its biological counterpart. This new computational paradigm, in general, 
focuses to exploit and mimic the four main functions in the biological immune system 
by embedding various computational techniques and algorithms. These artificial func-
tions are further integrated to form decentralized systems with specific advantages to 
meet application needs. Many of these systems had successfully implemented to de-
centralized systems to perform learning, data manipulation, abnormality detection, 
object classification and pattern matching. 

Scientists and engineers have applied AIS to solve a wide variety of problem. [6]  
presented the application of AIS in computer network security, machine learning, and 
pattern recognition. [19] applied attribute weighted AIS to diagnosis heart and diabetes 
diseases. [5] exploited negative selection algorithm to detect abnormalities in aircrafts. 
[4] developed an AIS real-time visual analysis system for surveillance based on the be-
havior of T-cells. [16] developed AIS for detecting junk e-mail and achieved accuracy 
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close to and even exceeded commercial products in certain aspects. In an effort to de-
velop robust and decentralized control systems for modular robots, [9] developed a Gen-
eral Suppression Control Framework (GSCF) for designing control systems for modular 
robots based on the suppression mechanism in AIS. This paper, continuing from previous 
works, describes the application of GSCF in developing decentralized wireless sensor 
network for tracking a small platoon of search and rescue robots. 

6   General Suppression Control Framework 

The General Suppression Control Framework (GSCF) is based around the analogy of 
the immunological suppression hypothesis in the discrimination theory [1]. The major 
recognition and reaction functions of the acquired immunological response are per-
formed by T-lymphocytes (T-cells) and B-lymphocytes (B-cells) which exhibit speci-
ficity towards antigen. B-cells synthesize and secrete into the bloodstream antibodies 
with specificity against the antigen, the process is termed Humoral Immunity. The T-
cells do not make antibodies but seek out the invader to kill; they also help B-cells to 
make antibodies and activate macrophages to consume foreign matters. Acquired im-
munity facilitated by T-cells is called Cellular Immunity. 

When a T-cell receptor binds to a peptide with high affinity presented by an APC 
(Antigen Presenting Cells), such as macrophages, the T-cell recognized the antigen 
become mature and it has to decide whether to attack the antigen aggressively or to 
tolerate it in peace. An important decision factor is the local environment within 
which the T-cell resides. The present of inflammatory cytokine molecules such as 
interferon-gamma (INF-γ) [20] in the environment tend to elicit aggressive behaviors 
of T-cells, whereas the anti-inflammatory cytokines like IL-4 and IL-10 tend to sup-
press such behavior by blocking the signaling of aggression. In brief, a T-cell matured 
after recognizing an antigen does not start killing unless the environment also  
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Fig. 4. The General Suppression Control Framework. Dashed lines represent humoral signal 
transmissions, where solid lines represent cellular signals. The suppression modulator can host 
any number of suppressor cells. 
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contains encouraging factors for doing so. In addition, after a mature T-cell developed 
the behavior, it will emit humoral signals that have slower transmission speed but 
longer lasting effect than cellular signals to convert others to join. 

Our analogy infers each module of the modular robot is an autonomous T-cell that 
continuously reacts to the changing environment and affects the functioning of other 
cells through the environment. The framework consists of five major components. 
The most notable mechanism shown in Fig. 4 is that the T-cell’s functions are divided 
into three separate components, the Affinity Evaluator, Cell Differentiator and the 
Cell Reactor. Delegating the three unique functions into separate components enables 
the system to be organized in a modular manner and that when programming for an 
application, the result and effect of each component can be observed easier. There are 
five main components in GSCF; they are Affinity Evaluator, Cell Differentiator, Cell 
Reactor, Suppression Modulator, and the Local Environment. Their functions are ex-
plained below. 

Affinity Evaluator – evaluates information in the Local Environment against the ob-
jective and output an affinity index. 

Cell Differentiator – evaluates inputs from the Affinity Evaluator and Suppression 
Modulator to determine the type of behavior to react.  

Cell Reactor – reacts to the cellular signal from the Cell Differentiator and executes 
the corresponding behaviors that take effect in the Local Environment. 

Suppression Modulator – is a collection of Suppressor Cells that are sensitive to pre-
defined external stimulants. 

Local Environment – is where interactions between different components take place 
and a theoretical space to integrate the physical objects and the abstract system in 
an analyzable form. 

7   Distributed Wireless Sensor Network 

The distributed wireless robot tracking system presenting in this paper is based on the 
GSCF [10] developed for controlling decentralized systems. To design a GSCF based 
system, system objective and system constraints must first be identified. For the wire-
less robot tracking system in this research, the primary objective is to continuously 
track the location of each robot by evaluating a collective set of feedbacks from mul-
tiple sources. These feedbacks include coordinates from the Zigbee Communication 
Module, motor encoders, and electronic compass. The only system constraint to be 
incorporated into the system is accuracy of the estimated robot locations. 

The low-cost Zigbee based sensor network used in this research is suitable for 
tracking robots in large area and to relate information over long distance in an energy 
efficient manner. However, position estimations obtained from RF based systems are 
venerable to interferences; therefore additional referencing sensors are often desirable 
in more accurate applications. The solution for this particular application is to take 
advantage of the readily available motor encoders and electronic compasses installed 
in the robots to generate more reliable position estimations, though these sensors all 
exhibits inherited reliability issues in their own way. Table 1 lists their advantages 
and disadvantages. 
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Table 1. Advantages and disadvantages of the three feedbacks used in the system 

Sensor types Advantages Disadvantages 

Received Signal Strength 
Indicator (RSSI) 

Covers large area 

Low Power Consumption 
Venerable to interferences 

Electronic Compasses High accuracy Slow response time 

Motor Encoders High precision Cannot detect slippage 

Based on the strength and weaknesses of each type of sensors listed above, RSSI 
is a more reliable source to estimate the robots position fast without accumulative 
error. Motor encoders are not reliable for long distance tracking as slippage error 
would accumulate, however it is good for short distance position tracking. Elec-
tronic compasses can be used to confirm the direction in which the robot is moving 
towards, which in turn can verify the accuracy of the coordinates produced using 
RSSI estimation. In general, the blind node on the mobile robot would sample sur-
rounding reference nodes 10 times per estimation. Each set of 10 RSSI returned per 
reference node are converted to distances. The highest and lowest readings are re-
moved from the sample set, and then standard deviation of the remaining readings 
in the data set is produced to evaluate the reliability of the estimated distance. The 
estimated distance is more reliable if the standard deviation is low, otherwise the 
reliability is low. 

For GSCF, the fundamental idea is to let Affinity Evaluator to decide whether there 
is a problem to solve (an system objective to pursue), and then consult the Cell Dif-
ferentiator to decide whether the system has the resources to solve the problem under 
imposed constraints. For the distributed wireless robot tracking system presented, the 
Affinity Evaluator is responsible for monitoring the status of the system objective. 
The system objective is said to have achieved when the estimated distance is reliable 
(i.e. standard deviation of RSSI is low). The Affinity Evaluator would produce a low 
affinity index when the system object is achieved to encourage the system to behave 
in tolerant mode. When the system is in tolerant mode, it would rely on the primary 
data source (RSSI) to estimate robot positions. Otherwise, the Affinity Evaluator 
would produce a high affinity index to alert the system abnormality is detected and 
lead the system to enter aggressive mode. Under aggressive mode, the system would 
use additional sensing sources, encoders and compasses, to make better estimation. 
While the affinity index is high, Cell Differentiator would actively evaluate various 
system constraints to see how the robot should behave. These constraints being evalu-
ated may be predefined system constraints or newly developed constraints due to 
changes in the environment. GSCF define these constraints as suppressor cells (SC), 
these cells may evolve to adapt to new changes and may proliferate to increase their 
sensitivity to specific stimulants. 

The distributed wireless robot tracking system under discussion has two additional 
sensor sources that influence the robots’ behaviors. The encoder tells the displace-
ment of the robot by counting rotations made by the motor. The electronic compasses 
read the robots direction at any instant with reference to the earth’s magnetic field. 
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Suppressor cells that have high sensitivity to the changes of these sensors readings are 
situated in the Suppression Modulator. The following paragraph discusses how sup-
pressor cells are designed and how individual suppressive action can be combined to 
produce useful results. Though there are only three types of sensor sources, there are 
six types of suppressor cells in the system. Table 2 lists their functions. 

Suppression Modulator is a very important component in GSCF; it contains sup-
pressor cells that are sensitive to particular sensors and can be viewed as representa-
tions of external constraints reacting inside the control system. Functions of the first 
four suppressor cells listed in Table 2 are self-explanatory. The function of summa-
tion cell SC5 is designed to compare the estimated traveled distance from encoder 
and from the sensor network. For example, a mobile robot driving against an obsta-
cle would report high counts on the encoder but the estimated position reporting 
from the sensor network would probably remain unchanged. This discrepancy be-
tween estimations from two sensors would reflect in the suppression index pro-
duced by SC5, the higher the discrepancy level, the higher the suppression index 
(see illustration in Fig. 5). Function of summation cell, SC6, is similar to that of 
SC5, except it considers an additional constraint. SC6 determines whether the read-
ings obtained from sensor network is reliable by comparing the estimated direction 
from sensor network against the reading from electronic compass. SC6 takes in the 
initial and final estimated locations from sensor network to trigonometrically esti-
mate the direction the robot is moving, then compare this estimation against the 
electronic compass reading from SC3 to produce a suppression index that reflects 
the discrepancy, the higher the discrepancy level, the higher the suppression index. 
Suppression index from SC5 and SC6 are crucial for Cell Differentiator to adapt a 
behavior that best fit the situation. 

Table 2. Summary of suppressor cells in the Suppression Modulator 

 Sensitive  
Element 

Suppressor Cell Duties Output to Cell 
Differentiator 

SC1 Encoders Estimate traveled distance in respect to encoder readings Output to SC5 

SC2 Sensor Network Estimate traveled distance in respect to RSSI readings Output to SC5 
Output to SC6 

SC3 Electronic  
Compass 

Estimate traveling direction in respect to compass readings Output to SC6 

SC4 Sensor Network Estimate traveling direction in respect to RSSI readings Output to SC6 

SC5 Summation Cell 
(SC1 and SC2) 

Combines signals from SC1 and SC2 to produce a suppression 
index representing the compliance of readings from SC1 and SC2 

Suppression index lowest when the two readings agree. 

Suppression 
Signal 1-10 

SC6 Summation Cell 
(SC2, SC3, SC4) 

Combines signals from SC2, SC3 and SC4 to produce a  
suppression index that represent the compliance of readings 

from SC2 and SC3 in respect to condition of SC2 
Suppression index lowest when the two readings agree. 

Suppression 
Signal 1-10 
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Suppressor Cell 1 Suppressor Cell 2 

Suppressor Cell 5 
SC1 + SC2 

Estimated Traveled 
Distance from Encoders

Estimated Traveled 
Distance from Sensor 

Network

High Suppression Index =  Data Agree 
Low Suppression Index =  Data do not Agree  

Fig. 5. The function of SC1, SC2, and SC5 illustrated as an independent system. In short, SC5 
fuses data for Cell Differentiator to evaluate. 

The function of Cell Differentiator is similar to the biological cell differentiation 
mechanism, in which cells develop aggressive or tolerant behavior in response to the 
type of cytokines present in the immune system. Cell Differentiator is responsible for 
integrating complex information from different sources into simple instructions and 
converts intricate problems into quantitative outputs. The decision flow of the Cell 
Differentiator can be summarized in a flow chart as shown in Fig. 6. 

The suppression indices from the suppressor cells have priority over all others, it is 
being evaluated first to see whether the estimation based on encoders, sensor network, 
and compasses comply with each other. If the suppression index is low, meaning the 
estimation from sensor network agree with additional sources (encoder and compass); 
the suppressor modulator will not react strongly. If the Affinity Index is low, meaning 
the RSSI data is sable, the system will behave in tolerant mode. Otherwise, the sup-
pression index is high or the affinity index is high, the system will switch into aggres-
sive mode to  
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Fig. 6. Decision scheme in the Cell Differentiator of each modular fireguard 
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Since the Cell Differentiator in GSCF is only responsible for producing high-level 
behavioral instructions such as “sound the alarm”, “stand fast”, “search for heat”, etc. 
There has to be a component to interpret these high level commands into lower level 
commands for the mechanical controllers. This component is called Cell Reactor. 
Since mechanical control schemes varies greatly between different operation plat-
forms, GSCF delegates this work to Cell Reactor, so the high level design of other 
components can remain platform independent. 

8   Conclusions 

The AIS-based distributed tracking system developed for the mobile search and res-
cue robots is being tested indoor in a laboratory between tables, chairs and miscella-
neous obstacles. Within the environment there are uncontrolled RF interferences of 
different sorts, including Wi-Fi routers, mobile phones, activated RFID systems, 
Bluetooth devices (keyboard and mouse), and EMF from various mechanical devices. 
Despite the abundant sources of interferences, the test environment is far from practi-
cal for what this system is designed for. 

For search and rescue robots to be able to carryout practical tasks in the field, the 
tracking system must be equipped with the ability to trace robots’ positions even 
when it navigated underneath the rubble. To track robots underneath rubble would 
probably require mobile robots to form a mobile tracking network in addition to the 
stationary tracking network. Limited number of Zigbee modules in hand is one limit-
ing factor to carryout the experiment in condition closer to field environment. Design-
ing a method to evaluate accuracy of position estimation after the robot navigates and 
burry itself deep into rubble is another difficult issue. These will be works to follow. 

Since this is a prototype for tracking and controlling low-cost autonomous search 
and rescue robots with GSCF based sensor network; demonstrating the system’s func-
tionality and recording realistic data from the physical system to implement into fu-
ture simulations is the main goal at this stage. In general, the performance of the robot 
is inline with design expectation and the GSCF based tracking system works well as 
the backbone of the system. Data from the experiment cannot be extracted from the 
system due to technical difficulties; detail will be discussed in future works. To fur-
ther develop and evaluate the current prototype system, points of improvements are 
discussed in the following session. 

9   Future Works 

The prototype presented in this paper relies heavily on the original interface came 
with the development kit, which limits the programming and real-time data output 
capacity of the modules. Immediate work is to develop a programming and data ma-
nipulations interface that for extracting data from the system for graphical and 
mathematical analysis. 

Long term work is to develop methods to evaluate accuracy of sensor network es-
timated position against actual position in obstructed environment, i.e. in rubble. This 
work would provide a base to compare and evaluate results of different control and 
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tracking algorithms. In addition, technologies and methods that can help to setup the 
system quickly for emergency application is another important area to make the sys-
tem truly applicable. 
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Abstract. Previous work suggests that innate immunity and representa-
tions of tissue can be useful when combined with artificial immune
systems. Here we provide a new implementation of tissue for AIS using sys-
temic computation, a new model of computation and corresponding com-
puter architecture based on a systemics world-view and supplemented by
the incorporation of natural characteristics. We show using systemic com-
putation how to create an artificial organism, a program with metabolism
that eats data, expels waste, clusters cells based on the nature of its food
and emits danger signals suitable for an artificial immune system. The im-
plementation is tested by application to a standard machine learning set
and shows excellent abilities to recognise anomalies in its diet.

1 Introduction

An increasingly popular view in the field of Artificial Immune Systems (AIS)
holds that innate immunity (as enabled by non-adaptive cells such as den-
dritic cells) can play a significant role in maintaining immunity in computer
systems [1]. Notions such as the Danger Theory suggest that normal self cells
may provide signals when damaged, thus helping to encourage the response of
immune cells in the right areas of the tissue of an organism at the right time [2].
Previous work has investigated the development of an artificial tissue to serve
this function, providing an interface between data and AIS, and performing pre-
liminary data processing and clustering [3].

In this work we extend the previous work on tissue for AIS, and investigate
a different implementation based on the recent paradigm and computer archi-
tecture, systemic computation (SC) [4] designed to support any bio-inspired
system by enabling natural characteristics found in biology. In contrast to pre-
vious implementations of tissue, which largely ignore the relationships between
real organisms and their environments, here we present a model of organism,
implemented as a systemic computation program with its own metabolism that
eats data, expels waste, clusters its cells depending on the nature of its food and
can emit danger signals for an AIS. The implementation is tested by application
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to a standard machine learning set (Breast Cancer data [5]) and shows excellent
abilities to recognise anomalies in its diet.

2 Background

Although not commonly modelled, the notion of tissue is fundamental to immu-
nity. The immune system within an organism defends the tissue of that organism.
The concept of artificial tissue has been used for instance in the POEtic project,
aiming at creating a hardware platform organised with a similar hierarchy as
found in biological systems [6], and using reconfigurable circuits to simulate tis-
sue growth [7]. It has also been used in work that implemented an AIS in a
sensor network, the sensor nodes taking on the role of tissue cells [8].

In biology, tissue is a crucial part of the immune system and its importance
was particularly highlighted by Polly Matzinger when introducing the Danger
Model [2]. This view rejected the notion that the immune system differentiates
self from non-self and suggested that it instead responds to cellular damage.
It thus suggests that cells that die abnormally release signals which encourage
immune cells to converge on that location and become more active.

This theory was adopted in [3] to propose two ways of growing tissues where
damaged cells would release danger signals exploitable by an AIS. Tissue was
defined as the interface between a problem to solve and the AIS. Here we fol-
low a similar view, but attempt to improve the tissue model and its potential
advantages by implementing a tissue-growing program designed for AIS using
systemic computation - a parallel computer architecture designed to support
natural computation.

Systemic computation is not the only model of computation to emerge from
studies of biology. The potential of biology had been discussed in the late 1940s
by Von Neumann who dedicated some of his final work to automata and self-
replicating machines [9]. Cellular automata have proven themselves to be a valu-
able approach to emergent, distributed computation [10]. Generalisations such
as constrained generating procedures and collision-based computing provide new
ways to design and analyse emergent computational phenomena [11] [12]. Bio-
inspired grammars and algorithms introduced notions of homeostasis (for exam-
ple in artificial immune systems), fault-tolerance (as seen in embryonic hardware)
and parallel stochastic learning, (for example in swarm intelligence and genetic
algorithms) [4].

New architectures are also popular, whether distributed computing (or multi-
processing), computer clustering and grid computing and even ubiquitous com-
puting and speckled computing [13]. Thus, computation is increasingly becoming
more parallel, decentralised and distributed. However, while hugely complex com-
putational systems will be soon feasible, their organisationand management is still
the subject of research. Ubiquitous computing may enable computation anywhere,
and bio-inspired models may enable improved capabilities such as reliability and
fault-tolerance, but there has been no coherent architecture that combines both
technologies. Indeed, these technologies appear incompatible - the computational
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overhead of most bio-inspired methods is prohibitive for the limited capabilities of
ubiquitous devices.

To unify notions of biological computation and electronic computation, [4] in-
troduced systemic computation as a suggestion of necessary features for a com-
puter architecture compatible with current processors, yet designed to provide
native support for common characteristics of biological processes.

In this paper we use an approach similar to [3] and deepen the biological
analogy by modelling an artificial organism as a program with metabolism. The
program does not only mimic some tissue features but also mimics many funda-
mental properties of living organisms: eating data as food and expelling waste,
while growing tissue, and releasing danger signal when its cells die in an abnor-
mal way.

To implement such program SC provides a suitable alternative approach to
traditional computation. Indeed with SC, organisms and software programs now
share a common definition of computation. The work illustrates how organisms
and programs can behave similarly, sharing the notion of metabolism, using SC.

3 Overview of Systemic Computation

SC [4] is a new model of computation and corresponding computer architec-
ture based on a systemics world-view and supplemented by the incorporation
of natural characteristics (previously listed). This approach stresses the impor-
tance of structure and interaction, supplementing traditional reductionist analy-
sis with the recognition that circular causality, embodiment in environments and
emergence of hierarchical organisations all play vital roles in natural systems.
Systemic computation makes the following assertions:

– Everything is a system.
– Systems can be transformed but never destroyed.
– Systems may comprise or share other nested systems.
– Systems interact, and interaction between systems may cause transformation

of those systems, where the nature of that transformation is determined by
a contextual system.

– All systems can potentially act as context and affect the interactions of other
systems, and all systems can potentially interact in some context.

– The transformation of systems is constrained by the scope of systems, and
systems may have partial membership within the scope of a system.

– Computation is transformation.

In systemic computation, everything is a system, and computations arise from
interactions between systems. Two systems can interact in the context of a third
system. All systems can potentially act as contexts to determine the effect of
interacting systems. A system is divided into three parts: two schemata and one
kernel. These three parts can be used to hold anything (data, typing, etc.) in
binary as shown in Figure 1(a). The kernel defines the result of two systems in-
teracting in its context (and may also optionally hold data if it is interacting with
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(a) Data system (b) Context system (c) Interaction

Fig. 1. 1(a): A system used primarily for data storage. The kernel (in the circle) and
the two schemata (at the end of the two arms) hold data. 1(b): A system acting as
a context. Its kernel defines the result of the interaction while its schemata define
allowable interacting systems. 1(c): An interacting context. The contextual system
Sc matches two appropriate systems S1 and S2 with its schemata and specifies the
transformation resulting from their interaction as defined in its kernel.

another system). The two schemata define which subject systems may interact
in this context as shown in Figures 1(b) and 1(c). A system can also contain or
be contained by other systems. This enables the notion of scope. Interactions
can only occur between systems within the same scope. An SC program there-
fore comprises systems that are instantiated and positioned within a hierarchy
(some inside each other). It thus defines an initial state from which the systems
can then randomly interact, transforming each other through those interactions
and following an emergent process rather than a deterministic algorithm. For
full details see [4] and [14].

Systemic Computation has been used to model genetic algorithms, neural
networks, and has demonstrated properties of flexibility, fault tolerance, and
self-repair [14], [15], [16].

4 An SC Program with Metabolism

4.1 Systemic Analysis

When programming with SC it is necessary to perform a systemic analysis in
order to identify and interpret appropriate systems and their organisation [14].
The first stage is to identify the low-level systems (i.e. determine the level of
abstraction to be used).

In most artificial immune systems, the level of abstraction is the cell: few
approaches require modelling of the internal organelles or genome of cells, and
few require modelling of populations of organisms. Here we intend to model the
growth of tissue cells, the consumption of “food” (data items), the expulsion of
waste and the emission of danger signals. Thus an abstraction at the cellular
level is appropriate, with systems being used to explicitly model each element.

The identification of appropriate low-level systems is aided by an analysis of
interactions. The organism should be able to eat food from its environment, use
this food to grow organs (clusters of cells) by creating new cells and expel waste
into the environment.

To prevent being overloaded with systems, the waste can be recycled into
new food (a simple ecosystem model). Food and waste could therefore be seen as
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Fig. 2. ‘Food to waste’ cycle for an organism within its environment: Food is absorbed
by the organism, processed as energy to grow tissues before being expelled when the
organism cannot make use of it any more

different states of the same system (in SC systems can be transformed, but never
created from nothing or destroyed). Also, the food is what the organism takes
from its environment to be able to grow. Therefore cells and all the necessary
matter for the growth should also derive from the food systems.

We can thus visualise the ecosystem between the organism and the environ-
ment as shown in Figure 2.

Looking within the organism, it takes food as input and this food must be
sufficient to grow tissue. One simple way to model this is by using the approxi-
mation that the food is transformed into cells when absorbed by the organism.
However, to enable cells to adhere to each other (rather than float free), cells
need some sticky adhesion molecules. Here we do not need to explicitly model
all these molecules but an “adhesion surface” is at least required to bind two
or more cells together. As SC forbids the creation of systems from nothing, the
adhesion surfaces must be obtained either from incoming food or from the cells
themselves. In a biological organism each cell has a limited lifespan and thus dies
at some point. It may then be consumed by macrophages or dendritic cells and
its energy is partially recycled. In the model dead cells can thus be recycled to
make adhesion surfaces. A growth process can now attach cells to each other by
using adhesion surfaces to create tissue. To regulate this growth and introduce
the notion of time, a decay process simulates the aging of cells. When cells die,
a split process splits them from the adhesion surfaces they are bound to.

So the organism eats new data, converts each data item into a new cell, and
attempts to bind that cell to itself, with cells made from similar data items
binding to each other. Thus, a cell unable to bind to any group of cells reveals
itself to be significantly different from them - more like the result of an invading
pathogen then part of the organism. If this abnormal cell dies unbound, it can
therefore be spotted as a potential anomaly. In that case, the death of the cell
can entail that cell releasing a Danger signal (i.e. the cell can be converted
into a signal). This signal can then be used by an AIS algorithm which can be
implemented through the addition of systems corresponding to immune cells.
(Here we focus on the organism.)

The organism can also make use of a hunger parameter defining a maximum
amount of alive cells it can contain at a time. This parameter can be stored in
the organism system and the absorption context then only allows food absorp-
tion if the organism is “hungry”. This parameter can be useful to avoid having
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Fig. 3. ‘Food to Waste’ cycle within the organism: Food is absorbed, transformed into
cells. When dying cells can be recycled into adhesion surfaces if they were part of a
tissue or turned into a danger signal if they were single. Cells, adhesion surfaces and
danger signals have a limited lifespan and decay over time (i.e. when they reach a
certain age they die). When dying, cells also need a split process to detach them from
the tissue they were part of.

the organism growing too big and using too much memory/data at a time. A
bad usage of memory could indeed to some extend slow down the computation
process significantly.

The organism food to waste chain is therefore as shown in Figure 3.
From this defined cycle, the interactions and systems in the model can be

written as follows (also see Figure 4):

organism }-absorb-{ food → organism(cell)
cell }-growth-{ adhesion surface → cell(adhesion surface)
cell(adhesion surface) }}-split → (cell adhesion surface)
organism(cell) }}-cell recycling → organism(adhesion surface or danger signal)
X[age](time) }}-decay → X[age+1](time),X=cell or adhesion surface or danger signal
organism(X) }}-expel → (organism waste), X=adhesion surface or danger signal
universe(waste) }}-waste recycling → universe(food[data])

The absorb system models endocytosis (e.g. via cell receptors), the growth
system models the organism’s genome, the decay models the aging (progression
along the axis of time), the split system models a chemical breakdown between
adhesion molecules and cell wall, the cell recycling models the phagocytes, the
expel system models exocytosis, waste recycling systems model the ecosystem,
the universe models the environment, the organism system models the boundary
between tissue and environment, food systems model nutrients, cells model tissue
cells, adhesion surfaces model adhesion molecules, danger signal systems model
Matzinger’s danger signals, waste systems model cell waste (unused or unusable
compounds), and the time system models the dimension of time.

Figure 4 summarises the organism’s organisation and shows the potential
interactions.

Note that waste recycling, absorption, cell recycling and expel systems should
have the same amount of instances. Indeed, on average if one food system can
be created at a time, then only one can be absorbed, then recycled and finally
expelled at a time.

4.2 Data Clustering within the Artificial Organism

So far an organism has been modelled within SC. To use this organism for data
clustering the data processing method has to be defined.
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Fig. 4. Systemic organisation of the organism. The universe contains a waste recycling
system, some waste and food, and an organism. The organism shares with the universe
the absorption context. It contains cells, adhesion surfaces, danger signals, growth con-
texts, cells recycling contexts and expelling contexts. Finally cells (and thus all derived
system states like adhesion surfaces and danger signals) contain the time system, a
decay process and a split process. The schemata appear on context systems to show
the allowable interactions between systems. The dashed arrows indicate the potential
transformation of some systems during an interaction. For instance on the far left we
can observe a food system interacting with an organism in an absorption context: the
food is turned into a cell and injected into the organism.

To incorporate data into the organism’s metabolism, new data items are
placed into food systems, where it is stored in the schemata. Data from an in-
coming stream can be introduced when recycling waste (i.e. new data are pushed
into the resulting food systems). The amount of waste recycling and absorption
systems gives the data introduction rate (the more food can be absorbed at a
time, the more data are introduced). The data are then absorbed into the or-
ganism and transformed to cells. When a growth interaction occurs between a
cell and an adhesion surface, the two are bound based on their data similarity.
Algorithm 1 describes in pseudo-code the binding method. For binding a cell to
an adhesion surface the adhesion surface is injected into the cell but remains
also part of the organism so that more cells can bind to it.

The measure chosen in this implementation to compare data is the Euclidian
distance (as was used in [3]). In the organism, cells cluster according to their
values, and various clusters may emerge from this, thus reflecting the data distri-
bution. If a cell is left single then it means it cannot bind anywhere and therefore
holds data significantly different from the current most common data values con-
tained within the organism. This cell is then turned into a danger signal holding
the data that an AIS could use to develop antibodies.
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Algorithm 1. Pseudo-code for the growth context binding method. τ is a given
threshold. The distance function calculates the Euclidian distance of two vectors.

if adhesion surface not bound to anything then
Bind cell and surface
Surface data value ← Cell data value

else if distance(Cell data, Surface data) ≤ τ then
Bind cell to surface
Surface data value ← Average(Surface data, Cell data)

end if

5 Experiments and Results

To test the model and compare it with similar previous models [3], a series of
experiments were performed using the standard “breast cancer” UCI machine
learning data set [5], comprising 458 benign items (class 1) and 241 malignant
items (class 2), each item being a vector of 9 real-valued numbers. The values
were normalised to lie within the [0,1] interval.

5.1 Tuning the System

To tune the organism for this data set several settings were employed. Each
experiment was repeated 20 times. Each run consisted of 3000 iterations with
randomly picked data presented each iteration. Class 1 is treated as the “normal”
class of data and class 2 is treated as “abnormal”, from which one data item
is introduced on average every 25 iterations (these values are taken from [3] to
enable comparison), i.e. with a probability of 1/26.

All experiment settings involve a universe, an organism, a time system, an
equal amount of waste recycling, absorption, cell recycling, expelling system
varying in the experiments (see data introduction rate in Table 1), 250 data
systems in experiments 1 to 12 and respectively 500, 750, 1000, 1250 and 1750
in experiments 13, 14, 15, 16 and 17. Each data system contains a decay and a
split system. The organism initially contains 5 adhesion surfaces.

Table 1 shows the results of various tunings that were used. These results
are computed by discarding the early computations (we discarded here the first
50000 computations) during which the organism grows to an adult (stable) state
and stopping the experiments when the flow of data ends (thus not permitting
organism’s death from starvation).

From the first four experiments we can observe that the data similarity thresh-
old has a significant impact on the performance of the program. The bigger the
threshold, the less benign items are left unbound but the more malign cells
can potentially bind somewhere. A threshold of 0.4 was then used for the next
experiments.

Experiments 5, 6, 3 and 7 show that increasing the lifespan lowers the mis-
classification of class 1 data whilst slightly increasing the one of class 2. This
parameter should thus be tuned depending on the priorities in the potential
application (i.e. class to be most precisely detected).
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Table 1. This table shows in percentage the average and standard deviation of data
from each class creating a danger signal (false positive for class 1 and true positive for
class 2) for various setups. Parameters are respectively in order: new data introduction
rate (per cycle), data comparison threshold τ , cell’s lifespan, and amount of growth
systems. Experiments 1–4 investigate the effect of varying τ , experiments 5,6,3,7 inves-
tigate the effects of varying lifespan, experiments 8–11,3,12 investigate changing the
amount of growth systems, experiments 3,13–17 investigate varying the data introduc-
tion rate.

Exp Rate τ Lifespan #Growth
Class 1 Class 2

mean stddev mean stddev

1 1 0.2 15 100 22.70 1.27 99.87 0.39
2 1 0.3 15 100 11.54 0.76 99.63 0.69
3 1 0.4 15 100 7.56 0.51 98.72 1.01
4 1 0.5 15 100 5.39 0.67 96.19 1.69
5 1 0.4 5 100 9.16 1.11 99.20 1.17
6 1 0.4 10 100 7.85 0.48 99.06 1.14
7 1 0.4 20 100 7.23 0.41 98.73 1.06
8 1 0.4 15 5 14.40 0.81 99.91 0.42
9 1 0.4 15 10 8.98 0.57 99.61 0.62
10 1 0.4 15 25 7.85 0.59 99.53 0.87
11 1 0.4 15 50 7.62 0.40 98.95 0.90
12 1 0.4 15 150 7.62 0.50 98.44 1.00
13 2 0.4 15 100 6.99 0.59 98.56 1.36
14 4 0.4 15 100 7.01 0.68 97.88 1.34
15 8 0.4 15 100 7.48 0.94 98.88 1.24
16 16 0.4 15 100 6.85 0.81 98.33 2.39
17 24 0.4 15 100 7.24 0.90 98.29 2.21

Experiments 8 to 11, 3 and 12 show that, similarly to lifespan, increasing the
amount of growth systems better classifies class 1 and lesser classifies class 2.

Experiments 3 and 13 to 17 show that varying the data introduction rate does
not have a significant impact on the classification accuracy.

Comparing these results with the ones from [3] and looking at the best setups,
we clearly outperform their results. It is interesting to notice that the best setups
here use a threshold of 0.4 against 0.2 in [3]. It seems that for this study, having a
low threshold in a deterministic program as in [3] is better whilst in a stochastic
approach such as SC a larger threshold works better.

5.2 Looking into the Organism

This section investigates what can be learnt from the organism’s inner state
over time. It is expected that observing the organism from within should reveal
information about the data set. To be an effective and useful tissue algorithm,
suitable for use with AIS algorithms, the organism should organise itself in a
stable pattern reflecting the data distribution. If for instance the data stream
contains three distinct sets we expect to observe three distinct clusters of cells.
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The relevant values to observe along the computation are the amount of cells,
clusters and danger signals. Similarly to a real case on-line program execution,
Figure 5 shows the state over time of an organism during a run of 5000 samples
using the configuration of experiment 3. Again, the computations corresponding
to the organism’s early life (here the first 100000 iterations) are discarded in
order to focus on the mature aspect of the organism.

Results from Table 1 already provide insights regarding the inner shape of
the organism (i.e. its inner organisation). Class 2 (malign) items are very well
identified which means that class 2 data are not easily aggregated to other data
(otherwise they could not be well detected). Therefore class 1 (benign) data
only is actually clustering and it is thus expected to observe on average one
main cluster all along the program execution.

Figure 5 shows that the organism has a constant amount of cells in spite of
constant cellular death. The organism therefore shows homeostatic behaviour.
Danger signals are regularly emitted and represent the detected supposedly ma-
lign cells that could then be used by an AIS algorithm. The curve at the bottom

Fig. 5. Organism’s inner organisation over a run of 5000 samples
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shows the amount of clusters over time (in a smaller scale along the Y-axis for
clarity). We can observe that as expected the organism keeps settling down into
one cluster. New clusters are constantly created with the appearance of new
adhesion surfaces but quickly these new clusters bind to the main one.

As the organism is designed to grow to match the data rate, such a pro-
gram is therefore able to cope with various (unexpected) parameter changes,
self-(re)organising with the data flow, and providing information over time re-
garding detected potentially abnormal data items. When used in conjunction
with an artificial immune algorithm, the good accuracy of detection (albeit with
a high false positive rate), and the automatic organisation of similar data into
clusters should enable excellent performance overall. While temporal informa-
tion is currently lost because of the stochastic computation of SC, this could be
added as additional features of data items, enabling the clustering according to
similar timings in addition to data values.

One advantage of SC is the simplicity of modelling new stochastic systems, so
an immune algorithm could be added to this model by simply adding two or three
new types of system (e.g. B-cell, T-cell, antibody) that would then automatically
interact with the existing tissue systems. Another valuable advantage of using
SC in our approach is the fault-tolerance and self-repair ability an SC model can
naturally have, as investigated in [16]. Having robust software can indeed be an
important feature in network security to ensure the program can survive even
severe damage provoked for instance by hacking.

6 Conclusion

In this paper we introduced the notion of artificial metabolism using systemic
computation to create an organism for clustering data that is suitable for an
artificial immune system. This work is inspired by Matzinger’s Danger Theory
and uses the notion of danger signals. Starting from scratch and working on-line
our organism is able to cluster data according to its similarities and can provide
danger signals when cells die in an abnormal way for the current organism. Our
organism proved to be able to detect anomalous UCI Breast Cancer data with
better accuracy than in previous work [3]. The study of the evolution over time
of our organism showed that its inner organisation reflects the data distribution
of the current flow. Also, previous results have shown that SC programming is
very robust, with programs easily showing fault-tolerance and self-repair abilities
even when undergoing severe damage [16].
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Abstract. A biological immune system comprises components that circulate 
within the body and defend it from attacks by pathogens. Its artificial counter-
part has found applications in a wide spectrum of domains including Robotics. 
The cells in an immune system can be viewed to be analogous to mobile agents 
that migrate from one node (organ) to another. Mobility of such agents provides 
the framework for movement of components within a system. In this paper we 
describe the modeling of a mobile agent based robotic system that works on the 
principles of an artificial immune system. The mobile agents form the B-cell 
equivalents, generating rule-sets (antibodies) that help the robot to overcome a 
problem (antigen).  

Keywords: Mobile Agent, Artificial Immune System, Robotics. 

1   Introduction 

Natural processes are characterized by their complex dynamics and interactions [1]. The 
complexities involved in these processes produce behaviors that are non-trivial and highly 
sophisticated. The Biological Immune System (BIS) is a typical example of such a proc-
ess. It provides high level biological processing capabilities and acts independently [2]. 
The properties of the biological immune system are highly appealing and have diverse 
applications in the world of information processing [2, 3, 4, 5].They also have found their 
way into the domain of robotics. Besides, the recent surge in the use of robots has forced 
many a researcher to employ IS based algorithms for robot control. Ishiguro et al have 
applied IS principles in robotics mainly for behavior arbitration [6, 7, 8, 9] and for gait 
control of walking robots [10, 11, 12]. Dong and Kwee [13] describe an immune network 
theory based co-operative control of autonomous mobile robots, termed Distributed 
Autonomous Robotic System in which the desired effect is produced as an emergent be-
havior of the robots. Hart [14] has used the IS based approach to create ‘growing up’ of 
rules for accomplishing complex tasks. More IS based approaches used in robotics are 
demonstrated in [15, 16]. The BIS has features that are distributed, robust and easily 
adaptable. They are thus well suited for controlling multiple robots. An IS based multiple 
autonomous mobile robot control is discussed in [13]. Mobile agents are autonomous and 
goal-driven. They readily provide distributed computing functionalities and have added 
advantages as mentioned in [17].This makes them a novel and effective design philoso-
phy. Mobile agents have found their way into the robotic domain too [16, 18, 19, 20]. Shin 
and Lee [16] propose a multi-robot mobile agent method for securing the system  
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reliability and safety. Cragg and Hu [19, 20] elaborate on how the mobile agents augment 
a distributed computing system. These robots can share knowledge and information to 
achieve complex tasks. 

While most of these systems deal with concepts for tasks based on BIS, we are not 
aware of any attempt to use mobile agents to imitate B- or T- cells to emulate a real 
immune system for a family of robots. In this paper we describe a multi-robot system 
derived on the principles from BIS and based on the philosophy of mobile agents.  

Motivations that prompted the use of mobile agents - 

1. Agent mobility increases the potential for sharing information with other agents 
and hence with other robots being serviced by them.  

2. Robots can pass on information, learned through experiences in their respective 
environments, to other robots via mobile agents.  

3. Fine tuning of the information from different robots could be performed by these 
agents. Further their interaction with other agents could be viewed as an immune 
network [2] that shares and refines information.  

4. Robot-specific mobile agents could be summoned to a robot mimicking aspects 
of chemical signaling in the immune system world. 

While section 2 describes the motivation behind this system, section 3 describes an 
overview of the system along with a list of metaphors used. Section 4 reveals the imple-
mentation aspects and the analysis of results and finally section 5 concludes the paper. 

2   Overview of Biological Immune Systems (BIS) 

Reproduction in living organisms occur by copying the molecular instruction manual, 
called genes and passing it on to the next generation. Family traits are thus passed 
from one generation to the succeeding ones. The collection of all the genes in a living 
organism is called its genome [21]. Human beings have fewer than 105 genes in their 
entire genome. An antibody is an element of the immune system. The genetic material 
to produce an antibody molecule is stored in the component libraries. Random selec-
tion of the genetic material from these libraries results in the production of an anti-
body molecule [22]. 

The immune system serves to protect the body against foreign organisms. The  
innate immune system is the first line of defense against a foreign attack. After an 
interim period, it initiates the adaptive immune system. This largely comprises of the 
B- and T- type cells produced mostly in the bone marrow and the thymus. These cells 
are generated as precursor cells in the bone marrow and migrate to the thymus where 
they eventually mature before being released into the blood stream. The T-cells are 
known to stimulate their B- counterparts when an antigen is detected. An antigen 
could be any substance that induces an immune response. This causes the B-cell to 
release large numbers of antibodies with a single specificity that tackles the antigen. 

The behavior of the adaptive immune system to produce a large number of single 
specific antibodies over a huge range of antigens is explained by clonal selection the-
ory [2]. Binding of an antigen with antibody receptors results in the promotion of new 
antibodies. This is the core of adaptive immune response. The process of refinement of 
the antibody specificity affecting the genes occurring in the B-cell is called somatic 
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mutation. A unique shape on the surface of an antigen which triggers an antibody re-
sponse is known as epitope. The portion of antibody molecule that recognizes an epi-
tope is called paratope.  

In the domain of robotics, immune systems tackle the two basic problems of con-
structing an arbitration mechanism and preparing appropriate competence modules 
which occur in behavior based robot systems [23]. 

3   BIS Based Mobile Agent Multi-robot System  

We describe a multi-robot networked system based on [24, 25, 26]. The system com-
prises nodes, mobile agents and robots as depicted in Figure 1.  

LEGEND

TYPE 1 ROBOT/AGENT

TYPE 2 ROBOT/AGENT

RULE EXECUTION
RESULTS

REPLY FROM AGENT
RULE-SET (ANTIBODY)

REQUEST FOR RULE-SET
(ANTIGEN DETECTION)

MOBILE AGENTS
WITH RULE-SETS

(ANTIBODIES)

Agent Migration

ANTIBODY

ROBOT IN A
TRAP

TYPE 2 ROBOT

TYPE 1 ROBOT

TYPE 1
AGENT

NODE 2

NODE 1

NODE 3

NODE 4

 

Fig. 1. Multi-robot system Architecture 
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A node acts as a placeholder for the agents. Robots communicate with the agent 
through the node they are tethered to. Agents are mobile and thus are capable of 
movement from one node. We have assumed that they move in a round robin manner. 
Robots depend on the agents to provide information when they encounter situations 
that they cannot tackle on their own.  

The type of a robot is defined by its configuration, the task assigned and its operat-
ing environment. The type of an agent is defined by the family of robots it can provide 
services to. An agent of one type cannot respond or support a robot of a different type. 

The robots are autonomous but not totally intelligent in themselves. For instance a 
robot may encounter a situation it cannot comprehend such as an obstacle in front. 
The complexity of a situation that a robot faces is measured in terms of pain. Pain 
symbolizes the discomfort the robot faces in a situation. If the pain level increases 
beyond a certain threshold, the robot detects an antigenic invasion and signals for aid 
from the agent. Under such conditions the agent at the respective node is contacted 
which in turn responds by providing the necessary information, provided it is of the 
compatible type. The information that the robot receives from the agent is in the form 
of a set of rules termed the rule-set.  By executing the rules within, it is hoped that the 
robot will be able to overcome the antigenic invasion and reduce the pain to a value 
below the threshold. The rule-set thus acts as an antibody (provided by a B-cell viz. 
the mobile agent) trying to defend the robot The robot utilizes the rule-set to possibly 
overcome a problematic situation and relays its effects back to the agents. The agent 
in its turn analyzes this information and modifies the rule-sets if required. The robot is 
programmed to take up pain values beneath a threshold and fend for problems with 
lower intensities. This is analogous to the innate immune system. 

3.1   Pain Function 

One significant feature of the system is self-preservation. The term self-preservation 
denotes the instinct which helps an animal to survive fear and pain. In the current 
scenario the self preservation of the system is defined as the procedure for detecting 
discomfort (pain) and increasing the level of comfort. Discomfort or pain is expressed 
as a function of the various sensory perceptions of a robot. The sensory perceptions 
may be the internal state of the robot or the environmental conditions perceived by the 
robot. The pain function can be modeled based on the behavior desired from a robot. 
Thus, 

Pain  = Pain due to change in internal state + Pain due to external                              
             Percepts 
         = Battery charge + Distance from the obstacle as sensed by the  
             Sensor 
 

Pain  = wB*P (B) +wL *P (L) 
P (B) =Battery sensor value =    100 if battery sensor value is 0 

90 if battery sensor value is 50 
75 if battery sensor value is 75 
0 if battery sensor value is 100 
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Fig. 2. Structure of a rule-set and example of Antibody-Antigen association with the related 
metaphors 

In our experiments, these values were calculated by fitting the values on the left on 
to the values on the right. This was carried out by interpolating the corresponding 
polynomial using Lagrange’s method. The distance sensor used shows a maximum 
value when it is close to the obstacle and a value of 0, when far away. Thus, 

P (L) = Pain perceived via the distance sensor = Distance sensor value 

wB and wL are weights which are chosen such that the effects of both the percepts are 
held in balance while calculating the pain. 

3.2   Rules and Rule-Sets 

Rules form the basic building block of the antibody (rule-set). Rules are thus syn-
onymous to genes. Since genes can be formed only over several generations, we made 
a robot situated in an environment to randomly discover a large number of actions to 
circumvent obstacles. The actions taken by this gene generating robot were rated 
based on their initial (before taking the action) and final (after execution of the action) 
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pain values and ranked based on how well each action could reduce the pain levels. 
The best ranked rules formed the initial gene library.  

The change of pain (∆P) = Pain before action –Pain after action 

                  = Pb-Pa. 

Gene library contains rules, whose ∆P is positive, and above threshold. The 
threshold (σ) is found out by normalizing the ∆P values and by calculating the mean 
over those values. This same value is also used for triggering the robot to seek help 
from the agent or its rule-set. A rule-set is framed by randomly picking up n rules 
from the rule-library each of which produces a significant reduction in pain value and 
each of which have a well dispersed sensor range. This hopefully ensures a uniform 
distribution while randomly selecting rules that form a rule set. Figure 2 depicts a 
typical rule comprising seven fields viz. the battery sensor value indicative of the 
charge left on the battery, the left and right sensor values, the action to be taken when 
these sensory conditions are reported and three fields that designate the values of the 
sensors that could be expected after execution of the action (as reported by the gene 
library). Thus the latter three sensor fields contain values which the initial gene-
generating robot obtained after performing the relevant action defined in the action 
field. These fields are used to evaluate how well the current robot’s environment and 
actions match those of the robot used to generate the initial genes. In our scenario we 
have taken four rules to form a rule-set (antibody).  As can be seen from Figure 2, 
each variable limb of the Y shaped antibody has two paratopes. Each paratope repre-
sents a rule. The constant region specifies the type or family of robots, this antibody 
can be used for. Contrary to the biological equivalent, this antibody provides specific-
ity to four different antigens or sensory conditions conforming to the four rules. The 
system as a whole thus endeavors to refine the rules so that the self is preserved.  

Whenever the robot executes a rule it preserves the next state of the three sensors. 
This information is sent back to the agent which evaluates the performance of the rule 
(antibody) using the equation – 

The effectiveness of a triggered rule is given by  

  triggered wasrule  the timesofNumber 

pain.  thereducingin  successful  wasrule  the timesofNumber =RE . 

3.3   Metaphors Used in the System 

The multi-robot system is modeled based on the Biological Immune system world. 
The mechanism to produce the initial rules using a gene generating robot is proto-
typed based on the Thymus and Bone-marrow model. The manner of segregation of 
useful rules and the creation of a rule library is similar to that of cell and non-cell 
differentiation performed in the thymus and bone marrow. The initial set of rules 
resembles the genome and the rules match the genes.  

The robots are modeled as T-cells, who stimulate the immune response on detection 
of the presence of antigens in their respective environment. Agents are the B-cells 
induced into action by the T-cells. This whole situation is akin to the antigen stimulat-
ing a macrophage and the mechanism involving the secretion of the antibodies. The 



430 W.W. Godfrey and S.B. Nair 

rule sets constituting the antibodies, are then used by the robot and graded based on 
their effectiveness in the real world. Effectiveness is a measure of the amount of pain-
reduction. Their effectiveness is relayed back to the agents as feedback and the agents 
analyze and process the feedback. This process of purging less effective rules is akin to 
the negative selection. With more efficient rules circulating within the network, more 
robots benefit from them leading to a faster secondary response. Table 1 lists the AIS 
metaphors used in this multi-robot mobile agent system. 

Table 1. Metaphors used in the multi-robot system 

Robot System Genetics and Immune System 
Multi-robot system+Agent system Adaptive immune system 

Robot B-Cells 
Mobile Agents T-Cells 

Initial Set of rules Genome 
Pruned Rules Gene library 

Rules Genes 
Pain function Gene Fitness 

Rule Generation Thymus and Bone Marrow 
Rule purging Negative Selection 

Robot Action rule set Antibody 
Pain Self-preservation 

Pain value above threshold Antigens(Stimulus) 
Mobile Agent system Flow of Cells 

Battery Lifetime of the cell 

4   The Prototype 

We used Java J2SE 1.4.2 and JADE 3.4.1(mobile agent platform to host the mobile 
agents) coupled with Lego Mindstorm® robots for testing the prototype of the system. 
The robots were equipped with an in-built battery sensor and two distance sensors. 
The mobile agent library in JADE provides functions for creation, destruction, clon-
ing, migration and storage of agents. The agent programs are written in Java and the 
robot used LeJOS®, a tiny Java based OS for Lego Mindstorms® RCX. 

The environment contained rectangular areas with three obstacles randomly placed 
within and an area that simulates charging of the battery in one corner of the environment. 

The robot was capable of four primitive actions viz. move forward, move left, move 
right and go back. The robot communicated through an infrared tower with the mo-
bile agents running on PCs that acted as nodes. Agents were created and destroyed 
manually. They live and continually migrate. The type of the agent was defined dur-
ing the agent creation process. As the agents migrate from one node to another, they 
served the robots which were of a similar type as and when required.  

4.1   Experiments and Results 

We observed that mobility plays a vital role in keeping the cells alive and warding off 
the Antigen, When the robot encounters an obstacle its pain value increases, (Antigen  
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Fig. 3. Comparison of robot life times 

detection) resulting in Queries being sent to the Agent. If the agent is able to provide 
rules that can efficiently avoid the obstacle, it leads to conserving the battery charge, 
effectively increasing the lifetime of the robot. 

The experimental scenario comprised 2 nodes each of which had one agent with no 
mobility and 2 robots. Both robots were equipped with identical sensors as mentioned 
earlier and were assigned the same task of obstacle avoidance. The environments in 
which the robots were situated were also similar in nature. The maximum amount of 
time for which the robots lived (battery life>0) was found. The robots were again 
charged and the experiment was repeated constituting a robot revival. The same ex-
periment was carried out with the agents being conferred mobility. The graph in Fig. 3 
shows a marked change in the average lifetimes of the two robots when the agents are 
mobile. This can be attributed to the mobile agents transferring experiences gained 
amongst each other. 

5   Conclusions 

This paper proposes a model wherein mobile agents mimic lymphocytes. The B-cells 
act only when they receive a stimulus from the T (helper) cells. In this model too the 
mobile agents act only on receiving a stimulus from the robot. Flow of these mobile 
agents in network populated by robots facilitates sharing knowledge thereby increas-
ing the effective lifetime of the entire network of robots. Experimental results clearly 
demonstrate performance gains in such a system when mobile agents are used. It is 
envisaged that a complete implementation of the model described herein will result in 
the network exhibiting an emergent behavior. 
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