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7th International Conference
on Artificial Immune Systems

10th—13th August, 2008 in Phuket, Thailand

There are many desirable features of natural systems: adaptability, robustness, homeo-
stasis, memory, immunity. Biological immune systems seem to exhibit all of these
features and more. Thus it is not so surprising that a vigorous research field has
emerged, which focuses on understanding biological immune systems and creating
new models, algorithms, technologies and theoretical understandings. The field is
known collectively as artificial immune systems (AIS), and comprises a remarkably
diverse range of researchers. Biologists join forces with mathematicians to create new
models. Engineers and computer scientists produce new autonomous intelligent soft-
ware. Roboticists and specialists in unconventional computation create new control
systems or new ways to compute.

The International Conference on Artificial Immune Systems is proud to be the pre-
miere conference in this exciting area. For the first time ICARIS moved to East Asia,
not only being held in Thailand with Thai local chairs, but also with conference chairs
from South Korea. As its organizers, we were honored to have had such a variety of
innovative and original scientific papers presented this year, especially from those new
to the conference.

ICARIS 2008 was the seventh international conference dedicated entirely to the field
of AIS. We had more submissions than ever before this year, and because our acceptance
rate is based purely on quality, we accepted 60% of papers. These acceptances were
based on advice from stream leaders — experts in the field who agreed to help monitor
submissions and make decisions on subject and quality. Thus, in these proceedings you
will find 40 papers written by the leading scientists in the field, from 25 different coun-
tries in 4 continents, describing an impressive array of ideas, technologies and applica-
tions for AIS. We could not have organized this conference without these researchers, so
we thank them all for coming. We also could not have organized ICARIS without the
excellent work of all of the Programme Committee, our Publicity Chair Sungwon Jung,
our Local Chairs Supiya Charoensiriwath and Boonserm Kaewkamnerdpong, and our
conference administrator, J.J. Giwa.

Whether you are new to the field, or are one of its established researchers, we hope
you enjoy the proceedings of ICARIS 2008.

June 2008 Doheon Lee
Peter J. Bentley



Organizing Committee

Conference Chairs
Doheon Lee KAIST, Korea, dhlee @biosoft.kaist.ac.kr

Peter Bentley University College, London. UK,
P.Bentley @cs.ucl.ac.uk

Local Conference Chairs

Supiya Ujjin NECTEC, Thailand, ujjins @gmail.com
Boonserm Kaewkamnerdpong NECTEC, Thailand, boonserm @ gmail.com

Publicity Chair

Sungwon Jung KAIST, Korea, swjung @biosoft.kaist.ac.kr

Stream Leaders

1. Computational Immunology

Emma Hart Napier University, UK, E.Hart@napier.ac.uk
2. Applied AIS
Henry Lau Hong Kong University, China,

hyklau @hkucc.hku.hk
Vincenzo Cutello Catania University, Italy, cutello@dmi.unict.it
3. Theoretical AIS
Andy Hone Kent University, UK, A.N.W.Hone@kent.ac.uk
4. Position papers
Jon Timmis York University, UK, jtimmis @cs.york.ac.uk
Paul Andrews York University, UK, psa@cs.york.ac.uk

Conference Administrator

J.J. Giwa

Keynote Speakers

Norman Packard (Santa Fe Institute / ProtoLife)
Julie McLeod (University of West of England)



VIII Organization

Tutorial Speakers

1. Introduction to Artificial Immune Systems
Giuseppe Nicosia (University of Catania)

2. Applied Artificial Immune Systems

Leandro De Castro (Catholic University of Santos)
3. Simulating and Modelling the Immune System

Part A: Effective Use of OO Techniques for Easy Simulation of Immune Systems:

A Toolkit for the Immunologist: Hugues Bersini, (ULB)

Part B: Understanding the Immune System Through Modelling and Simulation:

A Toolkit for the Engineer: Emma Hart (Napier University)

Programme Committee

Alex Freitas

Alexander Tarakanov

Andrew Watkins

Andy Hone

Andy Tyrrell

Carlos A. Coello Coello

Carlos Fernando Esponda
Darlington

Christian Jacob

Colin Johnson

Dipankar Dasgupta

Doheon Lee

Emma Hart

Ernesto Costa

Fabio Gonzalez

Fernando J. Von Zuben

Giuseppe Nicosia

Henry Lau

Hugues Bersini

Jon Timmis

Julie Greensmith

Leandro de Castro

Licheng Jiao

Luis Fernando Nino

Maoguo Gong

Mark Neal

Mario Pavone

Myriam R.B.S. Delgado

Nikolaos Nanas

Paul Andrews

Peter Bentley

Peter Ross

University of Kent, UK
St. Petersburg Inst. for Info. and Auto., Russia
University of Kent, UK
University of Kent, UK
University of York, UK
CINVESTAV-IPN, Mexico
Yale University, USA

University of Calgary, Canada
University of Kent, UK

University of Memphis, USA

KAIST, Korea

Napier University, UK

University de Coimbra, Portugal
National University of Colombia, Colombia
State University of Campinas, Brazil
University of Catania, Italy

University of Hong Kong, China
IRIDIA, ULB, Belgium

University of York, UK

University of Nottingham, UK

LSIn, UniSantos, Brazil

Xidian University, China

Nat'l University of Colombia, Colombia
Xidian University, China

University of Wales, Aberystwyth, UK
University of Catania, Italy

CEFET-PR, Brazil

Ctr. for Research and Technology (CERETETH), Greece

University of York, UK
UCL, UK
Napier University, UK



Organization

Simon Garrett University of Wales, UK
Siti Zaiton Mohd Hashim  University Technology Malaysia, Malaysia
Slawomir T. Wierzchon Polish Academy of Sciences, Poland

Stephanie Forrest University of New Mexico, USA

Steve Cayzer Hewlett Packard Laboratories, UK

Susan Stepney University of York, UK

Thomas Stibor Darmstadt University of Technology, Germany

Uwe Aickelin University of Nottingham, UK

Vincenzo Cutello University of Catania, Italy

Wenjian Luo University of Science and Technology of China, China

Ying Tang Peking University, China



Table of Contents

Computational Immunology

A Stochastic Model of the Interleukin (IL)-18 Network ...............
Johnny Kelsey, Brian Henderson, Rob Seymour, and Andy Hone

Modelling the Tunability of Early T Cell Signalling Events ............
Nick D.L. Owens, Jon Timmis, Andrew Greensted, and Andy Tyrrell

Immune Responses: A Stochastic Model ........... .. ... ... ... ....
Anastasio Salazar-Banuelos

Applied AIS

Adaptive Spam Detection Inspired by a Cross-Regulation Model of
Immune Dynamics: A Study of Concept Drift .......................
Alaa Abi-Haidar and Luis M. Rocha

MOBAIS: A Bayesian Artificial Immune System for Multi-Objective

Optimization . ....... ..

Pablo A.D. Castro and Fernando J. Von Zuben

An Advanced Clonal Selection Algorithm with Ad-Hoc Network-Based
Hypermutation Operators for Synthesis of Topology and Sizing of

Analog Electrical Circuits .. ...

Angelo Ciccazzo, Piero Conca, Giuseppe Nicosia, and
Giovanni Stracquadanio

A Multi-Objective Multipopulation Approach for Biclustering .........
Guilherme Palermo Coelho, Fabricio Olivetti de Franca, and
Fernando J. Von Zuben

Viral System to Solve Optimization Problems: An Immune-Inspired

Computational Intelligence Approach........... ... ... ... ... ......

Pablo Cortés, José M. Garcia, Luis Onieva, Jesus Munuzuri, and
José Guadiz

Computing the State of Specknets: Further Analysis of an Innate

Immune-Inspired Model. . ...... ... .. ..

Despina Davoudani, Emma Hart, and Ben Paechter

A Hybrid Model for Immune Inspired Network Intrusion Detection . .. ..
Robert L. Fanelli

12

24

36

48

60

71

83



XII Table of Contents

Credit Card Fraud Detection with Artificial Immune System ..........
Manoel Fernando Alonso Gadi, Xidi Wang, and
Alair Pereira do Lago

Artificial Immune Recognition System with Nonlinear Resource

Allocation Method and Application to Traditional Malay Music Genre

Classification . ...
Shahram Golzari, Shyamala Doraisamy, Md Nasir B. Sulaiman,
Nur Izura Udzir, and Noris Mohd. Norowi

Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier
and Time Windows ... ... .. e
Feng Gu, Julie Greensmith, and Uwe Aickelin

Evaluation and Extension of the AISEC Email Classification System . . .
Nrupal Prattipati and Emma Hart

Dynamic Polymorphic Agents Scheduling and Execution Using
Artificial Immune Systems . .......... . i
Leonardo M. Hondorio, Michael Vidigal, and Luiz E. Souza

AIS-Based Bootstrapping of Bayesian Networks for Identifying Protein
Energy Route ...... ... ...
Sungwon Jung, Kyu-il Cho, and Doheon Lee

A Neuro-Immune Inspired Robust Real Time Visual Tracking
SYSTEIM .t
Yang Liu, Jon Timmis, and Tim Clarke

Negative Selection with Antigen Feedback in Intrusion Detection. . ... ..
Wanli Ma, Dat Tran, and Dharmendra Sharma

A Neuro-Immune Algorithm to Solve the Capacitated Vehicle Routing
Problem .. ...
Thiago A.S. Masutti and Leandro N. de Castro

Improving Artificial Immune System Performance: Inductive Bias and
Alternative Mutations . ............. i
Pupong Pongcharoen, Warattapop Chainate, and
Sutatip Pongcharoen

Flexible Immune Network Recognition System for Mining

Heterogeneous Data ......... .. .. .. . .
Mazidah Puteh, Abdul Razak Hamdan, Khairuddin Omar, and
Azuraliza Abu Bakar

An Artificial Immune System for Evolving Amino Acid Clusters
Tailored to Protein Function Prediction............. .. ... .. .. ....
A. Secker, M.N. Davies, A.A. Freitas, J. Timmis, E. Clark, and

D.R. Flower



Table of Contents XIII

Optimization of Steel Catenary Risers for Offshore Oil Production
Using Artificial Immune System .......... ... ... . .. ... 254
Ian N. Vieira, Beatriz S.L.P. de Lima, and Breno P. Jacob

An Idiotypic Immune Network as a Short-Term Learning Architecture
for Mobile Robots. ... ... 266
Amanda Whitbrook, Uwe Aickelin, and Jonathan Garibaldi

Conserved Self Pattern Recognition Algorithm....................... 279
Senhua Yu and Dipankar Dasgupta

Theoretical AIS

The Deterministic Dendritic Cell Algorithm ......................... 291
Julie Greensmith and Uwe Aickelin

Artificial Immune Systems and Kernel Methods................... ... 303
T.S. Guzella, T.A. Mota-Santos, and W.M. Caminhas

Boosting the Immune System........ ... ... .. ... . 316
Chris McEwan, Emma Hart, and Ben Paechter

The Limitations of Frequency Analysis for Dendritic Cell Population
Modelling . . . . oot 328
Robert Oates, Graham Kendall, and Jonathan M. Garibaldi

Empirical Investigation of an Artificial Cytokine Network ............. 340
Mark Read, Jon Timmis, and Paul S. Andrews

An Empirical Study of Self/Non-self Discrimination in Binary Data
with a Kernel Estimator ....... ... ... .. . .. .. . ... . .. ... ... .. 352
Thomas Stibor

Position/Conceptual Papers

The Pathways of Complement ......... ... ... ... ... ... ... ...... 364
Jonathan M. Aitken, Tim Clarke, and Jonathan I. Timmis

Adaptable Lymphocytes for Artificial Immune Systems ............... 376
Paul S. Andrews and Jon Timmis

On the Relevance of Cellular Signaling Pathways for Immune-Inspired
Algorithms . . ..o 387
T.S. Guzella and T.A. Mota-Santos

AIS Based Distributed Wireless Sensor Network for Mobile Search and
Rescue Robot Tracking .. ... ... ... i 399
Albert Ko, Henry Y.K. Lau, and Nicole M.Y. Lee



XIV Table of Contents

Eating Data Is Good for Your Immune System: An Artificial
Metabolism for Data Clustering Using Systemic Computation ......... 412
Erwan Le Martelot, Peter J. Bentley, and R. Beau Lotto

An Immune System Based Multi-robot Mobile Agent Network ......... 424
W. Wilfred Godfrey and Shivashankar B. Nair

Author Index . . ... ... 435



A Stochastic Model of the Interleukin (IL)-13
Network

Johnny Kelsey!, Brian Henderson?, Rob Seymour?, and Andy Hone*

! CoMPLEX, University College London
2 Division of Microbial Diseases, University College London
3 CoMPLEX /Department of Mathematics, University College London
4 IMSAS, University of Kent

Abstract. The interleukin-13 network is a primary mediator of the in-
flammatory response and plays an important role in many immunological
processes. A Markov chain model of the network is presented, along with
results from iteration over the stochastic matrix. The stationary distrib-
ution of the model is analysed.

Keywords: IL-13; interleukin-13; Markov process; cytokine network;
stochastic matrix.

1 Introduction

Interleukin-14 (IL-173) is a cytokine, a polypeptide mediator used by the immune
system to communicate between cells. IL-1 has been described as the most potent
and multifunctional cell activator in immunology and cell biology [8]; it plays
many essential roles in the immune system. The complexity of the IL-1 network
has been noted by many researchers [3], [10]. IL-1 has two forms, IL-1ac and
IL-18. There are two receptors which bind IL-1. A receptor accessory protein is
necessary to form a signalling complex; many inhibitory factors are part of the
network. We shall examine a subset of the IL-13 network using stochastic tech-
niques to find out whether or not a stationary distribution exists over signalling
and nonsignalling states.

2 The IL-13 Network

We shall focus on the IL-18 form of IL-1. IL-13 binds to two receptors on the
cell membrane, the type-I and type-II receptor: the type-I receptor can cause a
signal transduction event; the type-II receptor is a decoy receptor, lacking the
transmembrane apparatus to initiate a signalling event [g].

When IL-1/3 binds to the type-I receptor, a signalling binary complex is formed.
Signal transduction does not occur, however, until a receptor accessory protein
binds to the signalling binary complex, forming a signalling ternary complez.

The type-II receptor can also bind to IL-13 to form a nonsignalling binary
complex. The nonsignalling binary complex can also bind the receptor accessory

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 1-111] 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 J. Kelsey et al.

protein to form a nonsignalling ternary complex. Thus, the type-II receptor com-
petes both for IL-15 and the receptor accessory protein; it is a key inhibitory
component in the network.

The type-I receptor is not abundant, but evokes a powerful response without
a high level of receptor occupancy [2], as the receptor activates many pathways
which operate in parallel. Unlike most other cytokines, it is thought that as few
as ten occupied receptors are sufficient to evoke a strong response [20]. Since IL-
10 typically acts at very low concentrations, the population sizes of signalling
and nonsignalling complexes will be small, and random fluctuations will have
a disproportionate effect. The use of stochastic methods is indicated to model
such a system.

The interactions we model in this paper are as follows:

— IL-18 + type-I receptor: IL-13 associates with the signalling receptor to form
a signalling binary complex

— signalling binary complex + receptor accessory protein: promotion of the
receptor accessory forms a signalling ternary complex, and signalling occurs

— IL-138 4+ type-II receptor: IL-1/3 associates with the nonsignalling receptor
to form a nonsignalling binary complex

— nonsignalling binary complex + receptor accessory protein: promotion of the
receptor accessory forms a nonsignalling ternary complex

As in any reaction, the binding event is reversible; the complexes can both
associate and dissociate. The association and dissociation rates for the binary
and ternary signalling and nonsignalling complexes are given in Table ().

We use the following notation: L is the free (unbound) IL-13, R1 is the type-I
signalling receptor, R2 is the type-II nonsignalling receptor, S is the signalling
binary complex, NS is the nonsignalling binary complex, R is the receptor ac-
cessory protein, T is the signalling ternary complex, NT is the nonsignalling
ternary complex. Association rates are given as kI for a arbitrary component
u, and dissociation rates are k,. In the notation of chemical reactions, the
interactions are:

k,+
S
L+Rl = . § (1)
s
ks
L+R2~ ~_ NS (2)
kns
kp
S+R ~ T (3)
T
kNt
NS+R-— _ NT (4)



A Stochastic Model of the Interleukin (IL)-15 Network 3

Units for dissociation rates k, are s™!, and these rates can be construed as

probabilities per unit time (= 1s). However, the units for association rates, k',
are M~ !s™1 and these cannot be interpreted as probabilities without a trans-
formation, k" = cl%f[ , where c is a suitable conversion factor having dimension
M (concentration).

We choose ¢ to be a concentration based on one international unit of specific
activity of IL-15. A standard international unit (IU) of IL-1/ activity is defined
as a preparation (NISBC code: 86/632) which contains 0.75mg per ampoule with
assigned potency of 75000 units per ampoule [I8]. This can be expressed as a
standardised concentration:

Unit
m

=59x107"M

We use this as our conversion factor ¢ to express association rates as probabilities.
The derived probabilities are given in Table (Z)).

Table 1. Association/dissociation rates: the association and dissociation rates of the
signalling and nonsignalling complexes of the IL-15 network, where S is the signalling
binary and NS the nonsignalling binary

Agent Binds Assoc. (M™'s™') Dissoc. (s71)

IL-1RI' IL-13 4.67 x 107 1.6 x 10711

St IL-1RACP 4.67 x 107 0.32 x 1071
IL-1RII AL-173 8.85 x 10% 6.92 x 10710
NS ?2  IL-1RAcP 9.5 x 10* 6.82 x 10719

! Source: [15] 2 Source: [21]

3 Markov Chain Model

The theory of discrete-time Markov chains provides powerful techniques for mod-
elling random processes which are generally straightforward to implement com-
putationally [13].

A Markov chain can be described by a diagram showing the transitions be-
tween the various states of a system. Figure () shows the transition graph for
the subset of the IL-13 network directly associated with receptor binding, both
signalling and nonsignalling.

The vertices of the diagram represent possible states which a unit of IL-13
can occupy. The arrows represent directed state transitions, with their associated
(non-zero) probabilities. A self-loop at a vertex represents the probability that
the current state does not change in a given time step.

Notice that the diagram has excluded both the receptors and the receptor
accessory protein; we will assume that sufficient resources of these components
exist to form signalling and nomnsignalling complexes, since the components we
wish to model are the unbound IL-15 and the complexes themselves. Estimates
of the number of type-I and type-1I receptors and accessory proteins R on human
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Table 2. Probabilities P(X) such that k& € [0, 1] derived from association and disso-
ciation rates ki

Association probabilities

Complex Symbol P(X)

Signalling binary k& 275 %1073
Nonsignalling binary ~ kfq 5.22 x 107%
Signalling ternary I;Z; 2.75 x 1073

Nonsignalling ternary l%xT 6.5 x 1078
Dissociation probabilities
Complex Symbol P(X)
Signalling binary k_ 1.6 x 10711
Nonsignalling binary l%;,s 6.92 x 10710
Signalling ternary kr  0.32x 107
Nonsignalling ternary ky, 6.82 x 1071

ks R kr R kns
kT e kjg 5
S L NS
ks kns
ki kr kfr knr

kr(] T NT )’_CNT

Fig. 1. State transition diagram for IL-13 network, where L is IL.-13, S is the signalling
binary complex, NS is the nonsignalling binary complex, T is the signalling ternary
complex, and N'T the nonsignalling ternary complex. Probabilities are derived from the
association and dissociation rates ku .;probabilities for self-interaction loops are given

by ki =1—=3,pij, j #i-

and murine cells yield a range of 200 < R < 2000 [16], [], [5], [6], [19]. Since, as
already noted, the number of signalling ternary complexes required to initiate
signal transduction is relatively low in comparison to the number of receptors
expressed on the membrane, the exclusion of receptors and accessory proteins
from the model would appear to be justified.

The matrix of transition probabilities defining the Markov process illustrated
in Figure () is given in equation (&).

IL-13 S NS T NT
L-13 kg k+k vg 00
P=| s kg ks 0 kf 0 (5)

Ns  kyg 0 kns 0 kg

T 0 k‘; 0 kr O
NT 0 0 k]T/T 0 ];;NT_




A Stochastic Model of the Interleukin (IL)-15 Network 5

Table 3. The results of iterating over the stochastic matrix P. The labels are: L,
unbound ligand; S, signalling binary; NS, nonsignalling binary; 7', signalling ternary;
NT, nonsignalling ternary. The experiments consisted of n iterations as given in the
rightmost column, and each experiment ran N = 500 trials. The number of times the
systems is in a state S is recorded for each experiment and then averaged by the number
of iterations n and repetitions of the experiment N. As can be seen, the amount of time
the system spent in the signalling ternary state increases with the number of iterations.

L S NS T NT Iterations
0.18756 0.18788 0.20154 0.23902 0.18400 100
0.13538 0.20607 0.20800 0.26855 0.18200 200
0.11487 0.17557 0.18178 0.32176 0.20600 500
0.07669 0.11322 0.20676 0.39731 0.20600 1000
0.03934 0.08522 0.17392 0.52157 0.17993 2000
0.01902 0.03195 0.15765 0.58935 0.20200 5000

0.00954 0.01809 0.14662 0.63773 0.18800 10000
0.00608 0.01085 0.10482 0.66330 0.21493 20000
0.00258 0.00464 0.05216 0.73181 0.20878 50000
0.00168 0.00215 0.02924 0.75901 0.20790 100000
0.00069 0.00111 0.01497 0.77371 0.20949 200000
0.00033 0.00047 0.00775 0.80312 0.18831 500000
0.00018 0.00028 0.00432 0.87185 0.12335 1000000
0.00008 0.00014 0.00276 0.89592 0.10108 2000000
0.00003 0.00005 0.00116 0.95572 0.04301 5000000
0.00002 0.00003 0.00061 0.96736 0.03196 1 x 107
0.00001 0.00001 0.00031 0.98529 0.01437 2 x 107
4.08 x 107% 6.10 x 107% 0.00012 0.99430 0.00555 5 x 107
2.65 x 1075 2.99 x 1075 0.00006 0.99757 0.00236 1 x 10°
1.13 x 107% 1.59 x 107 0.00002 0.99824 0.00172 2 x 108
437 x 1077 6.67 x 1077 9.94 x 107 0.99942 0.00056 5 x 10°

We experimented computationally to investigate the amount of time the sto-
chastic matrix P spends in each state, and to find any stationary distributions to
which the Markov process is attracted in the long run. Since the process is stochas-
tic, it will not always take the same amount of time to reach an equilibrium state
(if any such state exists), which necessitated a large number of experimental trials.

Table ([B]) shows the results of repeating the experiment and averaging it over
the number of iterations n and the number of trials N. Each trial iterates over
the stochastic matrix for n iterations, where 100 < n < 5 x 10%; each experiment
was repeated N = 500 times. The initial state is set randomly, and then evolves
according to the probabilities based on association and dissociation rates. After
the experiments have run, we calculate the average of how long the system spent
in any particular state.

As can be seen from the table, with a low number of iterations the Markov
chain is evenly distributed between its states. However, as the number of it-
erations increases, the stochastic matrix is rapidly attracted to the signalling
ternary state, and spends an increasing number of iterations in this state. It
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would seem that the signalling ternary state is, in dynamical systems terms, a
robust attractor for the stochastic matrix.

4 Effect of Inhibitory Receptor

We would like to know how long it takes before the matrix approaches equilib-
rium. To find the time taken to reach equilibrium we iterated over the stochastic
matrix until it reached the signalling ternary state, and recorded the number of
iterations it took; that is, recorded the length of the Markov chain.

The protocol for the experiment consisted of creating a random initial state,
and then iterating over the stochastic matrix P, creating a list of the states for
each iteration until it reaches the signalling ternary state. Each experimental
trial is a sample path of the Markov chain. The number of iterations is recorded
as the result of the trial. The experiment was run for a large number of trials to
show the dynamics of the system.

We can observe the behaviour of the system when there is no inhibitory, type-
IT nonsignalling receptor. Repeating the experiment without the nonsignalling
binary (NS) and ternary (NT) states shows what would happen if the network
consisted only of the type-I signalling receptor. Thus we can directly compare
the behaviour of the sample paths in the presence or absence of the inhibitory
receptor, in order to illustrate its effect.

The results from both experiments are given in Figure (). The experiment con-
sisted of N = 5000000 trials. The maximum possible number of iterations over the
matrix was set to n = 50000; if the matrix arrived at the signalling ternary com-
plex before n, the program terminated and the number of iterations recorded. The

ST Effect of Type-II receptor
BN
40000 1 N ——  Type-II
\ — - No Type-II
30000 |
20000 |
10000

n

50 100 150 200
Fig. 2. Sample paths: n are the number of iterations taken for the stochastic matrix
to reach the signalling ternary state, ST the number of signalling ternary complexes

formed. Each experiment consisted of N = 5 x 10° trials. The type-II receptor slows
the formation of signalling ternary complexes.
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Table 4. Mean path length and standard deviation from experiments: effect of type-11
receptor

Experiment Mean Standard deviation
Type-1II receptor present 3713.96 8154.79
Type-II receptor absent  363.96 468.49

effect of type-1I receptors is to slow the formation of signalling ternary complexes;
without the type-II receptor, the complexes form much more quickly.

The means and standard deviations for both experiments are given in
Table (). Notice that the mean Markov chain length of the experiment with
type-1I receptors is an order of magnitude higher than the mean of the experi-
ment without type-II receptors. The sample paths take on average an order of
magnitude longer to reach the signalling ternary complex state with the type-
IT receptor present. From these experiments, we can observe that the type-II
nonsignalling receptor slows the formation of signalling ternary complexes, thus
indirectly slowing the response of the cell to IL-13.

5 Long-Term Behaviour of the System

The transition matrix P given in equation () depends on only eight parameters,
namely l%; l%Jj\E, g lqui” I%Jj\E,T, because the diagonal entries are determined in terms
of these parameters by the requirement that the sum of the entries in each row
must be 1 (since P is a stochastic matrix). From Figure (), we see that it
is possible to move from any state to any other along a path having positive
probability. That is, the process defined by P is ergodic.

Standard theorems [I3] tell us that, for an ergodic process, a stationary dis-
tribution 7 exists and also satisfies mj > 0.

Let

v = ki shirhs by + kST kyshyr + B sk brkyr
thgkyskrkyr + ks kyshrkyr
Solving the equation 7P = 7 algebraically, we find:

iy = Fskyskrkyy
Y
= FSEnskrhyy
Y
Kesks kzkyr
T3 = " (7)
1 = FSkrkyskyy
)
- kngkXrkskr
=

(3
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Substituting numerical values from Table () gives:

T~ 6.77 x 107

o A~ 1.16 x 1077

73~ 5.11 x 10717 (8)
Ty~ 1

75 ~ 4.86 x 10718

Clearly, the values of 71,79, m3 and 75 are many orders of magnitude smaller
than 74, which is extremely close to 1. Hence, to all intents and purposes, the
system ends up in the signalling ternary state (with probability 1), irrespective
of the initial distribution ().

Given that the probabilities which represent the dissociation of the complexes,
namely IAcg, IQX,S?I%;J%]QP are so small, it may be instructive to consider the
limiting case when all of these parameters are set to zero. In that case, the
transition diagram for the Markov chain can be represented schematically by

T+«—S+«—L—NS— NT, 9)

from which it is clear that the chain is reducible in this special case. Indeed, if
the system leaves any state other than one of the ternary complexes (T or NT')
then it can never return there. The transition matrix for this special case has
the upper triangular form

1—k&—khg kE Kby 0 0
0 1—kf 0 kf O
P = 0 0 1-kf, 0 K5y |- (10)
0 0 0 1 0
0 0 0 0 1

We can again solve the vector equation 7P = 7 for the reduced matrix (I0),
which results in a family of stationary distributions

m =0

me =0

w3 =0 (11)
T4 =(

s =1—¢q

Compare this with the stationary distribution we found where the dissociation
probabilities are non-zero, given in (&); there, all states would tend toward the
signalling ternary complex state T with a probability m4 ~ 1. In this case, with
the dissociation probabilities set to zero, we have a one-parameter family of
stationary distributions, with the parameter ¢ such that 0 < ¢ < 1. There are
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therefore two possible outcomes for the system, the signalling and nonsignalling
ternary states. The non-uniqueness of the stationary distribution means that
that the limiting state of the chain is highly dependent on the initial distribution.

What are the probabilities of reaching either state? Firstly, we can see that
if the system has the initial state Xy = S, then it can only remain in state S
and then (after a finite number of steps, m say) transit to state T, where it will
then remain, and so P(Xoo =T | Xo=S5)=>"_, I%}'(l - l%}')m = 1. Similarly
P(Xeo =NT|Xo=NS)=1.

On the other hand, for the initial state Xo = L, at each step the system can
stay in that state with probability (1—kg —&J; ), or transit to S with probability
]2;; (in which case it will ultimately reach T with probability 1), or transit to
NS with probability IAcX, g (in which case it will ultimately reach NT).

Summing over transitions to S after m steps, for each m, gives P(Xo =
T|Xo=L)=>,_, I%g(l - l%;r - I%X,S)”H and an analogous formula holds for
P(Xs = NT|Xo = L). Hence we see that if the system starts off with an
unbound ligand, so Xg = L, then it can end up in either of the ternary states,
with the limiting probabilities being

P(Xo=T|Xo=L)= . "S =g (12)

P(Xoo =NT|Xog=1L)= =1-q. (13)

What observations can we make from this analysis? It seems that the dissociation
probabilities, despite their insignificant size relative to the association probabil-
ities, play an essential role in the dynamics of the IL-18 network. Without the
dissociation probabilities, we have two possible final outcomes for the system,
the signalling and nonsignalling ternary complexes T and NT'; however, with
the dissociation probabilities greater than zero, the probability of the Markov
process arriving at the signalling ternary complex T is w4 ~ 1.

6 Conclusion

A stochastic model of the IL-13 network has been presented. The behaviour of
the Markov process has been described both computationally and analytically.
IL-13 is a very active cytokine, requiring only tens of receptors to invoke a cel-
lular response. Many inhibitory control mechanisms have evolved alongside the
IL-13 network, possibly due to its potency [I1]. One inhibitory control mecha-
nism, the type-II nonsignalling receptor, has been modelled in the Markov chain
analysed above.

It was found that this model has a unique stationary distribution in which
the system occupies the ternary signalling complex with probability close to one.
Given the relative size of the association and dissociation rates of the type-I and
type-1I receptors, this is perhaps unsurprising, since IL-13 is a fundamentally



10 J. Kelsey et al.

important cytokine. This has implications for the biology of the network. The po-
tency of IL-17 is such that, without some form of inhibition, it could potentially
cause considerable damage.

It has been argued that the type-II receptor acts as a decoy, or sink, for
IL-13 [§], by absorbing any of it that has not yet bound to type-I receptors.
However, the Markov chain model has shown that the type-II receptor is not, in
the long run, an effective competitor for IL-173, or for receptor accessory protein.
Rather, its presence acts more to delay the network going to the signalling
ternary complex state.

The modelled network exhibited a stationary distribution, but could a biolog-
ical system be said to have an equilibrium? This is a complex question, which
requires more analysis than we can really provide here; however, Jit, Henderson,
Stevens and Seymour have examined this question in relation to the cytokine
TNF-a. They found that rheumatoid arthritis has an equilibrium which is sus-
tained by a low, but persistent, level of TNF-«, whereas systemic inflammatory
response syndrome (SIRS) is fundamentally a nonequilibrium condition [14].

The dissociation rates of the system are extremely small, relative to the as-
sociation rates. When the dissociation rates were set to zero, an exploration of
the Markov chain behaviour revealed that, without the possibility of dissocia-
tion, the system no longer has a unique stationary distribution. It appears that
the dissociation rates, despite their apparent numerical insignificance, have a
significant role to play in the dynamics of the IL-13 network.

Acknowledgements. Many thanks to are due to Thurston Park for his con-
stant encouragement and inspiration.
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Abstract. The Tunable Activation Threshold hypothesis of T Cells is
investigated through computational modelling of T cell signalling path-
ways. Modelling techniques involving the w-calculus and the PRISM
model checker are presented, and are applied to produce a stochastic
model of T cell signalling. Initial results which demonstrate tuning of T
cells are presented.

1 Introduction

The T lymphocyte has a major role in the response of the adaptive immune
system. Through the T cell receptor (TCR) the T Cell responds to populations
of antigenic peptide presented by the major histocompatibility complex molecule
(pMHC) on nucleated cells [12]. The ability of a T cell to correctly discriminate
and respond is remarkable given that the TCR is essentially randomly generated
through sommatic mutations [12], and that foreign pMHCs will often only be
0.01% to 0.1% of the total expressed by a cell [4], the other 99.9% — 99.99%
being self.

A number of discrepancies between observable immunology and classical clonal
selection theory suggest that the classical theory does not give a complete picture.
For example, there is clear evidence of self-reactive T Cells in the periphery and
that T cells require interaction with self for survival in the periphery [4]. In light of
this, a number of theories have arisen to explain the successful operation of T Cells.

One theory of particular interest is the tunable activation threshold hypothe-
sis (TAT) presented by Grossman and his colleagues [I], [2]. The theory proposes
that lymphocytes adapt their activation thresholds based upon recent interac-
tions with their environment. As such, the T cells tune to local interactions and
react to a change in the environment rather than any one specific interaction.
Such a mechanism would allow auto-reactive T Cells to exist in the periphery
with high activation thresholds.

Altan-Bonnet and Germain (ABG) [5] model a particular pathway which has
been shown to be involved in T Cell sensitivity [14], and has been implicated for
tuning [4], [2]. The ABG model provides a starting point here, we investigate the
pathway directly for tunability properties. The ABG model is re-implemented
in a stochastic formulation using the stochastic w-calculus, simulated using the
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Stochastic Pi Machine (SPiM) [II] and converted for analysis in the PRISM
probabilistic model checker [19].

This work also contributes to the design of new artificial immune systems [0],
we intend to use to the model to build new immune inspired algorithms. This
should clarify our choice of modelling methods: the model is in a computational
language for a more ameanable transition toward algorithms. As no further steps
are taken in this direction in this work we give it no further mention.

Our paper is structured as follows: section [ biolgical background; section
contains a description of modelling methods; section [ gives a modelling patterns
that may be used to convert reaction based description of a biological model to
a m-calculus model; section [} outlines the model; finally section Gl provides some
prelimary results.

2 Biological Background and Model

Peptide MHC TCR interactions can be classified by the response they illicit in
a cell. We take the definitions of [4]:

Agonist. Will induce all possible activation signals within a cell.

Partial agonist. Will induce a subset of all possible activation signals within
a cell.

— Antagonist. Will actively inhibit activation signals within the cell.

Null. Will not have any affect, activatory or inhibitory.

A range of signal strengths exists for each of the first three classes, it is not
the case that the signals induced by a weak agonist are necessarily stronger than
those induced by a partial agonist. Self-peptides fall into either partial agonist
and antagonist classes [4].

2.1 Signalling Components

Phosphorylation is a primary signalling mechanism in biological pathways, it
involves the addition of a phosphate group to a molecule which changes its
conformation and so its ability to bind to other molecules.

We now give an overview of the signalling components pertenant to this paper,
for a full description see [12].

— T Cell receptor (-Chains are internal components of the TCR, typically there
are two such chains. Each (-chain contains 3 Immunoreceptor tyrosine-based
activation motifs (ITAMs). Each ITAM may be twice phosphorylated.

— Leukocyte-specific protein tyrosine kinase (Lck), may be soluble in the cy-
tosol or associated with TCR co-receptor CD4/8. Lck phosphorylates ITAMS,
SHP-1.

— CD4/8 TCR Co-receptor. Populations of TCR co-receptors are expressed on
the surface of the T Cell. The co-receptor binds to TCR-pMHC complexes
with a stabilising effect. The internally the co-receptor is associated with
Lck which may phosphorylate internal TCR components upon co-receptor
binding to TCR-pMHC complex.
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— Cytosolic soluble (-chain associated protein kinase 70 (ZAP70) binds to a
twice phosphorylated ITAM, protecting the phosphorylation. Processivity
occurs with ZAP70 binding [4], there is a particular order in which it may
bind to phosphorylated ITAMs. Fully ZAP70 laden ITAMs instigate further
signalling pathways.

— SH2 domain containing tyrosine phosphatase (SHP-1) binds to internal TCR
complex. It is phosphorylated by Lck to become pSHP-1 and dissociates.
Soluble pSHP-1 may rebind TCR internal complex and upon further Lck
phosphorylation will dephosphorylate non-ZAP70 protected ITAMs.

— Extracellular signal-regulated kinase (ERK) is part of mitogen-activated pro-
tein kinase (MAPK) cascade and involved in T Cell effector signalling. It
provides an indicator of the activation of the cell. A twice phosphorlated
form of ERK may bind Lck in TCR complex modifying the SH2 domain [I4]
protecting the TCR internal chains from dephosphorylation by SHP-1.

— Mitogen-activated protein kinase (MAPK) cascade is a commonly found bi-
ological component [§]. In T cells the RAF-MEK-ERK MAPK cascade plays
arole in T Cell activation [4]. The instigation of the MAPK cascade results
in the twice phosphorylation of ERK.

There are three concepts central to the T Cell signalling described in this
paper: kinetic proofreading, noise reducing negative feedback, and amplifying
positive feedback, which are now discussed.

2.2 Kinetic Proofreading

Kinetic proofreading arose to describe the remarkable accuracy of DNA repli-
cation and protein synthesis [22]. McKeithan [7] applied kinetic proofreading
to T cell signalling, and it is now a widely accepted model to account for lig-
and discrimination [I4]. There are three key concepts to Kinetic proofreading.
First, upon binding of pMHC to TCR there are a number of energy consum-
ing signalling steps (they take physical amounts of time to overcome) instigated
internally in the T Cell. All these steps must occur before T Cell activation
signalling can start. Second, upon dissociation of pMHC from TCR these steps
are rapidly reversed. Third, the greater the specificity between TCR and pMHC
the longer the bind. The length of bind is regarded as one of the best measures
of TCR-pMHC bind quality [I3]. The kinetic proofreading steps measure the
length of the bind and so the quality of the bind.

The T Cell signalling described in this paper contains two proofreading mech-
anisms, the phosphorylation of TCR internal chains and the association the TCR
co-receptor.

— Phosphorylation of ITAMs and ZAP70. Activation signalling requires
a fully ZAP70 laden (-chain, the bind between TCR-pMHC must be long
enough to allow full phosphorylation of the ITAMs and the processivity of
ZAP70 binding mentioned in section 2]

— Association of Co-receptor. This is not a necessary proofreading mech-
anism, as it is possible for an activation signal to propagate from a TCR
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without a co-receptor bound. However, the co-receptor will stabilise the
TCR-pMHC complex [I5] and co-receptor associated Lck will phosphory-
late TCR internal chains far more efficiently than soluable Lck [14]. Thus a
TCR-pMHC complex that exists for long enough to allow co-receptor associ-
ation will be far more likely to overcome ITAM phosphorylation proofreading
and so is more likely successfully produce an activation signal.

2.3 Noise Reducing Negative Feedback

Kinetic proofreading alone is not sufficient to explain antagonism [I3]. A negative
feedback effect, investigated experimentally in [I4] may augment proofreading
to compensate for its shortfallings. After TCR engagement SHP-1 may bind to
TCR internal complex and be phosphorylated by Lck. Phosphorylated SHP-
1 (pSHP-1) dissociates and may re-associate to a potentially different TCR,
allowing the pSHP-1 signal to spread. This reassociated pSHP-1 may be further
phosphorylated, which activates pSHP-1 causing it to desphosphorylate any non
ZAPT70-protected ITAMs. This creates a negative feedback which dampens any
activatory signal.

2.4 Amplifying Positive Feedback

The combination of proofreading and negative feedback alone would mean that
the level of negative feedback should increase as the quality of the TCR-pMHC
bind increases. This is not the case: there is a point as ligand quality increases
where the pSHP-1 negative signal disappears [14]. An explanation exists through
the protecting effect of double phosphorylated ERK (ppERK). A TCR complex
which sucessfully overcomes proofreading and negative feedback will instigate the
MAPK cascade []. The result of the MAPK cascade is ppERK which protects
the TCR complex from the dephosphorylating effect of pSHP-1 and so breaking
the negative feedback loop. In a similar manner to pSHP-1, ppErk will spread
allowing TCR to protect the signalling of other surrounding TCRs.

These three mechanisms provide a mapping between TCR-pMHC bind time
and cell signalling such that there is a natural discrimination between pMHC
ligands, in order of decreasing bind quality:

1. Agonist — Binds TCR long enough such that there is a high probability of
induce MAPK cascade in the face of a pSHP-1 dampening. It will receive
protection from ppERK.

2. Antagonist — Binds long enough to induce high levels of pPSHP-1 but not to
induce MAPK cascade.

3. Partial Agonist/Endogenous Ligand — Does not bind long enough to induce
high levels of pSHP-1, but may induce some partial phosphorylation of TCR
internal chains. This is where self should lie [T3].

! The MAPK cascade is a robust signalling pathway found in many cells throughout
biology, it has been shown to have an all-or-none amplification effect [g].
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The spreading of the pSHP-1 and ppERK signals is of interest here. An an-
tagonist that induces high levels of pSHP-1 will dampen the activation signal
propagating from the surrounding TCR. An agonist may protect the surround-
ing TCR allowing the agonist to synergise with non-agonist ligands and spread
the protection signal. This mechanism provides an explanation of how a signal
agonist in a sea of non-agonist ligands is able to induce the T Cell into activation.

The interplay between SHP-1 and ERK as a candidate for tunability has been
suggested in [], [2], [5], [13]. In this context the level of pSHP-1 indicates the size
of negative feedback and defines a functional threshold that must be overcome
for signalling. It is these ideas that are investigated in the remains of the paper.

There is related work in T Cell, particularly TAT modelling, the pathways de-
scribed above are modelled in [5], [I5], examples of TAT models include [1], [3].

3 Modelling Methods

There is perhaps growing similarity between computational and biological sys-
tems in terms of concurrency, distributively, connectivity and particularly the
discrete rather than continuous nature of both systems. As a consequence con-
current computational analysis techniques have been applied to biology by a
number of authors, e.g. [I1], [I8], [19]. This is the approach here, a description
of the biological model is developed in the stochastic mw-calculus which is then
analysed through simulation and conversion into a model checker.

A simulation tool provides a single instantiation of the system, the stochastic
fluctuations inherent in the simulation method will mean that the system will
behave differently on subsequent runs. For example a system with an unknown
bistablilty will arrive in either of its stable states at the end a simulation, at
least two runs are necessary to simply determine that the system is bistable.
A probabilistic model checker overcomes the need for multiple simulations by
allowing analysis of the probability distributions of the system. Here we perform
such analysis by employing the PRISM model checker [19].

3.1 The Stochastic w-Calculus

The m-calculus developed by Milner and colleagues [9] is a process algebra used
to describe concurrent computational systems with the property of mobility. The
Stochastic m-calculus first described by Priami [I0] applies stochastic extensions
to the m-calculus replacing non-determinism with race conditions defined by
exponential distributions. As such the stochastic m-calculus allows quantitative
analysis of 7-calculus systems through a mapping to an underlying continuous
time markov chain [I0].

The stochastic m-calculus was originally applied to biology in [I8]. There are
now a range of tools for analysis of biological models described with stochastic
w. Particularly there are two simulators BioSpi [I8] and SPiM [11]], both employ
the Gillespie algorithm to guarantee correct chemical kinetics. SPiM is used here
to simulate our model.
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In a process algebra, such as the m-calculus, processes communicate concurrent
over shared channels. Applying this paradigm to biology a process P is a molecule,
a channel ¢ describes the existence of a reaction between two processes. For the
m-calculus the reaction rules specify which reactions may proceed, the stochastic
race conditions in conjunction with mass-action kinetics, see section 3.2} dictate
the timings of the reactions.

A variant of the stochastic m-calculus presented in [I1] is given, this is the
stochastic m-calculus used at the core of SPiM.

Definition 1. The syntax w-calculus deﬁnitio@.
P:=0|nP|P+Q|(P|Q)|vaP| xP (1)

Left to right: null | action prefiz | choice | paralled | restriction | replication.
Action Prefixes:

7z, (g) input | lz.(g) output | 7, silent/delay (2)

r denotes the rate of the prefiz. § denotes a tuple may be sent of received along
a channel.

Definition 2. Structural Congruence on w-calculus. Alpha-conversion (change
of bound names); identity P | 0 = P; commutativity of parallel and choice
P|Q=Q| P, P+Q = Q+P; associativity of parallel P | (Q | R) = (P | Q)|R;
Identity of restriction vx0 = 0; commutativity of restriction vevyP = vyvaP;
scope extrusion vax(P | Q) = P | va@Q if = ¢ tn(P), the free names in P;
*P = P|x P defintion of replication.

Definition 3. Reduction rules:

mP+M - P (3)

lo, (7).P + M | 22,().Q + N == P | Qi (4)
P P = vaP s vxP (5)

PP =P|Q-5P|Q (6)
P=Q,P=Q,P- 5P =05 (7)

3.2 Gillespie Algorithm

The Gillespie algorithm [16] is rigorously derived from a stochastic formulation
of chemical kinetics, it performs a Monte-Carlo simulation of a chemical system.
Given a chemical system of molecules, a set of reactions, and a state (i.e. the

2 This differs slightly from the syntax given in [I1], this is for the sake of brevity, all
essential components are given here.

3 The parenthesis are not syntactically necessary for parallel composition, it is just to
aid clarity of the use of | within the BNF definition.
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populations sizes of reactants), the Gillespie algorithm will determine which
reaction occurs next and when it occurs. The law of mass-action states that
a reaction proceeds proportional to a deterministic rate d and the number of
reactants. For a molecule type X, the number of molecules in a reaction system
is denoted |X]|. There are three reactions that are of concern here:

Type Reaction Equation Rate Example
1st Order X-4y d|X| Degradation
2nd Order X, + X, <, Xy dXq||Xe] Complexation

2nd Order Symmetric X; + X, <, X, 4 (|X1| = 1)|X1| Homodimerisation

The rate of second order reactions are defined by the number of possible pairs
of reactants. For SPiM’s implementation of the Gillespie algorithm [IT] the rates
of first order and second order reactions are implemented directly, however for
symmetric reactions the modeller must compensate and divide rates by two.

It is necessary to convert a deterministic rate d of second order reaction to a
stochastic rate ¢ for use with the Gillespie algorithm. The rates must be scaled
by the volume, V', of the reaction system and should one want to simulate exact
numbers of molecules then the rate is also be scaled by the Avogadro Number
N4 = 6.022 x 1023.

c= (8)

For computational complexity purposes it may be necessary to simulate a frac-
tion € € [0, 1] of a volume V, for a concentration C' of a molecule the rate now be-
comes ¢ = r/N 4 Ve and the number of molecules in the simulation N = CNaVe.

3.3 PRISM Probabilistic Model Checker

Probabilistic Model Checking is a formal analysis technique used to assert the
quantitative correctness of models of systems, it requires a formal description of
the system and a specification of a system in a temporal logic. In PRISM [I9]
this is done with a description of the system as a continuous time markov chain
(CTMC) and an extension of temporal logic CSL. States of the markov chain are
augmented with rewards and the CSL can be used to calculate expected rewards
both transiently and in the steady state. The only CSL queries described here
are of the form that are used later in the model: R_[I = t] — Describes what is
the expected reward at time instant ¢.

4 Modelling Patterns

Modelling abstractions for first order reactions, second order complexations and
enzymatic reactions are described, such that if these are applied to a system of
reactions one should achieve the correct stochastic w-calculus formalism of the
reaction system.
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4.1 First and Second Order Reactions: Degradation, Complexation,
Enzymatic Reactions

In general a first and second order reactions can be described by the following
programs:

Reaction Program Instantiation
XY X=r7.Y X

X, + X, — X, Xy =?¢,. X3, Xo =lc, ver (X1 Xz)
X; +X; — X, X1 =2, X3+e, ver Xq

Complexation has been modelled in 7-calculus by the communication over a
shared channel [TT], for example in the reaction X +Y —— XY:

X =vp(lep(p). Xp) Y =%¢.(p).Vs 9)

X, and Y, are the bound states and X and Y respectively. If X and Y are
initiated in parallel they will react to privately share channel p which X} and Y
may communicate on.

Enzymatic reactions occur between an enzyme E acting on a substrate S to
form a product P, they compromise two stages:

E+S—~ES . E4Pp (10)
ka

The enzyme will bind to the substrate at association rate k,, they may dissociate
at rate kg or the enzyme will convert the substrate into the product at rate k..
This is often modelled [I1] as:

E = ded VCk, !aka (dkd, Ckn)~(?dkd~E+?CkC-E) (11)
S :?aka(dkwckc).(!dkd.S—Hckc.P) (12)

Where E and S share private channels with differing rates, the race condition in
the choice dictates whether the enzyme is successful in producing the product.
However a different formulation of enzymatic reactions is more appropriate here:

E = ?ay,.(1,-(E|S) + 1. .(E|P)) S = lay, (13)

This formulation sacrifices the ability to exchange information on a private
channel between enzyme and substrate, but it reduces the number of required
processes from 4 to 3 and the number of required channels from 3 to 1. The two
formulations are behaviourly equivalent by bisimulation, this can be straightfor-
wardly proved using the approaches given in [20]. Under simulation and analysis
the formulations will behave identically in terms of visible populations of enzyme,
substrate and product. The reason for the change in formulation is twofold, first,
SPiM contains optimisations based on assumptions that simulations will contain
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large numbers of identical of process [I1]. For 100 simulation runs of the MAPK
cascade, model outlined in section [Bl, the optimisations translate to the formula-
tion of equation [[3] running in ~ 3 minutes and the formulation of equation [IT]
running in ~ 6 minutes. Second, the formulation is more similar to the process
calculi used [I7] (allowing automata translation into PRISM) and in [20] (allow-
ing reduction of state space for analysis). Such automated translation and state
space reduction are not used in this work but will be a major part of future
analysis work.

5 The Model

The model is in essence a stochastic formulation of the ABG model [5], with
minor changes. The CD8 co-receptor is only allowed to bind to the TCR-pMHC
complex and pMHC. In the ABG model the following complexes are allowed
CD8-TCR, CD8-pMHC, CD8-TCR-pMHC. The change clarifies the proofread-
ing behaviour of CD8 and is in line with the model of Wylie [T5].

The model proceeds as the biology is described in section 2l There is a fur-
ther simplification in line with ABG, only a single (-chain with three ITAMs
are included. Each ITAM may be twice phosphorylated allowing and requiring
binding of 3 ZAP70 molecules to signal the MAPK cascade. The reactions used
can be found online at [21], which for the majority are identical to the reactions
found in the ABG model.

The m-calculus model is generated mechanistically from the reactions in [21]
using the patterns defined in section [l The volume of simulation is scaled by
a factor 100, this is performed without any qualitative loss to the results, the
ABG model contains 3 x 10* TCRs, 300 are simulated here. The m-calculus
model, runnable in SPiM can be found online [21].

Since PRISM performs analysis on the entire state space of a system it is not
computationally tractable to perform model checking on a population of TCRs
and pMHCs. The model checker is used to investigate the signalling behaviour
of a single TCR-pMHC complex by volume restriction to one TCR, even so it
is still necessary to restrict the model even further to reduce the state space.
The inclusion of the MAPK cascade give rise to a system of 224613312 states
and 3703035840 transitions. If it is removed and ppERK protection replaced
by a boolean parameter we achieve a far more tractable system of 2050 states
and 11312 transitions. The number of pSHP-1 molecules are also supplied as a
parameter, the PRISM model can be found [21].

6 Model Simulation and Analysis

To demonstrate tunability given the hypotheses presented in this paper it first
must be shown that TCR-pMHC interactions result in a higher concentration
of cytosolic pSHP1. Second it must be shown that this higher concentration of
pSHP1 hinders the ability of the TCR to signal. We must allow ensure that the
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Fig. 2. Average number of ppERK (left) and pSHP1 (right) molecules across a 200
second simulation with n = 10, 100, 1000 pMHC complexes

model of the T cell must display the correct speed, selectivity and sensitivity as
outlined by [13].

To demonstrate that higher levels of pSHP-1 hinder the ability of the TCR
to signal we employed the PRISM model. Figure [ (right) shows the expected
adapter phosphorylation against ligand quality at ¢ = 200s after binding, greater
levels of pSHP-1 massively decrease the expected adapter phosphorylation. It is
important to note that the PRISM model is scaled to a single TCR so a change
of 0 to 4 pSHP-1 molecules in the vaccinity of that TCR represents a massive
change in pSHP-1 concentration in the entire cell. Second, the PRISM model
does not contain the MAPK cascade and so lacks the ability of the TCR to
protect itself, should protection by ppERK occur the expected phosphorylation
of the Adapter will immediately jump to the pSHP-1= 0 line.

The remaining tests are performed using the simulations of the m-calculus
model. Figure 2] shows the average number of ppERK and pSHP1 molecules
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over a 200 second simulation of n = 10,100,1000 pMHC molecules across a
range of binding affinities. The jaggedness is facet of taking an average of just 10
simulation runs. The results demonstrate that, as expected, at higher binding
affinities a larger amount of pSHP-1 is produced. However the pSHP-1 levels
flatten off as more ppERK is successfully produced (a higher probability of a
pSHP-1 protected TCR.

A further interesting result is that of synergy, figure [ (left) shows that the
presenting non-agonist ligands with agonist ligands increases both pSHP-1 and
ppERK levels. The large increase of both suggests that further parameter analy-
sis will reveal antagonism.

7 Conclusions

We have outlined the biological components of a signalling system which exhibits
tuning properties. We present computational modelling methods and patterns
that are generally applicable to any reaction based biological system. We apply
these to the biology presented and gain stochastic m-calculus and PRISM models.
We show some preliminary results, demonstrating tuning and synergy. However,
during runs of the model antagonism appears elusive (data not shown), this may
be a facet of the stochastic formulation identified by [T5], and a further biological
mechanism may be required. We shall continue with further model analysis and
investigations into new immune inspired algorithms.
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Abstract. Immune phenomena are explained from the reductionist view
of the immune system as a collection of cells, molecules, and their inter-
actions. Although this approach has produced abundant valuable infor-
mation, it has added increased complexity. Artificial Immune Systems
(AIS) have relied on this theoretical framework to emulate the desired
characteristics of immunity. However, the complexity of the theoretical
base has lead to an impasse in AIS research, suggesting that a new the-
oretical framework is needed. A theoretical model is presented here that
explains immune responses as a "swarm function”. The model proposes
a system based on two stochastic networks: a central recursive network,
wherein the proportion of agents is determined and maintained, and a
peripheral network, wherein the random interactions of these agents de-
termine if an inflammatory response will emerge from the system.

1 Introduction

There is a recognition that a different theoretical framework is needed in the field
of Artificial Immune Systems (AIS) [II2]. It has been proposed that the failure
to generate practical results in AIS is a result of the high degree of complexity
of the human immune system, and the use of less complex primitive immune
systems has been advocated [3]. While not denying that simpler approaches
may lead to more practical solutions, I will argue here that the problem is of a
more conceptual nature.

1.1 The Problem

AIS construction has been inspired by predominant paradigms in immunology,
consequently it has focused on Self/Non-Self discrimination, clonal selection,
danger signals, etc. However, these theories are insufficient to explain some bi-
ological phenomena [45]. As well, the research focus on cellular and molecular
mechanisms has led to constant discoveries of an increasingly complex set of
agents and interactions, and yet there will be always some unknown interaction
and element not considered in our knowledge of the system. For example, the
relatively recent discovery of T regulatory lymphocytes and their importance in
the concept of dominant tolerance [67] has changed our previous understand-
ing of autoimmunity and the concept of Self [8]. Adding to this, the cells and
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molecules involved in immune responses also participate in a variety of biological
phenomena not always related to immunity and have been subjected to a differ-
ent evolutionary pressures. As a result, we find that immune responses to viruses,
bacteria, parasites, auto-antigens, allo-antigens, xeno-antigens, cancer antigens,
or simple inflammation as result of a minor trauma, cannot be explained by the
same mechanism, even when these phenomena share many cellular and molecular
components and pathways.

To understand the immune phenomena at cellular and molecular level, we will
need an immunological Laplace’s Demon, that is, the ability to know the complete
set of members and interactions of the entire immune system at any given time.
Similarly, to create an AIS upon this knowledge, we will need unlimited computer
power to include all the interactions taking place in real time in this biological
jungle. Only then can we predict why and when an immune response occurs.

Immune Responses and the Immune System. We think of immune re-
sponses as being the function of the immune system. However, as difficult as
it may seem, the immune system is a poorly defined and poorly delimited sys-
tem, which sometimes even includes the skin and the colonic flora. Over the
20th century, the immune system has come to include all the cells and molecules
associated with destroying pathogens, Non-Self antigens, and harmful agents.
As consequence, we tend to consider pathogen-driven responses, autoimmunity;,
transplant rejection, cancer responses, allergy, etc., as intrinsic properties of
these cells and molecules. However, immune responses are macroscopic phenom-
ena, not merely cellular or molecular events. In other words, autoimmunity is
not the presence of auto-reactive clones or auto-antibodies, transplant rejection
is not the presence of anti-HLA antibodies or allo-reactive clones, etc. An acute
episode of autoimmunity, the rejection of an organ, the destruction of a tumour,
or the inflammation of a traumatized tissue are inflammatory processes directed
towards an specific antigen or group of antigens. These inflammatory processes
are a colony function, wherein all components participate, including the antigen
and the microenvironment where the reactions take place. Whereas the study
of individual molecules and cells can help explain how the inflammatory pro-
cess propagates, it does not explain why the inflammatory process occurred in
the first place or in one particular location and time rather than another, such
as an acute episode of autoimmunity or an acute rejection episode in a trans-
planted organ, which are discrete events emerging without an apparent direct
cause. In contrast, inflammation can be absent even though reactive clones and
auto-antibodies are present [9], indicating that the presence of these cells and
molecules, although necessary, is insufficient to explain the emergence of the
immune response.

A holistic approach to the immune system dates back to Elie Metchnikoff at
the end of the 19th century and the origins of immunology as a scientific disci-
pline. However the reductionist approach centred on the study of cells, molecules,
and their mechanisms currently prevails [I0], with the notorious exception of
Jerne’s Network Theory [11] and further contributions [T2IT3ITATEIT6] but these
have so far failed to produce convincing data to constitute a practical alternative
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[I7]. Despite this, there is increased interest in finding a new theoretical frame-
work at the system level that will explain immune responses [1§].

Defining the System. Many immunological systems are well understood at
the molecular and cellular levels, such as the generation of antibody repertoires
[19], clonal selection [20], and the HLA system [2T22]. The problem is that these
mechanisms fail to answer a critical question in immune-driven phenomena: why
does it occur in the first place? There are associations, such as the presence of
anti-HLA antibodies with transplant rejection [23] and the presence of auto-
antibodies with autoimmunity; however, presence of these immune agents only
represents an increased probability that the phenomena will occur, whereas the
phenomena itself is unpredictable. For example, we do not know why or how
an acute attack of autoimmunity is triggered or if or when an acute rejection
episode will take place, but we do know that if the patient has been sensitized
to the antigen or has detectable auto-antibodies or autoreactive clones, then it
is more likely that a response will occur. Interestingly, therapeutic interventions
with immunosuppressants, which modify the cellular and molecular components
of the inflammatory response [24], diminish the frequency of acute attacks in
autoimmunity and transplant rejection, but do not abrogate the phenomena.
Here, we consider that the system that needs to be defined is one that can
delimit the occurrence of an immune response as a phenomenal, rather than as
a statistical entity.

2 The Model

Instead of trying to explain the functions of a conceptually ill-defined immune
system, I will focus on a model that tries to explain the phenomena of inflam-
mation as a common pathway of immune responses.

2.1 Immune Phenomena Emerge from Stochastic Events

Any immune-mediated process, irrespective of its evolutionary history or present
risk factors, ends in an identifiable phenomena that we name inflammation. It
is a self-propagating phenomenon taking place at local peripheral (tissue) level
that causes injury to cells, molecules, or other materials bearing a Self (native,
original) or Non-Self (post-natal, de novo) antigen. The system responsible for
this phenomenon consists of cells and molecules from the lymphatic system,
which function as independent agents that interact in a random fashion be-
tween each other, the local environment, and the antigens (Fig. 1), creating a
self-reproducing complex adaptive system. These random interactions consist of
pro-inflammatory and inhibitory events, which neutralize each other in normal
(healthy) conditions, keeping the system in a non-inflammatory mode. In con-
trast, inflammatory responses emerge from this system of stochastic events as an
escalation of positive feedback loops of non-random events, such as the liberation
of mediators, homing of cells, activation of enzymatic systems, proliferation of
specific clones etc. directed towards an antigen.
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Fig.1. A highly interconnected network of agents of the lymphatic system in their
local microenvironment and their interaction with antigens. The type and intensity of
these interactions constitutes reactivity toward the antigen. Question marks indicate
unknown (undiscovered) agents or interactions.

2.2 Distance from the Phase Transition Defines the Probability of
an Inflammatory Reaction

We can assume then, that the event that determines the inflammatory process
is a change in the behaviour of the system from random self-neutralizing interac-
tions to a nonrandom, escalated, and self-maintained cascade of pro-inflammatory
events. As a consequence, the delimitation between normal auto-reactivity versus
autoimmunity, tolerance versus rejection, etc., is the phase transition that sepa-
rates the two modes of the system. It follows then, that a single pro-inflammatory
event can trigger an inflammatory response if it makes the system reach the thresh-
old separating these two modes. Therefore, the probability of an inflammatory
process depends on the distance between the status of the system at any given
time and a critical point at which the threshold is reached, rather than on the
pro-inflammatory event or agent itself (Fig. 2).

2.3 Agents Can be Simplified as Pro-inflammatory,
Anti-inflammatory, or Neutral

We can simplify the system by defining the agents by their contribution to mak-
ing the system either closer to or farther from the threshold (pro-inflammatory,
anti-inflammatory, or neutral) and ignoring the diverse and complex processes
that created these agents. These assumptions can be abstracted to apply to un-
known agents or interactions, as well as to properties of a cell or molecule, which
can be inhibitory, stimulatory, or neutral according to particular circumstances.
By reducing the system to these three (in practice two) interactions, we can
escape the need to incorporate special functions and properties of each agent
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Fig. 2. Phases in the development of an inflammatory response. (a) At the peripheral
level, the system is composed of two phases, the first characterized by random self-
neutralizing interactions between pro- and anti-inflammatory events and the second
by an escalation of pro-inflammatory events separated by a phase transition. (b) The
distance between the reactivity level and a threshold defining the phase transition
is what determines the probability for an inflammatory response, not the antigen or
independent agent by itself. (¢) Inflammatory responses emerge from this system once
the threshold is reached. (d) The only influence in determining the distance between the
reactivity level and the threshold that an agent can have is by increasing, decreasing,
or being indifferent (arrows). The question mark indicates unknown influences that can
be assumed to fall in one of these three categories. (¢) Computer simulation showing
the emergence of a new dynamic in the system after reaching a critical value. The
graph represents the average mediator produced by 2 independent agents interacting
randomly in a two-dimensional space. One agent increases, while the other decreases,
the concentration of mediator in its local environment. Both populations increase their
numbers until they reach a critical level, after which the production of the mediator
escalates, indicating the emergence of new dynamics in the system, shown by the arrow.

(antigen-presenting cells, blocking antibodies, HLA molecules, etc.), eluding the
problem of the incompleteness of empirical data.

To summarize thus far, we have a complex adaptive system acting in peripheral
tissue, where inflammatory reactions emerge once a threshold is reached by the
contribution of competing pro-inflammatory and anti-inflammatory (suppressive)
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mechanisms. This threshold divides the system in two phases: a phase character-
ized by random interactions wherein microscopic events are mutually neutralized
and an inflammatory phase wherein the system behaves as a positive feedback
loop of proinflammatory, non-random events.

2.4 Recursion Can Explain Robustness and Diversity

Although this theoretical construction can explain how immune responses emerge
from a stochastic network of interactions between cells and molecules, it does not
explain why immune responses are antigen-specific, why they show broad variabil-
ity in their intensity (not only among individuals but within the same individual
in different circumstances or at different stages of development), or why they tend
to resist modification once they are established, a property known as robustness.
For this construction to explain the specificity, diversity, and robustness of im-
mune responses, several conditions must apply. First, there must be as many levels
of reactivity (specificity) as antigens exposed to the system. Second, the distance
between the level of reactivity of the system to the threshold must be set at dif-
ferent levels among individuals (inter-individual variation) and be susceptible to
variation within the same individual (intra-individual variation). Third, the level
of reactivity must show a strong tendency to return at a fixed point in the status
of the system (robustness).

How can the level of reactivity for each antigen be robust, specific, and show
variation among individuals, yet permit modification in order to explain toler-
ance to previously rejected antigens and autoimmunity to originally accepted
antigens? Vaz and Varela [12] suggested that the answer may be by recursion;
their example is reproduced by computer simulation in Fig. 3. A ball is picked
randomly from a box containing one white and one black ball. The ball is placed
back into the box along with another ball of the same colour. By repeating this
action until there are a large number of balls in the box, we can observe that the
proportion of black and white balls will show an initial fluctuation in the range
between 0 and 1, with a further stabilization relative to the number of balls
in the box. The more balls, the less fluctuations, following a power law where
the stability of the proportions is directly related to the number of events. If
we consider one colour as pro-inflammatory and the other as anti-inflammatory
(suppressor), and by their interaction they neutralize each other, we can simulate
the predominance influence as well as the intensity of that influence or reactiv-
ity level (Fig. 3). We will end with a situation where sometimes one colour will
predominate over the other, pro-inflammatory influences on the reactivity level
will predominate over suppressive ones or vice versa, and this predominance will
also vary in intensity, given the different distances between the reactivity level
and the phase transition or threshold.

Instead of balls, let us now take items of different shapes (representing different
antigens), each shape having a black and a white version (representing pro- and
anti-inflammatory influences). In this scenario, a specific proportion for each
shape and colour will result, and increasing the number of iterations will lead to
stability of the reactive level. If we substitute these items for lymphocyte clones
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specific for an antigen (different shape) with pro-inflammatory and suppressive
(black and white) versions, then we will get a situation where the proportion of
clones will be stable for each antigen.

The lymphatic system consists of billions of cells. The daily turnover of cells
in the bone marrow is in the order of 500 billion; of these, 20 billion are lym-
phocytes directly related to immune responses, with an approximately average
life span of 4.4 years [25]. Because enormous numbers of cells are constantly
regenerated, it offers an ideal situation for a recursive process to take place in
the maintenance of cellular clones at specific and stable proportions. This can
explain the establishment of reactivity levels for several different antigens and
may well explain why, despite the fact that the cells of the lymphatic system are
replaced constantly, the immune responses tend to be stable and reliable. How-
ever, despite the fact that immune responses are robust, they can be modified
by biological manipulation, as is the case in vaccination-induced immunity or in
radiation-induced autoimmunity [26]. In the case of vaccination-induced immu-
nity, a new antigen is introduced where a level of reactivity for this particular
antigen has not been set. According to the present model, a recursive process
will start to take place, and the type of response will be determined in the early
stages of the recursive process. The way the antigen is presented, rather than
the antigen itself, is what will determine further responses, exemplified by some
well known phenomena such as high and low zone tolerance, induction of tol-
erance or sensitization depending the administration route, and the induction
of immunity or disease depending on the type of adjuvant given. In the case of
radiation-induced autoimmunity, the previous reactivity level towards the tol-
erated original (Self) antigen is reset by depleting the lymphocyte populations.
This would be equivalent to randomly remove large numbers of balls from the
box in the previous example, placing the system (depending on the number of
balls left) in a stage where more fluctuations can be expected. As a consequence,
it is possible to achieve different long-term reactivity levels, such as the induc-
tion of a response towards a previously tolerated antigen or the abrogation of a
previously determined response (Fig. 3).

3 The Model and Immunological Processes

3.1 Clonal Selection

Although the clonal selection theory explains how clonal selection takes place, as
somatic hypermutation explains the generation of antibody diversity, it does not
explain the immune response in autoimmunity, cancer, transplant rejection, etc.
The contribution of clonal selection to the immune response is to influence the
level of reactivity for each antigen; in other words, it biases the distance between
the status of the system and the threshold by eliminating auto-reactive clones
in the early ontogeny of the lymphatic system. Viewed in this way, the present
model explains the apparent contradiction between the existence of auto-reactive
clones or auto-antibodies and the absence of an inflammatory process. If clonal
selection works by its relative contribution to the level of reactivity, it can be
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Fig. 3. Computer simulation of 3 recursion experiments. The solid black line represents
the proportion of positive (pro-inflammatory) agents, the solid gray line represents the
proportion of negative (anti-inflammatory) agents, and the dotted line represents the
difference between the two, indicating the intensity of the predominant influence or
reactivity level. (a) Elimination of pro-inflammatory agents at an early stage (arrow)
simulates negative selection of auto-reactive clones. As a consequence, the level of
reactivity is biased to a predominance of negative agents, setting the level distant
from the threshold. This simulates how clonal selection biases the recursive process
towards suppression of auto-reactive clones to define Self. (b, ¢) Elimination of all
agents after stability had been reached (arrow), except one pro-inflammatory and one
anti-inflammatory agent, which recapitulate the initial step of the recursive process.
This creates the conditions for setting reactivity at a different level. Change can occur
in either direction, increasing or decreasing the distance to the threshold. This models
possible outcomes after an adult individual is subjected to profound lymphatic ablation.
(b) The reactivity level is set farther from the threshold, indicating possible remission
of autoimmune disease. (¢) The reactivity level is set closer to the threshold, indicating
possible induction of autoimmune disease.
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(as it is) incomplete. In other words, the complete elimination of auto-reactive
clones is not required to avoid autoimmunity, and the same situation stands for
the generation of auto-antibodies.

3.2 Determination of Self

In the pre-natal and early post-natal period of development, the thymus gener-
ates the conditions for the deletion of auto-reactive clones [27] and the survival of
tissue-specific T regulatory cells [7], biasing the development of lymphatic system
towards predominance of suppressive agents directed to the antigens presented in
the thymus (Fig 3a). Because of the isolation of the thymus to external antigens
[28], by default, these thymic antigens will be the inborn set of the individual.
This will set the level of reactivity at a distance from the threshold compatible
with what we call recognition of Self. In other words, Self will be defined by
setting the reactivity level to a distance that prevents reaching the threshold
spontaneously. The distance to the reactivity level will be maintained by recur-
sion, particularly in the bone marrow, accounting for the consistency displayed
by immune responses. We call this consistency immunological memory.

3.3 Autoimmunity

Autoimmunity occurs more frequently in the post-thymus period of development,
after a period of tolerance to the antigen towards which the autoimmunity de-
velops. Interestingly, depletion of the lymphatic system is associated both with
the generation|26] and the cure [29)30] of autoimmune diseases, as well as the
development of allograft donor-specific unresponsiveness in mixed leukocyte re-
action tests after total lymphoid irradiation [31]. Depletion of lymphatic cells is
the equivalent of randomly removing a large number of balls from the box from
the previously explained recursive experiment to a degree that causes the stabil-
ity level to be set at different proportions of pro- and anti-inflammatory events
(Fig 3). Because this change can produce either a decrease (Fig. 3b) or increase
(Fig. 3¢) in the proportions of pro-inflammatory versus anti-inflammatory agents
(lymphocytes), this model can explain the two opposite, seemingly paradoxical,
phenomena of remission or induction of autoimmune diseases by radiation or by
bone marrow transplants [32I33].

Self will become Non-Self producing autoimmunity when the reactivity level
is set closer to the threshold by modification of the systems wherein the recur-
sive mechanisms are taking place (principally in the bone marrow) by influences
such as radiation, viral infections, chemicals, etc. Conversely, Non-Self may be-
come Self when the reactivity level is set to predominantly suppressive influ-
ences (sub-threshold level). For example, the initial rejection and followed by
hyporesponsiveness observed clinically after the introduction of a new antigen,
particularly one not subjected to evolutionary pressure as in the case of allograft
transplants, can be explained by the initial fluctuations in the recursive process.
It is noteworthy that a high degree of immunosuppression, which usually in-
cludes a lymphocyte-ablating agent at the time of the implantation of the organ
(induction), is required to engraft the transplanted organ.
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4 Abstracting the System

The model presented here is composed of two complex adaptive systems, the
first being a network of cells (autonomous agents) interacting and regenerat-
ing constantly (autopoiesis), where recursion is taking place for each antigen
presented to the system and where new antigens in context are presented or rep-
resented (internal image). This system will produce pro- and anti-inflammatory
agents which will migrate to a second network consisting of the independent
agents, the antigens and the microenvironment. This system will receive other
local influences that will determine fluctuations of the reactivity level at the lo-
cal peripheral tissue, and inflammatory responses will emerge once the level of
reactivity reaches the threshold. Although the reactivity level can be influenced
by external factors including trauma, infection, etc., the reactivity level will tend
to return to the level determined by the recursive system, which will work as an
attractor for the second peripheral system (tissue).

5 Implications

Although the present model simplifies the complexity of cellular and molecu-
lar interactions, it does not contradict current theories at cellular and molecular
levels. Rather, they are incorporated as part of the process for setting the thresh-
old level for each antigen. The model also offers an explanation for the elusive
problem of demarcation in immune responses, proposing a mechanism that can
explain the divergent point between auto-reactivity and autoimmunity, tolerance
and rejection, response and no response. The model also explains paradoxes in
real-life phenomena that cannot be satisfactory explained by classical theories,
and at the same time is coherent with the diversity shown by immune responses
both in physiologic as well as pathologic conditions. Here, rather than being the
cause for the immune response, the belonging of an antigen to a Self or Non-Self
category is determined by the immune response after the fact. For AIS, this
model is not based in naive metaphors and is not finalistic. More importantly,
the model can be explored from the network theory point of view, such as a
Hopfield Model.
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Abstract. This paper proposes a novel solution to spam detection in-
spired by a model of the adaptive immune system known as the cross-
regulation model. We report on the testing of a preliminary algorithm on
six e-mail corpora. We also compare our results statically and dynami-
cally with those obtained by the Naive Bayes classifier and another binary
classification method we developed previously for biomedical text-mining
applications. We show that the cross-regulation model is competitive
against those and thus promising as a bio-inspired algorithm for spam
detection in particular, and binary classification in general.

1 Introduction

Spam detection is a binary classification problem in which e-mail is classified
as either ham (legitimate e-mail) or spam (illegitimate or fraudulent e-mail).
Spam is very dynamic in terms of advertising new products and finding new
ways to defeat anti-spam filters. The challenge in spam detection is to find the
appropriate threshold between ham and spam leading to the smallest number
of misclassifications, especially of legitimate e-mail (false negatives). To avoid
confusions, ham and spam will be labeled as negatives and positives respectively.

The vertebrate adaptive immune system, which is one of the most complex
and adaptive biological systems, learns to distinguish harmless from harmful
substances (known as pathogens) such as viruses and bacteria that intrude the
body. These pathogens often evolve new mechanisms to attack the body and its
immune system, which in turn adapts and evolves to deal with changes in the
repertoire of pathogen attacks. A weakly responsive immune system is vulnerable
to attacks while an aggressive one can be harmful to the organism itself, causing
autoimmunity. Given the conceptual similarity between the problems of spam
and immunity, we investigate the applicability of the cross-regulation model of
regulatory T-cell dynamics ﬂﬂ] to spam detection.

Spam detection has recently become an important problem with the ubiquity
of e-mail and the rewards of no-cost advertisement that can reach the largest au-
dience possible. Spam detection can target e-mail headers (e.g. sender, receiver,
relay servers...) or content (e.g. subject, body). Machine learning techniques such
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© Springer-Verlag Berlin Heidelberg 2008
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as support vector machines }, Naive Bayes classifiers NE, ] and other clas-
sification rules such as Case-Based Reasoning ﬂQ] have been very successful in
detecting spam in the past. However, they generally lack the ability to track
concept drift since they rely on training on fixed corpora, features, and rules.
Concept drift is the (gradual or sudden) change of thematic context (often re-
occurring) over time such as new advertisement themes in spam and Bayesian
poisening, a technique used by spammers to surpass bayesian based spam filters.
Ideally, a system is capable of handling concept drift if it adapts quickly to the
thematic change, distinguishing it from noise ﬂﬁ] Research in spam detection
is now focusing on detecting concept drifts in spam, with very promising results
ﬂi @] Other areas of intense development in spam-detection are social-based
spam detection models @, ] as well as algorithms based on Artificial Immune
System (AIS) [17] (based on clonal selection) [3] (based on ABNET, an Anti-
Body Network) Nﬁ] (based on incremental clustering Immune Networks). The
AIS models are inspired by diverse responses and theories of the natural im-
mune system ﬂ_‘l__l|] such as negative selection, clonal selection, danger theory and
the immune network theory. Our bio-inspired spam detection algorithm is based
instead on the cross-regulation model [5], which is a novel development in AIS
approaches to spam detection. Since this dynamic model is quite compelling
in the simplicity by which it achieves harmful/ nonharmfull discrimination, we
expect it to be useful in also in spam/ham e-mail classification. Moreover, its
dynamic nature, in principle, makes it a good candidate algorithm to deal with
concept drift in e-mail, which we start testing here.

Section B offers a short review of the cross-regulation model [5]. Section
presents the Cross-regulation Spam Algorithm—our bio-inspired cross-regula-
tion algorithm—and its application to the spam classification problem. Section []
discusses the experiments and implementation of the model vis a vis other binary
classification models. Finally, in the last two sections, the discussion of the results
and the conclusion follow.

2 The Cross-Regulation Model

The cross-regulation model, proposed by Carneiro et al. @], aims to model the
process of discriminating between harmless and harmful antigensl?typically
harmless self/nonself and harmful nonself. The model consists of only three
cell types: Effector T-Cells (E), Regulatory T-Cells (R) and Antigen Presenting
Cells (A) whose populations interact dynamically, ultimately to detect harmful
antigens. E and R are constantly produced, while A are capable of presenting
a collection of antigens to the E and R. T-cell proliferation depends on the
co-localization of E and R as they form conjugates (bind) with the antigens
presented by A cells (this model assumes that A can form conjugates with a
maximum of two E or R). The population dynamics rules of this model are

1 Or less accurately but more commonly used, self/nonself discrimination.
2 Antigens are foreign substances, usually proteins or protein fragments, that trigger
immune responses.
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defined by three differential equations, which can be, for every antigen being
presented by an A, summarized by the following three laws of interaction:

1. If one or two E bind to antigen, they proliferate with a fixed rate.

2. If one or two R bind to the antigen, they remain in the population.

3. if an R binds together with an E to the same antigen, the R proliferates with
a certain rate and the E remains in the population but does not proliferate.

Finally, the E and R die at a fixed death rate. Carneiro et al. [B] showed that
the dynamics of this system leads to a bistable system of two possible stable
population concentration attractors: (i) the co-existence of both E and R types
identifying harmless self antigens, or (ii) the progressive disappearance of R,
identifying harmful antigens.

3 The Cross-Regulation Spam Algorithm

In order to adopt the cross-regulation algorithm for spam detection, which we
named the Immune Cross-Regulation Model (ICRM), one has to think of e-mails
as analogous to the organic substances that upon entering the body are broken
into constituent pieces by lysosome in A. In biology, these pieces are antigens
(typically protein fragments) and in our bio-inspired algorithm they are words or
features extracted from e-mail messages. Thus, in this model, antigens are words
or potentially other features (e.g. bigrams, e-mail titles). For every antigen there
exists a number of virtual E and R that interact with A, each associated with a
specific e-mail message, and whose role is to present, in distinct slots, a sample of
the features of the respective e-mail message. Therefore A, E and R have specific
affinities p € X, where E,; and R,2 can bind to a slot of A, A3, only if p1 = p3
and p2 = p3 respectively.

The general ICRM algorithm is designed to be first trained on N e-mails of
“self” (a user’s outbox) and harmless “nonself” (a user’s inbox). However, in
the results described here, it was not possible to directly obtain outbox data.
We are working on collecting outbox data for future work. Similarly, the ICRM
is also trained on “harmful nonself” (spam arriving to a given user). Training
on or exposure to ham e-mails, in analogy with Carneiro’s et al model ﬂa], is
supposed to lead to a “healthy” dynamics denoted by the co-existence of both
E and R with more of the latter. In contrast, training on or exposure to spam
e-mails is supposed to result in much higher numbers of E than R. When e-
mail features occur for the first time, a fixed initial number of E and R, for
every feature, are generated. These initial values of E and R are different in the
training and testing stages; more weight to R for ham features, and more weight
to E for spam features is given in the labeled training stage. While we specify
different values for initializing the proportions of E and R associated with e-mail
features, depending on whether the algorithm is in the training or the testing
stage, the ICRM is based on the exact same algorithm in both stages. The ICRM
algorithm begins when an e-mail is received and cycles through three phases for
every received e-mail:
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In the pre-processing phase, HTML tags are not stripped off and are treated
as other words, as often done in spam-detection ] . All words constituting
the e-mail subject and body are lowercased and stemmed using Porter’s al-
gorithm after filtering out common English stop words and words of length
less than 3 characters. A maximum of n processed unique features (words,
in this case) are randomly sampled and presented by the virtual A which
corresponds to the e-mail. These virtual antigen presenting cells have ny4
binding slots (that E and R can bind to) per feature, i.e. n X n4 slots per
e-mail message. The breaking up of the e-mail message into constituent por-
tions (features) is inspired by the natural process in Biology, but is further
enhanced in this model to select the first and last % features in the e-mail.
The assumption is that the most indicative information is in the beginning
(e.g. subject) and the end of the e-mail (e.g. signature), especially concerning
ham e-mails.

In the interaction phase, feature-specific R, and Ey are allowed to bind to
the corresponding antigens presented by A, which are arbitrarily (uniform
random) located on its array of feature slots. Every adjacent pair of A slots
is dealt with separately: the E; for a given feature f proliferate only if they
do not find themselves sharing the same adjacent pair of A binding slots with
R,, in which case only the R, associated with feature g, proliferate. The
model assumes that novel ham features k tend to have their Ej suppressed
by R, of other pre-occurring ham features g because they tend to co-occur in
the same message. As for the algorithm’s parameters, let n4 be the number
of A slots per feature. Let (Ey,,,., Ro,.,,) and (Eo,,.,., Ro,,..,) be the initial
values of E and R for features occurring for the first time in the training stage
for ham and spam, respectively. For the testing stage, we have (Ey,..,, Ro,.., )-
Moreover, Ey,,,. << Ro,.ms L0.pam > Ro,pem and Eo,,., > Ro,,,,. In the
ICRM implementation hereby presented, a major difference form Carneiro’s
et al model ﬂﬂ] was tried: the elimination of cell death. This is a rough attempt
to provide the system with long term memory. Cell death can lead to the
forgetfulness of spam or ham features if these features do not reoccur in a
certain period of time as shown later section [l

In the decision phase, the arriving e-mail is assessed based on the relative
proportions of R and E for its n sampled features. Features with more R are
assumed to correspond to ham while features with more E are more likely to
correspond to spam. The proportions are then normalized to avoid decisions
based on a few highly frequent features that could occur in both ham and
spam classes. For every feature f, the feature score is computed as follows:

Ry — Ey
2 2’
VB + B
indicating an unhealthy (spam) feature when scorey < 0 and a healthy (ham)

one otherwise. score; varies between -1 and 1. For every e-mail message e,
the e-mail immunity score is simply:

(1)

Scoref =
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score, = Z scoref. (2)
Vfee

Note that a spam e-mail with no text such as as the cases of messages
containing exclusively image and pdf files, which surpass many spam filters,
would be classified as spam in this scheme—e-mail e is considered spam if
score, = 0. Similarly, e-mails with only a few features occurring for the first
time, would share the same destiny, since the initial E is greater than R in
the testing stage Ey, ., > Ro,.., which would result in score. < 0.

4 Results

E-mail Data. Given the assumption that personal e-mails (i.e. e-mails sent or
received by one specific user) are more representative of a writing style, signa-
ture and themes, it would be preferable to test the ICRM on e-mails from a
personal mailbox. Unfortunately, this is not offered by the most common spam
corpus of spamassasinﬁ and similarly for ling-spamﬁ. In addition, the ICRM al-
gorithm requires timestamped e-mails, since order of arrival affects final E/R
populations. Timestamped data is also important for analyzing concept drifts
over time, thus we cannot use the PU1H data described by Androutsopoulos et
al. [ﬁ] . Delany’s spam drift dataseiﬂ introduced by Delany et al. [EL meets the
requirements in terms of timestamped and personal ham and spam however its
features are hashed and therefore it is not easy to make tangible conclusions
based on their semantics. The enron-spaml| preprocessed data perfectly meets
the requirements as it has six personal mailboxes made public after the en-
ron scandal. The ham mailboxes belong to the employees farmer-d, kaminski-v,
kitchen-l, williams-w3, beck-s and lokay-m. Combinations of five spam datasets
were added to the ham data from spamassassin (s), HoneyProject (h), Bruce
Guenter (b) and Georgios Paliousras’ (g) spam corpora and then all six datasets
were tokenized ] In practice, some spam e-mails are personalized, which un-
fortunately cannot be captured in this dataset since the spam data comes from
different sources. Only the first 1500 e-mails of every enron are used in this
experiment.

Evaluation. Two forms of evaluation were conducted: The first and more com-
mon in spam detection evaluation is the static or offline evaluation using K-fold
cross validation @] while the second is the dynamic or real-time evaluation us-
ing a sliding window that is particularly useful to study the model’s capability
of dealing with concept drifts in spam and/or ham over time.

3 http://spamassassin.apache.org/publiccorpus/

* http://www.aueb.gr/users/ion/publications.html

® http://www.iit.demokritos.gr/skel /i-config/downloads/enron-spam/
5 http://www.comp.dit.ie/sjdelany /Dataset.htm

" http://www.iit.demokritos.gr/ ionandr/publications/
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In the first evaluation, for each of the six enron sets, we ran each algorithm
10 times. Each run consisted of 200 training (50% spam) and 200 testing or vali-
dation (50% spam) e-mails that follow in the timestamp order. From the 10 runs
we computed variation statistics for the F—scoreﬁ7 and Accuracy performance.

In the second evaluation, for each of the six enron sets, we trained each
algorithm on the first 200 e-mails (50% spam) and then tested on a sliding
window of 200 testing or validation (50% spam) e-mails that follow in the order
of time the email was received. The sliding shift was 10 e-mails and the range
was between e-mail 201 and e-mail 2800 resulting in 260 slides (from 1500 ham
and 1500 spam only 100 ham and 100 spam are for training and the remaining
2800 are for validation). For every window we computed variation statistics
of the percentage of FP (misclassified ham) and FN (misclassified spam) in
addition to the F-score and Accuracy. We also performed a linear regression of
the proportions of false positives and false negatives, %FP and %FN, using least
squares and computed the slope coefficients, the coefficient of determination R?
for each—for the purpose of evaluating the effect of concept drift if any.

ICRM Settings. In the e-mail pre-processing phase, we used n = 50, n4 = 10,
tham = 67 Roham = 12, E()Spam = 6, }%()Smm = 5, Eomst = 6 and Rotest = 5.
These initial E and R populations for features occurring for the first time are
chosen based on the initial ratios chosen by Carneiro et al. ﬂﬂ] and were then
empirically adjusted to achieve the best F-score and Accuracy results for the six
enron datasets. Finally, the randomization seed was fixed in order to compare
results to other algorithms and search for better parameters.

The ICRM was compared with two other algorithms that are explained in the
following two subsections. The ICRM was also tested on shuffled (not in order of
date received) validation sets to study the importance of e-mail reception order.
The results are shown in table [Tl

Naive Bayes (NB). We have chosen to compare our results with the multi-
nomial Naive Bayes with boolean attributes ﬂﬂ] which has shown great success
in previous research ﬂﬁ] In order to fairly compare NB with ICRM, we selected
the first and last unique n = 50 features. The Naive Bayes classifies an e-mail
as spam in the testing phase if it satisfies the following condition:

P(Cspam)- erefmau p(flespam)
p(cspam)~ ZCG{C.epa,m,Cham} HfEe—mail p(f‘C)
where f is the feature sampled from an e-mail, and p(f|csparm) and p(f|cram)
are the probabilities that this feature f is sampled from a spam and ham e-mail

respectively, while ¢ is the union of spam and ham e-mails. The results are shown
in table [[l and plotted in figure [l

> 0.5, (3)

& The Fl-measure (or F-Score) is defined as F' = 2Precision-Recall "whore Precision =
Precision+ Recall ?
TP TP

_ _ (TP+TN)
(TP+FP) and Recall = (TP4+FN) and Accuracy = (TP+TN+FPyFN) MNEASUTES of the
classification of each test set, where TP, TN, FP and FN denote true positives, true
negatives, false positive and false negatives respectively m]
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Variable Trigonometric Threshold (VTT). We previously developed the
VTT as a linear binary classification algorithm and implemented it as a protein-
protein abstract classification tool using bioliterature mining @] For more de-
tails please refer to ﬂ] The results are shown in table [T} plotted in figure [1l

Table 1. F-score and Accuracy mean +/- sdev of 10 runs for 50% spam enron data
sets with the first three columns using ICRM (the first one applied on ordered e-mail,
the second one on shuffled timestamps of testing data and the third on on ordered
e-mail but with ICRM having cell death with death rate=0.02), the fourth one using
Naive Bayes and the last one using VT'T.

ICRM Other Algorithms

Dataset Ordered Shuffled Cell Death |Naive Bayes|VTT
F-score 0.9 £0.03 ]0.9 +£0.03 |0.89 £ 0.03 |0.89 £ 0.04 |0.91 + 0.04
Accuracy (/0.9 £0.03 0.9 £ 0.03 [0.89 & 0.04 |0.87 £ 0.05 [0.9 &+ 0.04
F-score 0.86 £+ 0.06 [0.85 4+ 0.06 |0.85 £ 0.05 |0.92 £ 0.07 ]0.82 £ 0.23
Accuracy ||0.85 £ 0.06 |0.83 £ 0.07 [0.84 4+ 0.05 |0.93 = 0.05 ]0.86 & 0.13
F-score 0.88 £+ 0.04 [0.88 + 0.04 |0.9 &+ 0.03 |0.93 £ 0.03 |0.86 = 0.08
Accuracy ||0.87 £ 0.05 |0.87 £ 0.05 [0.89 4+ 0.04 |0.92 + 0.04 ]0.85 £ 0.07
F-score 0.92 £ 0.05 [0.92 + 0.04 |0.91 £+ 0.06 |0.92 £ 0.05 |0.95 + 0.03
Accuracy {/0.92 £ 0.05 |0.92 £ 0.05 [0.9 £ 0.07 |0.91 + 0.06 ]0.95 £+ 0.03
F-score 0.92 £+ 0.03 |0.87 & 0.06 |0.86 £ 0.04 |0.94 £ 0.04 |0.84 = 0.13
Accuracy {|0.91 £ 0.03 |0.87 £ 0.05 [0.86 &+ 0.05 |0.95 = 0.03 |0.87 £ 0.09
F-score 0.89 £+ 0.04 [0.9 £ 0.04 |0.89 £+ 0.03 |0.91 £ 0.02 |0.88 + 0.05
Accuracy {/0.88 £ 0.05 |0.89 £ 0.05 [0.89 4+ 0.04 |0.9 4+ 0.03 0.87 £ 0.07
F-score 0.9 £+ 0.05 |0.89 + 0.05|0.88 4+ 0.05|0.92 + 0.04 |0.88 + 0.12
Accuracy||0.89 + 0.05/0.88 + 0.06/0.88 + 0.05/0.91 + 0.05 |0.88 + 0.08

Enronl

Enron2

Enron3

Enron4

Enron5

Enron6

Total

Table 2. ICRM vs NB F-score and Accuracy for spam to ham ratio variations for all
enrons

50% spam 30% spam 70% spam
ICRM F-score 0.9 £ 0.05 0.91 £ 0.03 0.79 £ 0.12
Accuracy 0.89 + 0.05 0.86 + 0.05 0.83 + 0.08
F-score  0.92 £+ 0.04 0.86 £+ 0.07 0.79 £ 0.07

NB Accuracy 0.91 + 0.05 0.84 £ 0.07 0.74 £+ 0.01

5 Discussion

Static Evaluation Results. As clearly shown in table [[l and figure [I, ICRM,
NB and VTT are very competitive for most enron datasets, indeed the perfor-
mance of ICRM is statistically indistinguishable from VTT (F-score and Accu-
racy p-values 0.15 and 0.63 for the paired t-test validating the null hypothesis of

9 The Protein Interaction Abstract Relevance Evaluator (PTIARE) tool is available at
http://casci.informatics.indiana.edu/PIARE/
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Fig. 1. F-score vs Accuracy mean and standard deviation plot comparison between
ICRM (vertical blue), NB (horizontal red) and VTIT (diagonal green) for each of the
six enron datasets. A visualization of table[d]

Table 3. ICRM vs NB F-score, accuracy, %FP and %FN slope coefficient (oo rp and
aypy) and R?, %FP and %FN for all enrons over time

Dataset F-score [Accuracy |aypp,R°|oagrn, R2|%FP %FN
ICRM||0.95 + 0.01{0.95 £+ 0.01 |0.00,0.01 {0.02,0.41 |6.7 £ 1.5 |[4.11 &+ 1.66
NB 0.93 £ 0.01]0.93 + 0.01 |0.00,0.27 {0.03,0.56 [1.55 £ 0.53|12.99 £ 2.7
ICRM||0.92 + 0.01]0.92 £+ 0.01 |0.00,0.01 |-0.01,0.11 |6.48 + 1.17|8.87 + 1.89
NB 0.95 £ 0.01]0.94 + 0.01 |0.01,0.10 {0.00,0.01 [9.57 £ 2.05|1.29 + 0.48
ICRM||0.93 + 0.02]0.94 + 0.02 |0.03,0.95 |0.01,0.20 |4.7 + 2.06 [8.37 + 1.77
NB 0.92 £ 0.03|0.92 + 0.02 |0.00,0.43 [0.05,0.52 [0.51 + 0.4 |16.2 £ 5.2
ICRM]||0.92 + 0.03]0.92 £ 0.03 |0.04,0.52 |0.03,0.37 |6.99 £ 4.03]|9.99 + 2.92
NB 0.92 £+ 0.01{0.93 £ 0.01/0.00,0.56,|0.04,0.63 ]0.18 £ 0.27|15 + 3.06
ICRM||0.90 + 0.02]0.90 £ 0.02 |0.03,0.49 0.02,0.49 |8.54 + 2.58|12.08 + 2.1
NB 0.96 £ 0.03|0.96 + 0.03 |0.02,0.22 (0.04,0.77 |4.76 + 3.44|3.06 + 3.1
ICRM|[|0.93 + 0.01]{0.93 + 0.02|0.03,0.85 [0.01,0.28 |8.09 + 2.23(5.33 + 1.23
NB 0.95 £ 0.01]0.95 + 0.01 |0.01,0.06 {0.00,0.09 |[3.07 £+ 2.17|6.89 + 1.04

Enronl

Enron2

Enron3

Enron4

Enronb

Enron6
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Fig. 2. ICRM Accuracy over time for enron6 and NB Accuracy over time for enron4,
showing best linear and polynomial fits with R2. The rest of the Accuracy and FN/FP
plots are available as supplementary material.

variation equivalence), though its slightly lower performance against NB is sta-
tistically significant (F-score and Accuracy p-values 0.01 and 0.02 for the paired
t-test, rejecting the null hypothesis of variation equivalence with 0.05 level of
significance).

However, the ICRM can be more resilient to ham ratio variationdd as shown in
table2l While the performance of both algorithms was comparable for 50% spam
(though significantly better for NB), the performance of NB drops for 30% spam
ratio (5% lower F-score than ICRM) and 70% spam ratio (9% less accurate than
ICRM) while ICRM relatively maintains a good performance. The difference
in performance is statistically significant, except for F-Score of the 70% spam
experiment, as the p-values obtained for our performance measures clearly reject
the null hypothesis of variation equivalence: F-Score and Accuracy p-values are
0 and 0.01 for 30% spam, and Accuracy p-value is 0.01 for 70% spam (p-value for
F-Score is 0.5 for this case). While one could argue that NB’s performance could
well be increased, in the unbalanced spam/ham ratio experiments, by changing
the right hand side of equation Bl to 0.3 or 0.7, this act would imply that, in
real situations, one could know a priori the spam to ham ratio of a given user.
The ICRM model, on the other hand, does not need to adjust any parameter
for different spam ratios—it is automatically more reactive to whatever ratio
it encounters. It has been shown that spam to ham ratios indeed vary widely
ﬂﬁ, }, hence we conclude that the ICRM’s ability to better handle unknown
spam to ham ratio variations is more preferable for dynamic data classification
in general and spam detection in particular.

19 The 30% and 70% spam results were balanced for the evaluation by randomly sam-
pling from the 70% class, reducing it to 30%.
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We have implemented ICRM with death ratdld] = 0.02. and without virtual
cell death but the results showed negligible statistical differences (F-score and
Accuracy p-values 0.02 and 0.04) although slightly in favor of no virtual cell
death, as seen in table [l The ICRM tested for spam variation and dynamic
evaluation excluded cell death to speed up the algorithm, nonetheless, we are in
the process of experimenting with heterogeneous death rates for the E, R cells
of different features and more “interesting” features (e.g. e-mail title, from, to,
and cc features). Since death rates affect the long-term memory of the system,
this is something we intend to investigate more closely in future work.

In most Enron sets, shuffling the timestamps of received e-mails in the testing
stages also only slightly reduced the ICRM’s performance (F-score and Accuracy
p-values 0.07 and 0.04 for paired t-test), therefore, unlike what was expected, the
timestamps of e-mails seem to be largely irrelevant—which undermines some of
the justification for a dynamic approach to spam detection based on the cross-
regulation model. Nevertheless, we plan to study this further with additional
data sets with much longer date ranges.

Dynamic Evaluation Results. The ICRM was also very competative with
NB, have shown to be very competitive in the dynamic evaluation. The evi-
dence is in the first two columns (F-score and Accuracy) of table Bl and in the
supplementary material section'd.

Another notable feature of the ICRM is that it seems to balance %FN and
%FP more efficiently over time. Conversely, NB tends to have high %FN and
low %FP or vice versa. In order to quantify the balance between %FP and %FN,
we compute their means and standard deviations for all enrons in the last two
columns of table Bl While the largest mean in ICRM does not exceed 12.08%
(enron 5), it does reach 12.99% (enron 1) 16.02% (enron 3) and 15% (enron
4) in NB for %FP. However, in spam detection in particular, more importance
is given to %FP (ham misclassification) which favors NB over ICRM in most
enron datasets. In future work, we will explore if enabling heterogeneous death
rates for E and R cells can reduce %FP with the ICRM. On the other hand,
the ICRM’s more balanced %FN and %FP could be valuable for other binary
classification problems where FP and FN are equally important—which is not
the case in spam detection.

We also computed slope coefficients oo, , ao pp and their corresponding R?
for the least square linear fit of %FN and %FP in order to study the behaviour
of concept drift which would be manifested by high slopes—indicating decay in
performance. However, the slopes are quite minimal as shown in the third and
fourth columns of table Bl Indeed, the performance is essentially flat in time for
both algorithms with slopes close to zero (see plots in supplemental materials).
Therefore, there does not seem to be much concept drift in these datasets.

1 Death rate = 0.02 resulted in the best performance for the death rate range r €
[0.01,0.1], where r is the probability that an Ry or Ey would die for a previously
occurring feature f.

12° All supplementary material is accessible at
http://casci.informatics.indiana.edu/icaris08/
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6 Conclusion

The observations made based on the artificial immune system can help us guide
or further deepen our understanding of the natural immune system. For instance,
ICRM’s resilience to spam to ham ratio and its ability to balance between %FN
and %FP show us how dynamic is our immune system and functional indepen-
dently of the amount of pathogens attacking it. In addition, the three modifica-
tions made to the original model can be very insightful: The improvements made
by training on both spam and ham (rather than only ham or self) reinforce the
theories of both self and nonself antigen recognition by T-cells outside the thy-
mus. The feature selection makes us wonder whether the actual T-cell to antigen
binding is absolutely arbitrary. Finally, the elimination of cell death may reinforce
the theories behind long lived cells as far as long term memory is concerned.

In this paper we have introduced a novel spam detection algorithm inspired by
the cross-regulation model of the adaptive immune system. Our model has proved
itself competitive with both spam binary classifiers and resilient to spam to ham
ratio variations in particular. The overall results, even though not stellar, seem
quite promising especially in the areas of spam to ham ratio variation and also of
tracking concept drifts in spam detection. This original work should be regarded
not only as a promising bio-inspired method that can be further developed and
even integrated with other methods but also as a model that could help us better
understand the behavior of the T-cell cross-regulation systems in particular, and
the vertebrate natural immune system in general.
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Abstract. Significant progress has been made in theory and design of
artificial immune systems (AISs) for solving multi-objective problems ac-
curately. However, an aspect not yet widely addressed by the research
reported in the literature is the lack of ability of the AIS to deal ef-
fectively with building blocks (high-quality partial solutions coded in
the antibody). The available AISs present mechanisms for evolving the
population that do not take into account the relationship among the vari-
ables of the problem, causing the disruption of these high-quality par-
tial solutions. Recently, we proposed a novel immune-inspired approach
for single-objective optimization as an attempt to avoid this drawback.
Our proposal replaces the traditional mutation and cloning operators
with a probabilistic model, more specifically a Bayesian network repre-
senting the joint distribution of promising solutions and, subsequently,
uses this model for sampling new solutions. Now, in this paper we ex-
tend our methodology for solving multi-objective optimization problems.
The proposal, called Multi-Objective Bayesian Artificial Immune System
(MOBALIS), was evaluated in the well-known multi-objective Knapsack
problem and its performance compares favorably with that produced by
contenders such as NSGA-II, MISA, and mBOA.

1 Introduction

A multi-objective optimization problem consists of optimizing a set of conflicting
objectives simultaneously. An approach to solve such problems is to consider all
objective functions and discover a set of solutions which represents an optimal
trade-off between these objectives. This set of solutions is called Pareto optimal
set and forms the Pareto front in the space of objectives.

Over the last decades, a variety of evolutionary algorithms have been pro-
posed for solving multi-objective optimization problems, giving origin to the so
called Multi-Objective Evolutionary Algorithms (MOEAs). Among the appeal-
ing approaches, artificial immune systems (AISs) have received special attention
due to their interesting features: (i) dynamical control of population size, in
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© Springer-Verlag Berlin Heidelberg 2008
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response to the particularities of the problem; (i:) efficient mechanism of explo-
ration/exploitation of the search space, which allows to find and preserve the
local optima as well as to insert and maintain diversity in the population.

A wide range of AISs have been proposed in the literature for solving multi-
objective optimization problems with alternative views of the immune system.
One strongly accepted perspective is the one based on both the clonal selec-
tion theory [I] and the immune network theory [2]. The first attempt to explore
these features of AISs on multi-objective optimization problems was conducted
by Yoo and Hajela [3]. However, their approach is coupled with a genetic al-
gorithm (GA). In this case, the immune algorithm is applied only to maintain
diversity in the population of the GA. The genuine first AIS for multi-objective
optimization, namely Multi-objective Immune System Algorithm (MISA), was
proposed by Coello Coello and Cortez [4] and further extended in [5]. Next, Luh
et al. proposed the Multi-objective Immune Algorithm (MOTA) [6], Freschi and
Repetto proposed the Vector Immune System (VIS) [7], Coelho and Von Zuben
proposed the omni-aiNet algorithm [§], and Chen and Mahfouf proposed the
PATA algorithm [9].

Despite their high performance as general problem solving, there are some
shortcomings associated with these immune-inspired algorithms. Firstly, as the
complexity and scale of the problem increase, the performance of the algorithms
becomes more and more associated with a proper choice of the design parame-
ters, such as mutation rate. Otherwise, very poor solutions can be generated. In
addition, it is noticeable that, when the solution is represented by a vector of at-
tributes, the population of candidate solutions may contain partial high-quality
solutions to the problem, called building blocks. The existing AIS suffer from
the lack of ability to identify and effectively manipulate building blocks of the
problem. As affinity maturation requires cloning followed by the mutation of the
newly-generated cells, and assuming that the mutation operator cannot discover
by itself crucial relationships among the variables of the problem, building blocks
are not supposed to survive, being disrupted by mutation.

Recently, we proposed an artificial immune system capable of manipulating
building blocks effectively, denoted Bayesian Artificial Immune System (BAIS)
[10]. Like Estimation of Distribution Algorithms [T1] [12] [T3], our proposal re-
places the traditional mutation operator with a probabilistic model which repre-
sents the probability distribution of the promising solutions found so far. Then
the obtained probabilistic model is used to generate new individuals. A Bayesian
network is adopted here as the probabilistic model, due to its capability of prop-
erly capturing the most relevant interactions among the variables of the problem.
Since we are replacing the mutation operator, we eliminate the necessity of spec-
ifying this parameter value.

Now, we extend the proposal in [I0] aiming at investigating its usefulness
in multi-objective optimization problems, guiding to Multi-Objective Bayesian
Artificial Immune System (MOBAIS). The main objective of this study is not
to design an algorithm that produces better results than the state-of-the-art
multi-objective evolutionary algorithms reported in the literature. We intend to
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design a competent algorithm with qualitative advantages over the contenders,
as will be outlined in Section Fl Generally, the quantitative advantages arises
as a natural consequence. Experiments on the multi-objective version of the
Knapsack problem have been carried out to evaluate the effectiveness of the
proposed methodology when compared to other algorithms.

This paper is organized as follows. In Section Bl we provide a background
to multi-objective optimization problems. Section [ describes the MOBAIS in
details. The experimental results are outlined and analyzed in Section[dl Finally,
in Section Bl we draw some concluding remarks and present the further steps of
the research.

2  Multi-Objective Optimization

A multi-objective optimization problem (MOP) is a simultaneous search process
for optimal or near optimal trade-off solutions, given some conflicting objec-
tive functions. Formally, an MOP consists of minimizing/maximizing the vector
function:

f(@) = [f1(2), f2(2), ooy fn ()] (1)

subject to J inequality constraints and K equality constraints as follows:

gj(z) >0, j=1,2,....,J (2)
hp(z) =0,k=1,2,..., K (3)

where = [z1,...,z,] € £2 is the vector of decision variables and {2 is the search
space.

When we have a single-optimization objective f, the optimal solution corre-
sponds to the point (or set of points) that has the smallest values of f, considering
the whole search space (in a minimization problem). However, for several objec-
tive functions, the notion of optimal solution is different, because the aim now
is to find good trade-offs among the objective functions. In this case, the most
commonly adopted notion of optimality is the one associated with the Pareto
optimality, which uses the concept of dominance.

Suppose a problem with m objective functions f;(z), i=1,2,...,m which, with-
out loss of generality, should be minimized. So, we present the following concepts:

1. Pareto dominance: a solution z is said to dominate a solution y (denoted

by z < y) iff Vi € {1,2,....m}: fi(x) < fi(y) AFi € {1,2,....m}: fi(z) < fi(y).

Pareto optimal: a solution z is said to be Pareto optimal iff Ay: y < .

3. Pareto optimal set: is the set PS of all Pareto optimal solutions: PS =
{z| Ay:y=a}.

4. Pareto front: is the set PF of objective function values of all Pareto optimal
solutions: PF={F(z) = [f1(2),..., fm(z)] | z € PS}.

N
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Notice that the Pareto front consists of diverse trade-off non-dominated solu-
tions in the objective space. Therefore, there are two goals that a multi-objective
optimization algorithm must try to achieve: (i) guide the search toward the
Pareto front; and (i) maintain diverse solutions uniformly distributed along the
Pareto front.

3 Multi-Objective Bayesian Artificial Immune System

We propose a novel immune-inspired algorithm which has the mutation and
cloning operators replaced by a probabilistic model in order to generate new
antibodies. We may interpret our proposal as an Estimation of Distribution
Algorithm that adopts an artificial immune system to implement the population-
based search strategy and a Bayesian network to implement the probabilistic
model, due to its capability of properly representing complex interactions among
the variables.

The pseudo-code of the proposed algorithm, called Multi-Objective Bayesian
Artificial Immune System (MOBAIS), is presented in Algorithm [Il Notice that
the cloning and mutation steps were replaced by the building of the Bayesian
network and the subsequent sampling of new individuals according to the gen-
erated probabilistic model.

Algorithm 1. Multi-Objective Bayesian Artificial Immune System

Begin

Initialize the population;

‘While stopping condition is not met do
Select the best solutions;
Build the Bayesian network;
Sample new individuals;
Suppress antibodies with fitness lower than a threshold;
Eliminate similar antibodies;
Insert new antibodies randomly;

End while

End

In MOBAIS, the initial population is also generated at random. From the
current population, the best solutions are selected using a special selection op-
erator, as described in the next subsection. A Bayesian network that better fits
the selected antibodies is constructed. A number of new antibodies sampled from
the network are inserted into the population. Similar antibodies in the variable
space and antibodies with lower fitness are eliminated. Next, a small percentage
of individuals are generated randomly and inserted into the population in order
to maintain diversity.

Some aspects of MOBAIS should receive special attention. The first one con-
cerns the selection operator. Other aspect is how to suppress similar antibodies.
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Finally, the last two stages are related to a way of building the Bayesian net-
work from the selected individuals and how to use the network to generate new
solutions. In what follows we explain how to perform these tasks.

3.1 Selection

MOBAIS utilizes a selection operator which ranks the solution based on domi-
nance. This operator is inspired by the selection operator of NSGA-II [T4]. First,
MOBALIS starts by assign rank 1 to the set of solutions that are not dominated
by any other solution in the population. Next, solutions that are not dominated
by any of the remaining solutions are assigned rank 2. That is, all solutions with
rank 2 are dominated by at least one solution with rank 1, but are not dominated
by others in the population. The ranking process continues until all solutions are
ranked by assigning increasing ranks to those solutions that are not dominated
by any of the remaining.

With respect to Pareto optimality, priority will be given to solutions with
lower ranks. Apart from finding solutions closer to the Pareto front, it is also
essential to achieve good coverage of the Pareto front. So, a mechanism to main-
tain diversity in the objective space is desirable. MOBAIS utilizes a mechanism
based on crowding distance, which depends on the density of solutions in the
neighborhood of each solution. The higher the crowding distance of the solution,
the less dense its neighborhood.

3.2 Suppression

In the suppression phase, the Euclidean distance in the variable space among
every individual in the population is calculated and normalized with respect
to the maximum distance found so far. In this context, the individuals close
enough to each other according to a suppression threshold (defined by the user),
are subject to a binary tournament procedure and the worst one, in terms of
Pareto dominance, is eliminated from the population.

3.3 Bayesian Network - Learning and Sampling

Formally, a Bayesian network for a set of variables X = {x1,22,...,2,} is a
directed acyclic graph whose nodes are variables of the problem and the edges
indicate relationships of dependence among the connected variables. Next, we
briefly describe how to build a Bayesian network from data and how to use
this model to sample new data. In MOBAIS, the Bayesian network learning
from a given set of promising solutions corresponds to estimating their joint
distribution. Sampling new instances according to the network guides to new
candidate solutions to the problem.

Bayesian Network Learning. The Bayesian network learning from a dataset
can be stated as follows. Given a collection of observed data, find the network
model that explains these data with maximum likelihood. By finding the net-
work we mean to provide the structure of the graph, as well as the probability
distribution of each variable that best fits the data.
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One usual approach to this task is to adopt a procedure for searching the space
of all possible candidate network structures, given a metric that can provide a
relative score to each point in the space. Thus, the problem of Bayesian network
learning reduces to the problem of searching for a model that yields the highest
score, given the observed data. Usually, a heuristic search algorithm is used.
It begins with an initial network generated at random. Next, the probability
distribution of each variable is estimated using the dataset, and the score of the
network is computed. The search process generally proposes small changes to
the current structure in order to obtain a network with higher score than the
previous one. These small changes can be accomplished by adding or deleting an
edge, or reversing the edge direction. Every time a change is made it is necessary
to compute the probability distribution of the variables for the modified network.
Several algorithms can be used as the search engine [I5]. Usually, due to their
effectiveness in this context, simple local search based methods are adopted.

Regarding the scoring metrics, there are several measures proposed in the
literature. Most of them evaluate a structure S taking into account the likelihood.
In this context, a well-known evaluation measure is the so called K2 metric,
proposed by Cooper & Herskovits [I6]. Given a Bayesian network structure S,
and assuming that the data set D is complete (there are no missing values) and
that there are no prior knowledge, the likelihood takes the form:

018) =11 1] Nﬁ;}_l,nmﬂ (4)

1=17=1

where n is the number of instances, ¢; denotes the number of possible instances of
parents of x;, r; is the number of possible values of x;, Ny is the number of cases
where z; takes the k-th value with its parents taking their j-th value, and N;; =

w1 Niji. To avoid round errors during the multiplication of probabilities, often
the logarithm is applied to Equation ().

Sampling in Bayesian Network. Once the Bayesian network is built, we
can generate new instances using the joint probability distribution encoded by
the network, more specifically P(X) =[]\, P(;|m,). To accomplish this task,
the Probabilistic Logic Sampling algorithm (PLS) [I7] is chosen. PLS finds an
ancestral ordering of the nodes in the Bayesian network and instantiates one
variable at a time in a forward manner, that is, a variable is not sampled until
all its parents have already been sampled.

4 Experimental Results

This section describes the experiments carried out to evaluate the proposed al-
gorithm. We have applied MOBAIS to the well-known multi-objective knapsack
problem and compared the performance with other multi-objective optimization
tools reported in the literature.
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4.1 Multi-Objective Knapsack Problem

The multi-objective Knapsack problem was first used to test MOEAs by Zitzler
and Thiele [I§]. Consider a set of n items and m knapsacks with a specific
capacity. Each item can have a different weight and profit in every knapsack.
Selecting item 4 in a solution implies to put it into every knapsack. A solution
cannot exceed the capacity of any knapsack. Formally, the objective is:

maximize f(z) = [fi1(x), f2(z), ..., fm ()]

n
subject to Zwi)j xx; <cj ,j=1,..,m
i=1

where z=(z1, x2, ..., T,) € {0,1}", such that x;=1 iff item ¢ is packed, w; ; is
the weight of item ¢ in knapsack j, fj(z) = Y., pij * x;, with p; ; being the
profit of item ¢ in knapsack j, and c¢; is the maximum capacity of knapsack j.

Due to the existence of constraints, a mechanism to deal with them is de-
sired in order to transform infeasible solutions into feasible ones. During the
experiments, if a solution violates a constraint, a repair mechanism iteratively
removes items until all constraints are satisfied. The order in which the items
are checked is determined by the maximum profit/weight ratio. Items with the
lowest profit/weight ratio are removed first.

4.2 Experimental Setup

We have applied MOBAIS to the knapsack problem using 2 objectives, varying
the number of items. In order to compare the performance of our algorithm and
other evolutionary algorithms with known results, we have used two knapsack
benchmarks containing 100 items and 250 items, and published on the web site
http://www.tik.ee.ethz.ch/~zitzler/testdata.html

We generated random weights and random profits in the interval [10,100].
The capacity of a knapsack was set at half of the total weight of all the items:
Cj = 0.5 Z;L:l Wy ;-

Comparative analysis were carried out taking into account 3 algorithms in
the literature. The first one is the well-known NSGA-II [T4], that employs non-
dominated sorting and crowding distance. The other algorithm is the Multi-
objective Immune System Algorithm (MISA), proposed in [4] and which uses a
secondary population to implement elitism. Finally, the Multi-objective Bayesian
Optimization Algorithm (mBOA) [20], is an Estimation of Distribution-based
algorithm that also utilizes a Bayesian network to capture relationships among
the variables.

The population size and the number of iterations for each algorithm varies
according to the problem, as described in what follows. For NSGA-II algorithm,
the crossover and mutation rates were 0.8 and 0.01, respectively, together with
tournament selection. In MISA, a uniform mutation was applied to the good
solutions and a nonuniform mutation to the “not so good solutions”. MOBAIS
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and mBOA have utilized the K2 metric to learn the Bayesian network. In order
to penalize the complexity of the model, we have imposed a constraint in the
number of parents a node can have. It corresponds to a maximal order of interac-
tions that can be covered and it influences directly the complexity of the model.
By our previous experience on Bayesian network learning, we know that when
the complexity of the network is too high, it is more likely to detect spurious
correlations on the data. Thus, each variable can have only two parents. Once
the network is built, we apply the PLS algorithm to generate new individuals.
Let N be the size of the current population. So, in MOBAIS the number of
samples generated is N /2 and in mBOA is N.

These parameters were obtained empirically or referring to the literature and
were utilized in all experiments.

4.3 Results

Firstly, we show the obtained results for the Knapsack problem when the number
of items (n) is equal to 100. The initial population of MOBAIS was set to 100 and
for the other algorithms was set to 300. Since MOBALIS can adjust automatically
the population size along the search process, it would not be fair to run all the
algorithms with the same population size. The number of iterations for MOBAIS
and mBOA was 100. Since these algorithms have the ability to discover and
explore the problem regularities, a good Pareto front should be found within a
low number of generations. NSGA-II and MISA had the number of iterations
set to 300. Figure [a) shows the comparison of the Pareto fronts produced by
the four algorithms.

Next, in order to verify the scalability of the algorithms, we have applied them
to a larger size problem where the number of items is equal to 250. The number
of generations for MOBALIS is still 100 and to the other algorithms is 600. The
initial population size for MOBAIS remains 100 and for the other methodologies
is 900. For this scenario, the Pareto fronts can be viewed in Figure [Ii(b).

From Figure[Il we can observe that all algorithms have found a good Pareto
front for both scenarios. MOBAIS presented a very good performance because
it explores more efficiently the search space using its automatic control of popu-
lation size and due to its capability to identify and preserve the building blocks.
Although mBOA is also able to deal with building blocks, its inferior perfor-
mance is due to its ineffective mechanism of exploration/exploitation of the
search space, when compared with MOBAIS.

In addition to the graphical presentation, we also show in Table [I] the per-
centage of individuals of an algorithm dominated by the individuals of another
algorithm using the coverage metric [21]:

a" e X";¥a' € X' :d' < d”|
C X/7X// — | bl — 5
( ) |X//‘ ( )
where X'/, X" C X are two sets of phenotype decision vectors. The output of
this metric is a real value in the interval [0,1]. This means that C=1 when X’
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Fig. 1. Pareto fronts produced by MOBAIS, MISA, NSGA-IT and mBOA for Knapsack
problem with (a) 100 items and (b) 250 items

Table 1. Average values for coverage over 10 executions (A < B)

Algorithm A Algorithm B n=100 n=250

NSGA-II 17%  29%
MOBAIS MISA 100%  62%
mBOA 100%  100%
MOBAIS 8% 13%
NSGA-II MISA 6%  84%
mBOA 100%  100%
MOBAIS 0% 11%
MISA NSGA-II 12% 5%
mBOA 100%  83%
MOBAIS 0% 0%
mBOA NSGA-II 0% 0%
MISA 0% 8%

Table 2. Average number of solutions in the Pareto front

Algorithm n=100 n=250
MOBAIS 104 209

MISA 72 197
NSGA-II 96 201
mBOA 57 187

dominates or equals X”. Note that both C'(X’, X”) and C(X"”, X’) have to be
considered, since C(X’, X"') is not necessarily equal to 1-C(X”, X”).

From Table [[l we can observe that MOBAIS have achieved a good coverage
rate over the contenders.

Regarding the number of solutions in the Pareto front, we notice that
MOBAIS and NSGA-II have achieved a much broader spread of results than
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the other algorithms. Table ] shows the average number of solutions in the
Pareto front over 10 rumns, for each algorithm in the two experiments.

4.4 Discussions

As stated in Section [[I MOBAIS offers significant and qualitative advantages
over the contenders and they are described below. The first one is related to the
effective maintenance of building blocks. With this capability, MOBAIS avoids
disrupting the partial solutions found so far. Besides, the replacement of muta-
tion and cloning operators with a probabilistic model eliminates the necessity of
defining parameter values for these operators. The same does not occur for the
other algorithms. For example, several preliminary experiments were carried out
to define adequate values for crossover and mutation operators in NSGA-II.

During the experiments, we also have observed that the preservation of build-
ing blocks leads to a quick convergence. While MOBAIS found a good Pareto
front in a few generations, the other methodologies needed more generations to
achieve the same result. Although mBOA is also able to identify building blocks,
its performance was inferior when compared with MOBAIS because MOBAIS
has a better mechanism to explore/exploit the search space.

Another advantage of MOBAIS over the contenders is its capability to control
the population size in response to the particularities of the problem, allowing
a more efficient exploration/exploitation of the search space. Consequently, the
initial population size is not crucial to MOBALIS, differently from MISA, NSGA-
1T and mBOA.

Regarding the implementation of MOBAIS, we notice that the algorithm does
not require a large amount of computation resources. The only drawback is
the time spent to build the Bayesian network at each iteration. However, the
proposed methodology still preserves the computational tractability due to the
restriction of at most two parents for each node in the network. The relatively
high computational cost to implement MOBAIS is in contraposition with the
aforementioned advantages of the algorithm.

Roughly comparing the computational cost of MOBAIS, MISA, NSGA-IT and
mBOA, in terms of execution time, we could observe that MOBAIS requires
much less individuals and much less generations than MISA and NSGA-II, and
thus produces a slightly better execution time. When compared with mBOA,
the computational burden is equivalent.

5 Conclusion

In this paper we have proposed a novel immune-inspired algorithm for solv-
ing multi-objective problems. Our proposal, called Multi-Objective Bayesian
Artificial ITmmune System (MOBAIS), replaces the traditional mutation and
cloning operators with a probabilistic model representing the joint distribution
of promising solutions and, subsequently, uses this model for sampling new so-
lutions. The probabilistic model used is a Bayesian network due to its capabil-
ity of properly capturing the most relevant interactions among the variables of
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the problem, representing a significant attempt to improve the performance of
immune-inspired algorithms when dealing with building blocks.

To evaluate the algorithm, we have applied it to the multi-objective Knapsack
problem and compared the obtained results with those produced by state-of-the-
art- approaches. All algorithms presented similar performance in terms of cover-
age of the Pareto front. However, MOBAIS offers qualitative advantages over the
contenders such as (i) automatic identification/preservation of building blocks,
yielding a quick convergence; (ii) no necessity of specifying important parame-
ter values to guide the search; (ii7) adaptive population size in response to the
particularities of the problem, allowing a more efficient exploration/exploitation
of the search space. Consequently, the initial population size is not crucial to
MOBAIS, differently from the compared algorithms.

We are currently investigating some aspects that can be further improved,
such as alternative metrics for evaluating the Bayesian networks and other algo-
rithms for sampling new individuals. We are also analyzing the performance of
MOBAIS in other problems. Another aspect to be considered is the extension of
the proposal to handle optimization problems in a continuous domain.
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Abstract. In electronics, there are two major classes of circuits, analog
and digital electrical circuits. While digital circuits use discrete voltage
levels, analog circuits use a continuous range of voltage. The synthesis of
analog circuits is known to be a complex optimization task, due to the con-
tinuous behaviour of the output and the lack of automatic design tools;
actually, the design process is almost entirely demanded to the engineers.
In this research work, we introduce a new clonal selection algorithm, the
elitist Immune Programming, (EIP) which uses a new class of hypermu-
tation operators and a network-based coding. The EIP algorithm is de-
signed for the synthesis of topology and sizing of analog electrical circuits;
in particular, it has been used for the design of passive filters. To assess the
effectiveness of the designed algorithm, the obtained results have been
compared with the passive filter discovered by Koza and co-authors us-
ing the Genetic Programming (GP) algorithm. The circuits obtained by
EIP algorithm are better than the one found by GP in terms of frequency
response and number of components required to build it.

1 Introduction

The immune system consists of a complex network of process interactions, which
cooperates and competes to contrast the antigen attacks. Theory of clonal se-
lection principle hypothesizes that B-cells contrast the infections by means of
a series of measures. Every being has a very large population of different B-
cells within its body. In case an external entity, such as a virus or a bacterium,
trespasses the body barriers, B-cells start trying to match the external body
or antigen, by means of the receptors present on their cell surface. When the
receptors of a B-cell totally or partially match the antigen, the B-cell starts to
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proliferate in a process called clonal expansion. Moreover, the cloned B-cells can
undergo to somatic mutations, in order to increase the affinity with an antigen:
it is a Darwinian process of variation and selection, called affinity maturation
[1]. This bottom-up behaviour has received a great attention in computer sci-
ence, and it is the main source of inspiration for the emerging class of Immune
Algorithms [2I314IJ56].

In electronics, the design of analog circuits is an iterative process accom-
plished by skilled engineers. There is no CAD tool that automatically designs
analog circuits starting from a set of requirements [7]. The main idea is to find
a general methodology that makes effective this working flow in order to au-
tomatically design new analog circuits and speeding up the time-to-market for
new devices [8[9]. In order to tackle this problem, the elitist Immune Program-
ming algorithm (EIP) is introduced: it extends the Immune Programming (IP)
algorithm [I0] with the introduction of elitism and ad-hoc hypermutation oper-
ators for handling analog circuits. The EIP algorithm is adopted for the design
of analog circuits belonging to the class of passive filters. A Passive filter is an
interesting test-bed tackled firstly by the Genetic Programming (GP) algorithm
[TIUT2UT3IT4]). We have conducted several experiments in order to highlight two
important aspects: firstly, how the elitism impacts the exploring and exploiting
ability of the immune programming algorithm; secondly, the suitability of EIP
for the automatic synthesis and sizing of analog electrical circuits. The obtained
experimental results confirm that EIP outperforms the standard IP approach in
terms of convergence speed and quality of the designed circuits; moreover, the
new immune algorithm is able to design passive filters that are clearly better
than the one discovered using GP in terms of frequency response and number of
components required.

In section two we give an overview on the passive filters; in section three we
describe the elitist Immune Programming algorithm; in section four, we report our
experimental results and in section five we outline conclusions and future works.

2 Passive Filters Circuits

Passive filters are a particular class of analog circuits, which are made of passive
components, such as resistors, capacitors and inductors. Given a signal, a filter
leaves it unchanged in a frequency range called pass band, instead, in a frequency
range called stop band, it attenuates the signal below a certain level. In the pass
band a ripple voltage (V) should be achieved; V,. is the maximum acceptable
amplitude of the oscillations in pass band. In the range between pass and stop
bands, called transition band, the filter must reduce the input signal amplitude in
order to reach the desired attenuation with a very smooth behaviour. Slight de-
viations from an ideal behaviour are considered acceptable and they are specified
by the two deviation parameters d and h.

The circuit contains a test structure and a circuit core, in this way, the same
operating conditions are used for every circuit put into the core structure. The
test structure is made of a signal generator (VSOURCE), a series resistance
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Fig. 1. Passive Filter Circuit. It is possible to note the shunt resistance, RSOURCE;,
the Load Resistance, RLOAD and the power supply source, VSOURCE.

(RSOURCE), a Load Resistance (RLOAD) and a Ground link. This structure
supplies three links, the first link provides the power voltage to the circuit core,
which is connected to the load resistor via the second link and the third provides
the connection to the ground, as shown in Fig. [l

In our experiments, we synthesize a passive filter with a cut-off frequency
of 1K Hz and a transition band of 1K Hz. The value for d and h were settled
respectively at 0.1V and 10~*V and the V,. parameter was settled to 0.03V. The
set of available values for resistors and capacitors is that of the commercial series
E-24. The order of magnitude of resistors values ranges from 1082 to 10722,
while the order of magnitude of capacitors ranges from 10~!F to 10~''F. For
inductors there is not an analogue standardization, so we have chosen values
ranging from 1H to 10~ H with a step size of 0.1 [12].

3 Immune Programming for Analog Circuit Design

In this section we give an overview of the standard IP algorithm and, successively,
we give a detailed description of the new EIP algorithm.

3.1 Immune Programming

The Immune Programming. (IP) is a population-based algorithm inspired by
the clonal selection principle. The algorithm starts with a population of ran-
domly generated B-cell. At each generation g, IP builds a new population by
considering each B-cell for replacing, cloning or hypermutation. The process is
iteratively performed until the maximum number of generations (or objective
function evaluations) is reached. The Replacement operator replaces a B-cell of
the population with a new random one, it is mainly employed in the early stage
of the evolutionary process, and it is one of the major responsible for the diver-
sity of the current population. The Cloning operator is used to create multiple
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copies of the best individuals in the population, this operator gives more chance
to explore a promising region of the solution space. The Hypermutation operator
is used to modify a B-cell according to its fitness value and it is the crucial point
for the exploring ability of the algorithm.

In the IP algorithm, these three operators are controlled by three parameters
P, P., P,,. P, represents the minimum percentage of newly generated B-cell at
each iteration, and it is inversely proportional to the average fitness function
value of the previous generation. In the early stage of the evolutionary process,
the IP algorithm makes a lot of replacements that decrease when a good reper-
toire of solutions is established. The parameter P. controls the ratio between
number of cloned B-cells and the number of B-cells that will be mutated. The
last parameter P, represents the percentage of receptors of the best B-cell that
will be mutated; according to this strategy, the best circuit is less mutated than
the worst ones that can undergo a complete mutation of each receptor.

3.2 The Elitist Immune Programming Algorithm

IP was the starting point to develop the new elitist Immune Programming (EIP)
algorithm; the pseudo-code of the algorithm is provided in Figl2l BIP differs
from IP in several points, the following new features are introduced to effectively
tackle the synthesis of topology and the sizing of analog circuits.

Firstly, the algorithm was modified with the introduction of elitism. At each
generation g, the best solution found so far cannot be erased from the population.
This strategy, already introduced in other immune inspired algorithms [BIG2],
greatly helps the convergence of the algorithm and it overcomes the problem of
IP that tends to quickly forget good solutions especially in the initial phase of the
search process. The other main difference is the application of the cloning and
hypermutation operators. As in IP the chance to be cloned or mutated is driven
by a parameter P, but, in EIP, for each cloning two mutations are performed.

Mutation Operators. The hypermutation operators operate only on the core
structure; in particular, the hypermutation acts on one component, link or node
at a time. All the operators take in input and return in output only consistent
circuits. This design choice forces the algorithm to search in the feasible region of
the solution space, and it helps the algorithm to immediately discard infeasible
or meaningless solutions. Ten different mutation operators have been introduced,
and each of them makes a specific mutation on the circuit as described below.

ADD-SERIES. Given a circuit, it randomly selects a component and it randomly
unplugs one of its terminals; successively, a new component is created and the
operator connects it in series to the selected component, linking the floating
terminal to the new one.

ADD-PARALLEL. It establishes a shunt connection. After a component is selected,
the operator randomly creates a new component and then it links its terminals
to the same nodes of the selected one.
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1: procedure EIP(D, MaxGen, Py, Pp)
2: G—1
3 Population® — Initialize(D)
4: Evaluate(Population)
5: while G < MaxzGen do
6: Population'©tV) — empty
7 Population'®tY — BestCircuit[Population'®]
8: Population'*tV — Hypermutation|BestCircuit[Population ©)]]
9: 1+ 0
10: repeat
11: if rand() < P, then
12: NewClircuit <+ Initialize()
13: Population'StY — NewCircuit()
14: else
15: if rand() < P.(Circuit;) then
16: Population&+1 — Populationgc)
17: end if
18: for j — 1to2do
19: if rand() < Ppn(Circuit;) then
20: Population'STV — Hypermutation[Population!]
21: end if
22: end for
23: 1«1+ 1mod D
24: end if
25: until size[Population'“*tV] < D

26: end while
27: end procedure

Fig. 2. The pseudo-code of the EIP algorithm

ADD-RANDOM-COMPONENT. It randomly creates a new component that will be
connected to two random nodes of the circuit.

EXPAND-NODE. This operator randomly selects a circuit node and it randomly
generates a new node and a new component. Successively, it connects the new
component to the previous selected node.The scope of this procedure is to easily
plug in a new component into a highly linked node, or a test structure node.
DELETE-COMPONENT. This procedure tries to decrease the size of the circuit by
deleting a component. It does not affect the consistency of the circuit; however,
if a deletion causes damages, the operator is able to repair the circuit.An incon-
sistent circuit can arise due to one or more floating terminals, the unplugging of
the circuit core from the test structure or the unlinking of a part of the circuit.
MUTATE-COMPONENT-VALUE. The operator randomly selects a component and it
changes its value by randomly picking a new value from the set of allowed values.
COPY-COMPONENT-VALUE. The operator randomly selects a component of the
circuit and it copies the value of a randomly chosen component of the same
type. If there is no other similar component, it does nothing.
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MUTATE-COMPONENT-KIND. This operator randomly selects a component, then it
modifies the relative type and it assigns a value to the component according to
the allowed set of values for the new type.

LINK-MODIFY. The operator randomly disconnects a link of a component and
reconnects it to a different circuit node. Like DELETE-COMPONENT, this procedure
is able to recover from inconsistent circuits.

SHRINK. The SHRINK operator scans the circuit in order to find a series or par-
allel connection between two or more components. It reduces the circuit size by
replacing a couple of components with one equivalent component which value is
as close as possible to the values of the two components.This operator greatly
improves the quality of the design since it allows the automatic introduction of
standard components and the reduction of the circuit size with only marginal
side effects [15].

Fitness Function. The quality of the circuit is assessed by means of an ad-hoc
objective function; it measures the distance between the curve described by a
circuit and the one described by a hypothetical ideal circuit according to the
following expression:

1KHz 100M H z
for@)y =" Y W), fo) < d(f)l+ > Wul(fi), fi) x d(f)] (1)
1=100mH z 1=2KHz

where x is a consistent circuit, f; is the i — th frequency, d(f;) is the signal devi-
ation from an ideal behaviour and W, (d(f;), fi) and W(d(f:), fi) are weighting
factors respectively for the pass and stop band. For each frequency, the corre-
sponding weighting factor for the pass band is determined as follows:

0 d(f;) <V,
Wy=4qc V.<d(f;) <d

where V. is the ripple voltage and d, ¢ are experimentally obtained constants
that were fixed to d = 0.1V and ¢ = 3. The weighting factor for the stop band
term is obtained as follows:

0 d(f;) < SBA
Wy=<m SBA < d(f;)<h

where SBA is the desired Stop Band Attenuation, that was fixed to —60dB and
d, h, m are experimentally obtained constants fixed to d = 0.1V, h = 10FE — 5V
and m = 50. It is possible to observe that the co-domain of the distance function
is [0, +-00[, where an ideal circuit has fj,s(x) = 0. This distance function neglects
small deviations from an ideal behaviour and it strongly penalizes unacceptable
deviations. The fitness of each B-cell is the value of f,; normalized in the range
[0, 1] according to the following expression:
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Table 1. Experimental results, the performances of the two immune algorithms. For
each parameters setting, we report the Clircuit with the Lowest Fitness Function value
(CLFF) and the Clircuit with the Lowest Number of Components (CLNC).

CLFF CLNC
ALGORITHM  d  Pn  fpy Components f,r Components
P 5% 10% 0.1 1632.04 5 1632.04 5
IP 5 x 10% 0.3 1343.03 5 1343.03 5
P 10* 0.1 1758.54 3 1758.54 3
P 10* 0.3 1742.77 6 1763.77 4
EIP 5% 10% 0.1 20.5486 20 20.948 18
EIP 5 x 10% 0.3 10.2221 20 11.3294 16
EIP 10* 0.1 0.0 12 0.29 10
EIP 10* 0.3 8.7778 18 8.78324 16

1—sy, (@) xmy, (2))k

fitness(x?) = o (2)
9

IR A ®
fpf(zg>

my, (z]) =e

where z¢ is the i — th B-cell of the population at generation g, %AX(G) is
the max value of the objective function at generation g, instead k is a constant
used to constraint the fitness in the range [0, 1]. Moreover, the fitness was scaled
of a = 25% in order to prevent that the worst B-cell undergoes to a complete
mutation of the circuit.

4 Experimental Results

In order to assess the effectiveness of the EIP algorithm, we performed several
experiments. Firstly, we compared EIP with the standard IP algorithm. We have
tested these two algorithms with a population of size d € {5000, 10000} [I6]. The
mutation probability parameter was settled to P, € {0.1,0.3}; since P,, is the
percentage of receptor mutated in the best circuit, a larger value of this param-
eter makes the algorithm acting as a random search. Finally, the replacement
probability P, and the cloning probability P. are fixed to P. = 0.01, P, = 0.2
[10]. In order to simulate the behaviour of the circuits, the tested algorithms
use the NGSPICE circuit simulator. The maximum number of objective function
evaluations was set to 107 for all the experiments and the same set of mutation
operators were used in both algorithms.

Tt is possible to note in Tab[Ql2 that EIP clearly outperforms the IP algorithm.
For all settings, EIP shows a good convergence to near optimal solutions, instead
IP produces only meaningless circuits. The scheme adopted by IP for replace-
ment, cloning and hypermutation is not effective for this problem; at each iter-
ation only replacement are performed and it means that IP works most likely a
random search.
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Table 2. Experimental results, a comparison of 5 independent runs of IP and EIP
using the best parameter setting according to Tabl[I]

RUN ALGORITHM  fpy ~ COMPONENTS ALGORITHM f,;y COMPONENTS

1 1P 1542.72 3 EIP 3.93 20
2 1P 1765.63 6 EIP 16.79 20
3 1P 1658.13 6 EIP 12.62 20
4 1P 1492.22 4 EIP 0.29 10
5 1P 1497.31 3 EIP 0.0 12

AVERAGE 1591.202 4.4 AVERAGE 6.726 16.4
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Fig. 3. The output voltage frequency response (a) and the attenuation plot (b) of the
best circuit found by EIP (fpy = 0.0, 12 components)
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Fig.4. The output voltage frequency response (a) and the attenuation plot (b) of
the circuit with the lowest number of components found by EIP (f,; = 0.29, 10
components)

By inspecting the EIP results, it is possible to note that using a population
of 10000 B-cells and a mutation probability P, = 0.1, the algorithm found
a circuit that perfectly matches the design requirements (FigB]). By analyzing
the circuit structure it is possible to note that is made of only 12 components
that is an important aspect for the manufacturability of the filter. Moreover, by
inspecting all the circuits designed by EIP, the algorithm has found a circuit of
10 components with f,; = 0.29 (FigH)); despite the value of the fitness function
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is not optimal, the circuit shows a very regular behaviour and, probably, it can be
considered a good trade-off between the requirements and the manufacturability
of the filter. By observing the circuits it is possible to note that they show
different shapes but common building blocks: this behaviour suggests that EIP
is able to find a common regular structure and, at the same time, it is able
to arrange them in order to deeply explore the space of solutions. Finally, the
population-based approach gives to the engineers not only a single solution but
a set of circuits that could be inspected in order to find the one that optimally
fits the design requirements.

[ [ S

Viouy)
V(out)

oov =
oov O1Hz  10Hz  10Hz 100Hz 1KHz 10KHz 100KHz 1MHz 10MHz 100MHz
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Frequency

(a) (b)

Fig. 5. A comparison of the output voltage frequency response of the circuit with the
optimal fitness function value (a, fp,y = 0.0, 12 components) and the one with the
lowest number of components (b, fpy = 0.29, 10 components) found by EIP with the
Campbell filter [T1]. it is possible to note that in the transition band the Campbell filter
has not a regular behaviour instead the EIP circuits have a regular and smooth curve.

The GP algorithm was able to find a passive filter, known as the Campbell fil-
ter [TT]. This filter shows a very regular structure and a good symmetry, since it
is built using the same building block repeated multiple times in order to form
a seven rung ladder structure. The frequency response of the Campbell filter is
substantially linear in pass band and the curve inclination is very high. The two
best circuits found by EIP are better then the Campbell filter for three important
aspects. Firstly, in the transition band, the signal of Campbell filter shows large
swings that are an undesirable behaviour instead, the EIP circuits show a very
regular and smooth curve as showed in Fig[il Secondly, the EIP circuits have only
10 and 12 components instead the Koza’s circuit has 14 components, and this fact
makes the EIP circuits more suitable for a real implementation. Finally, the EIP
algorithm requires 107 fitness function evaluations to design these circuits instead
the GP algorithm requires 1.5 x 107 evaluations; this experimental result proves
that the immune algorithm, for this design problem, is more efficient than GP.

5 Conclusions and Future Works

In this research work, we have introduced a new immune algorithm, called ELI-
TIST IP, for the synthesis of topology and sizing of analog electrical circuits.
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The algorithm extends the IMMUNE PROGRAMMING approach with the intro-
duction of elitism and ad-hoc operators for handling analog circuits.

The experimental results confirms that EIP clearly outperforms the standard
IMMUNE PROGRAMMING approach in terms of quality of the circuits and speed
of convergence. The analysis of the EIP circuits shows that the algorithm is able
to synthesize analog circuits with excellent frequency responses, having small
swings, high inclination and a good shape regularity.

The comparison with the Campbell filter, a passive filter discovered using
GENETIC PROGRAMMING, shows that EIP is able to find a better circuit in
terms of regularity in transition band and number of components required.

Starting from these results, there are two major fields that we are investi-
gating. Firstly, we are extending the EIP algorithm in order to use a selection
strategy based on the Pareto Optimality criterion; using this approach, it is pos-
sible to explicitly introduce different design requirements, such as the number
of components and the frequency response, and leaving to the algorithm the
automatic discovering of optimal trade-off [I7]. Finally, we are designing an im-
proved EIP that is able to synthesize the topology and the sizing of active filters
[18]; this last task is a visionary research topic since there is not an automatic
approach for the design of these analog circuits and it could be an important
step to dramatically decrease the time-to-market required for these circuits.
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Abstract. Biclustering is a technique developed to allow simultaneous
clustering of rows and columns of a dataset. This might be useful to ex-
tract more accurate information from sparse datasets and to avoid some
of the drawbacks presented by standard clustering techniques, such as
their impossibility of finding correlating data under a subset of features.
Given that biclustering requires the optimization of two conflicting ob-
jectives (residue and volume) and that multiple independent solutions
are desirable as the outcome, a multi-objective artificial immune system
capable of performing a multipopulation search, named MOM-aiNet, will
be proposed in this paper. To illustrate the capabilities of this novel algo-
rithm, MOM-aiNet was applied to the extraction of biclusters from two
datasets, one taken from a well-known gene expression problem and the
other from a collaborative filtering application. A comparative analysis
has also been accomplished, with the obtained results being confronted
with the ones produced by two popular biclustering algorithms from the
literature (FLOC and CC) and also by another immune-inspired ap-
proach for biclustering (BIC-aiNet).

Keywords: biclustering, multi-objective optimization, multipopulation
search, artificial immune systems, gene expression, collaborative filtering.

1 Introduction

Due to the increasing amount of information acquired in business, science, inter-
net and biomolecular research, data clustering has become an even more essential
subject on knowledge extraction. Classical data clustering tools, such as k-means,
Self Organized Maps (SOMs) and Hierarchical Clustering have been success-
fully applied to different kinds of problems, but they present some limitations
when dealing with large and heterogeneous datasets, structured as data matrices
of objects (rows) and their corresponding attributes (columns). When dealing
with such matrices, these clustering approaches cannot detect partial matching
since the dataset is grouped based solely on global similarities (considering all
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the attributes simultaneously). Also, most of these techniques are only capable
of assigning a given object to only one group (cluster), what may be insuffi-
cient in several applications, ranging from text mining to complex networks in
biology [1].

In order to avoid these drawbacks and knowing that the discovery of simi-
larities between two objects, considering different subsets of attributes, may be
useful to make deeper inferences, the biclustering technique was proposed [2].
This technique is capable of finding several subsets of rows and columns from
the data matrix. In this way, each subset will be composed of objects (rows) that
share some similarities specifically on the selected attributes (columns). That is
why a single object may take part in multiple biclusters, in association with a
distinct subset of attributes at each bicluster, thus allowing the extraction of ad-
ditional information from the dataset. The problem of finding several biclusters
may be considered similar to the problem of finding several two-way bipartitions
of the whole dataset, which is clearly a combinatorial optimization problem.
Also, the construction of a high-quality bicluster requires a compromise between
two conflicting objectives: both the volume of the bicluster and the degree of
similarity among its elements should be maximized.

Since the amount of biclusters that can be extracted from a given dataset is
previously unknown and due to the multi-objective nature of the problem, an al-
gorithm that performs multi-objective optimization and adopts multipopulation
search is likely to be successful in the biclustering generation task.

In 2001, de Castro & Von Zuben [3] have developed the first tool of a family
of immune inspired algorithms, called Artificial Immune Network (aiNet), that
evolves multiple subpopulations in parallel. Given this multipopulation property
of aiNet and the importance of the biclustering technique, in this work a multi-
objective immune-inspired biclustering algorithm (named MOM-aiNet, Multi-
Objective Multipopulation Artificial Immune Network) is proposed.

The MOM-aiNet algorithm was applied to two important problems with dis-
tinct characteristics: the Yeast problem [4], which is a gene expression dataset
that has been extensively studied along the biclustering literature, and the
Movuielens dataset [5], which is a set of movie ratings given by the clients of
a video rental store. The Movielens problem is considered a challenge to data
mining due to its sparseness and the need to correlate a given client to more than
one group simultaneously. The results obtained by MOM-aiNet were compared
to those of three other algorithms from the literature: the algorithm of Cheng &
Church (CC) [2], FLOC (FLexible Overlapped biClustering - [6]) and BIC-aiNet
(Artificial Immune Network for Biclustering - [7], [8], [9]).

This paper is organized as follows. Section [2] presents some general aspects
of biclustering. Section [ outlines the algorithm proposed in this work and the
basic immune concepts employed. The experiments performed and the compar-
ison of MOM-aiNet with CC, FLOC and BIC-aiNet are depicted in Section [4l
Finally, the concluding remarks of the paper and further steps of the research
are presented in Section
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2 Biclustering

In data mining, biclustering is referred to the process of finding subsets of rows
and columns of a given data matrix [2] (see Fig. [M). This data matrix may
represent different kinds of numerical data, such as objects and their attributes
(comprising the rows and columns of the matrix, respectively).

The biclustering approach covers a wide scope of different applications, and
some examples are dimensionality reduction [I0], information retrieval and text
mining ([7], [I1], [12]), electoral data analysis [I3], collaborative filtering ([g], [9],
[14]) and biological data analysis ([I0], [15]).

The biclustering task can be classified into several categories, according to (7)
the way the bicluster quality is measured; (i) how the set of biclusters are built;
and (44) which structure of bicluster is adopted [16].

The classification based on the quality measure of a biclustering algorithm
is related to the concept of similarity between the elements of the matrix. For
instance, some algorithms search for constant value biclusters, some for constant
columns or rows, and others for coherency in the values of the elements. In
Fig. [ some of the quality measures of biclustering algorithms are illustrated.
Of course, in practical applications, the obtained biclusters will not follow the
quality measure without some deviation, interpreted as an error (residue) to be
minimized at the same time that the volume of the biclusters (to be defined in
what follows) is maximized.

31215

41515 11 11 15 3215

11325 {11} 22 15 4326

42326 (b) 33 15 5437

53437 (©) (d) (e)
(a)

Fig. 1. A concise and didactic example of four biclusters ((b), (c), (d) and (e)), each
one obeying a specific optimization criterion, extracted from the original matrix (a).
The bicluster (b) was created with rows {1,2} and columns {2, 4}, and is an example
of a constant bicluster. The bicluster (c¢) was created with rows {1,4,5} and columns
{2, 4}, and is an example of a bicluster with constant rows. The bicluster (d) was created
with rows {1, 2,3} and columns {2, 5}, and is an example of a bicluster with constant
columns. The bicluster (e) was created with rows {1, 4,5} and columns {1, 3, 4,5}, and
is an example of a bicluster with coherent values.

In this paper, biclustering will be employed to find coherence inside biologi-
cal data on microarray experiments and to extract overlapping information on
a sparse dataset used for collaborative filtering. Both applications involve the
search for biclusters equivalent to bicluster (e) in Fig. [l

The way the biclusters are built refers to the number of biclusters discovered
per run. Some algorithms find only one bicluster at each run, while others are
capable of simultaneously finding several biclusters. Besides, there are nondeter-
ministic and deterministic algorithms. Non-deterministic algorithms are able to
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find different solutions for the same problem at each execution, while the deter-
ministic ones produce always the same solution. MOM-aiNet is nondeterministic
and several biclusters are given as the outcome at each run.

The biclusters returned by the algorithms can have different structures: (7)
exclusive columns and/or rows, which consists of biclusters that cannot overlap
in either columns or rows of the matrix; (i) arbitrarily positioned and possibly
overlapping biclusters, which is the case of MOM-aiNet; and (i) overlapping
biclusters with hierarchical structure.

Concerning the quality measure to be adopted, to calculate the coherence
among the elements of a bicluster, it is used the mean squared residue, intro-
duced by Cheng and Church [2]. This metric consists in the calculation of the
additive coherence inside a bicluster by assuming that each row (or column) of
the bicluster presents a profile identical to (or very similar to) the one exhib-
ited by other rows (or columns), except for a constant bias. Therefore, finding
a coherent bicluster is basically the same as finding a bicluster that minimizes
the error between the calculated value and the real value of an element of the
matrix. So the mean squared residue becomes H(I, J):

1
H(I,J)= 1 > (aij —arj — aig + ary)?, (1)
12}

where |I] is the total number of rows of the bicluster, |J| is the total number of
columns of the bicluster, a;; is the value in row ¢ and column j, az; is the mean
value of column 7, a;; is the mean value of row ¢, and ay; is the mean value
considering all the elements of the bicluster.

Other important aspect of the biclusters is their volume, generally denoted in
the literature by |I| x |.J|. In order to be functional and to allow a deeper analysis
of the data, it is usually required that a bicluster presents a large volume (large
number of rows AND columns).

Notice that minimizing the mean-squared residue and maximizing the volume
are conflicting objectives, given that larger biclusters tend to present higher
residues.

3 MOM-aiNet: Multi-Objective Multipopulation
Artificial Immune Network

The aiNet algorithm was first proposed by de Castro & Von Zuben [3] to solve
clustering problems, and it is based on two immune concepts: the Clonal Selec-
tion principle [I7] and the Immune Network theory [18]. In aiNet, the population
of candidate solutions corresponds to the antibodies of the system, while the data
of the problem is associated with the antigens. In general terms, the population of
antibodies is successively submitted to a cycle of cloning, hypermutation (with
genetic variability proportional to the fitness of each individual — also known
as the affinity of each antibody with the antigens of the problem) and selection
[19]. Due to the immune network principles also followed by the algorithm, such
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antibodies are capable of recognizing each other, so that if two individuals are
similar, the worst one is eliminated from the population (in the phase known
as suppression), and new randomly generated antibodies are inserted into the
population to contribute with the diversity of solutions.

Such structure of the aiNet algorithm allows it to evolve multiple popula-
tions in parallel (associated with each antibody there is a population of mu-
tated clones), and stimulates the convergence of such subpopulations to distinct
promising regions of the search space (generally to the nearest local optimum),
thus preserving diversity.

Given the two conflicting objectives of the biclustering problem and the usual
necessity of extracting several biclusters from a single dataset, the multipopula-
tion property of the aiNet algorithm will be exploited in this work, together with
the concept of dominance, to create a novel algorithm capable of finding multi-
ple biclusters while simultaneously optimizing both objectives and also obeying
some pre-defined constraints.

The concept of dominance [20] is generally adopted to compare the quality of
two solutions, of a given problem, when there is more than one objective being
optimized. It is said that solution A dominates solution B (and so solution A
is better than solution B) when A presents all the values of the objective func-
tions better than or equal to the corresponding objective values of solution B,
and there is at least one of the objectives for solution A that is strictly better
than the equivalent for solution B. Therefore, it is possible to notice that three
different situations can occur in a multi-objective problem: solution A domi-
nates solution B (A is better than B); solution B dominates solution A (B is
better than A); and A and B are mutually non-dominant. In a multi-objective
optimization problem with conflicting objectives, the solution is, in fact, a set
of non-dominated solutions, that correspond to the different trade-offs consid-
ering all the objectives. Current non-dominated solutions may be dominated by
subsequent candidate solutions proposed along the execution of the algorithm.
However, there is a set of solutions that will never be dominated by any feasible
candidate solution, and they constitute a front in the objective space, which is
known as the Pareto Front of the problem.

The aiNet family have already been successfully adapted to multi-objective
optimization [21], but the approach presented in this paper will be significantly
different from the one in [2I]. omni-aiNet, besides additional attributes, is spe-
cialized in sampling the Pareto front uniformly and with high precision, while
the algorithm to be presented in this section makes a rougher approximation
of the Pareto front. In most multi-objective optimization algorithms, including
omni-aiNet, a single set of non-dominated solutions is usually returned. But, in
this paper, we propose a multi-objective and multipopulation immune-inspired
approach, denoted MOM-aiNet, which returns several sets of non-dominated
solutions (dominance is measured inside each set), each one potentially corre-
sponding to biclusters extracting distinct correlations of rows and columns of
the data matrix. As mentioned before, MOM-aiNet considers two objectives for
optimization: the residue of the biclusters (which should be minimized) and their
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volume (which should be maximized). The proposed algorithm is composed of
the modules depicted in Alg. [, which are going to be explained in the sequence.

Algorithm 1. The MOM-aiNet algorithm
generate initial population();
while stopping criterion is not met do
for each population do
clones = clone(smallest bicluster & largest bicluster);
population; = select nondominated(clones + population;);
end for
network suppression();
insert new();
end while

The algorithm starts with the generation of n subpopulations of one bicluster
each, generated by randomly choosing one row and one column of the dataset. If
the dataset is sparse, the algorithm must choose only among the non-null values.
Inside the main loop, for each subpopulation n clones clones are generated, being
half of the clones copied from the bicluster with the smallest volume in the
subpopulation, and the other half from the bicluster with the highest volume.

Each clone then suffers a mutation process, which consists of one of three
possible actions chosen randomly with the same probability: insert a row, insert
a column, remove a row or column. Each action randomly selects one element
to be inserted/removed. After the mutation step is performed on each clone,
interpreted as a subpopulation of the algorithm, all the non-dominated biclusters
of this subpopulation are selected to generate the new subpopulation, for the next
iteration. If the number of non-dominated elements exceed n clones, a crowding-
distance-based [22] suppression is performed in order to maintain a small and
locally diverse subpopulation.

The reason for the cloning process being performed only on the smallest and
largest biclusters is the incremental nature of the mutation process, where only
one row or one column can be inserted in/removed from each bicluster at a
time. Therefore the biclusters are likely to suffer an incremental growth toward
both ends (low and high volume), thus tending to be equally distributed on the
non-dominated front.

Two constraints of the bicluster can be controlled on these steps. One is the
residue value that can be limited to a specified value (§), where every bicluster
with a residue value higher than ¢ is said to be dominated by any other (unless
there is only two or less biclusters on the population). And the other is the
occupancy rate, for sparse matrices, that measures the proportion of non-null
values in the bicluster. When an insertion action is chosen by the mutation
process, the number of available rows/columns to insert is reduced to those that
makes the bicluster occupancy rate no less than a threshold a.

After the cloning and mutation process, from time to time, a suppression op-
eration is performed, so that the largest biclusters of each subpopulation are
compared, based on the degree of overlapping. When a pair of biclusters have
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a degree of overlapping higher than a given o, the two subpopulations are com-
bined and the non-dominance selection is performed, creating a single subpop-
ulation. Only the largest bicluster of each population is taken for comparison
because they tend to be more representative, and so two subpopulations will
only be merged when they start to express the same correlations among rows
and columns of the data matrix.

Finally, besides the suppression of similar subpopulations, it is also performed
an insertion of new randomly generated subpopulations, in order to increase
diversity and the exploration capability of the algorithm. This random insertion
is performed in the same way as the initial subpopulations are generated, but
with the difference that first it is chosen a pair of row and column that are not
contained in any existing bicluster.

In the next subsection, a brief explanation of each one of the other three
algorithms adopted in this work for comparison will be given.

3.1 Comments on BIC-aiNet, CC and FLOC

The BIC-aiNet and MOM-aiNet algorithms work in a very similar way, except
that BIC-aiNet keeps just one bicluster per population (antibody) and there is
no constraint on residue and occupancy. Also, the fitness function is a weighted
sum of the two objectives being optimized (residue and volume).

The CC algorithm is a constructive heuristic that starts with a single bicluster,
representing the whole dataset, and iteratively removes rows and columns of
this bicluster until the residue is equal or less than 6. After that, it starts to
insert rows and columns (that are not in the bicluster yet) sequentially, until
the insertion of any other row or column increases the residue to a value above
6. After the first bicluster is constructed, the rows and columns already present
in the bicluster are replaced by random values in the original dataset, and the
whole process is restarted until a predefined amount of biclusters is created.

Finally, the FLOC algorithm tries to improve CC’s mechanism by creating all
the biclusters at the same time. The algorithm starts with the random generation
of n biclusters with a predefined size, and then performs successive insertions or
removals of each row and column of the dataset (according to the presence or
absence of the row/column in the selected bicluster) in the bicluster that presents
the highest reduction in the residue, when submitted to this modification.

4 Experimental Results

The MOM-aiNet algorithm was implemented in the C++ programming language
and it was executed on an Athlon64 3500+ machine with 1GB of RAM. To
evaluate its performance, first the algorithm was compared to FLOC, CC and
BIC-aiNet algorithms on a dense dataset called Yeast microarray dataset [4],
that contains 2, 884 genes under 17 experimental conditions. After that, MOM-
aiNet was compared to BIC-aiNet on a sparse dataset called Movielens [5], that
presents 80, 000 ratings of 1,682 movies given by 943 users.
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For the Yeast dataset, the results of FLOC and CC were taken from [6]. In
this experiment, different values of the residue threshold (the § parameter) were
adopted for each immune-inspired algorithm (when compared to those in [0]
for FLOC and CC), since each of these algorithms deals with this parameter
differently. FLOC and CC continue the optimization process of the residue until
they can not improve the solutions anymore, while the MOM-aiNet considers 6 as
a constraint and so generates the largest biclusters that present a residue lower
than this threshold. Therefore, in order to make fair comparisons among the
algorithms, this parameter was set as 185 for MOM-aiNet, which corresponds to
a value a little lower than the average residue obtained by FLOC in [6]. The BIC-
aiNet algorithm introduces § in the definition of the fitness of the individuals,
so that a value of 100 was empirically obtained.

The remaining parameters of MOM-aiNet and BIC-aiNet were also empiri-
cally determined as follows: for both algorithms it was adopted 1000 iterations,
n clones = 20, and a maximum number of subpopulations/biclusters of 100; for
the BIC-aiNet, the row importance weight was set to w, = 2 and the column
importance weight was set to w. = 3 (further details about the parameters of
BIC-aiNet can be found in [7]).

Table [ presents the average results obtained by MOM-aiNet and BIC-aiNet,
over 10 independent runs, together with the results from the other two algorithms
(taken from [6]) on the Yeast dataset. Since MOM-aiNet is a multi-objective
approach, each subpopulation generates up to n clones biclusters so, in order to
compare its results with the ones of the other algorithms, the average residue
and volume of the largest bicluster of each subpopulation were taken in each
independent run.

Table 1. Performance comparison among MOM-aiNet, BIC-aiNet, CC and FLOC
algorithms for the Yeast dataset. The MOM-aiNet and BIC-aiNet results are shown in
the format (average £ std. deviation), taken over 10 independent runs.

Algorithm Avg. Residue Avg. Volume

MOM-aiNet 178.28 + 5.24 1831.80 £ 114.54
BIC-aiNet 194.65+9.25 2556.60 + 188.92
CcC 204.29 1576.98
FLOC 187.543 1825.78

From Table[I] it can be seen the superior performance of the immune-inspired
algorithms over CC and FLOC, since they can generate biclusters with lower
residue values and/or higher volumes. It can also be seen that, differently from
BIC-aiNet, the multi-objective approach was able to generate biclusters with
residues close to the desired threshold and, at the same time, high volumes.
This illustrates a disadvantage of the BIC-aiNet algorithm, more specifically the
lack of control of the residue values of the generated biclusters.

Other advantage of the MOM-aiNet algorithm is that it also returns an array of
different biclusters (the final individuals in each subpopulation), that correspond
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to the compromise between volume and residue (non-dominated individuals) found
in distinct regions of the data matrix (representing distinct correlations), which is
very useful in the post-analysis process. In order to illustrate this set of biclusters
returned by MOM-aiNet, Fig.[2presents the residue and volume of the individuals
in the final subpopulations obtained in one of the ten independent runs performed
here, together with the final population generated by BIC-aiNet and the average
results of FLOC and CC (taken from [0]).
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Fig.2. 1/(Volume) (in logarithmic scale) and residue of the individuals in the final
subpopulations of MOM-aiNet and of the final population of BIC-aiNet, for the Yeast
problem. The results of FLOC and CC correspond to the average values of residue and
volume of the final population of biclusters, as reported in [6].

As can be seen from Fig.[2 (and also from Fig.[), the final individuals of dif-
ferent subpopulations returned by MOM-aiNet clearly present different quality
(if only the two optimization criteria are considered) since several of them are
dominated. However, it is important to notice that, although these individuals
are dominated by others, they correspond to biclusters in different regions of the
data matrix (otherwise, they would have been joined in a single subpopulation)
and, consequently, are also of relevance in the post-analysis process.

It can also be observed in Fig. [ that the individuals of the final population
of the BIC-aiNet algorithm are concentrated in a region of higher volume when
compared to the individuals returned by MOM-aiNet. However, most of these
individuals are significantly above the required residue threshold (6 = 185),
what highlights the difference of both immune-inspired algorithms in the ability
to control the residue values of the generated biclusters.

Next, on Table 2] the results obtained by MOM-aiNet and BIC-aiNet on the
Movielens dataset (taken over 10 independent runs) are presented. This dataset
is very sparse, which makes the generation of dense and coherent biclusters
difficult. The parameters used for both algorithms were the same ones adopted
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for the Yeast problem, except for the residue threshold and maximum number
of subpopulations (biclusters), that were set to 2 and 300, respectively.

The results presented in Table [ points out to the MOM-aiNet advantage of
having a better control over the upper bound of the residue, what guarantees
the generation of biclusters of higher volumes with residue values close to the
desired one (threshold). The BIC-aiNet does not present an explicit control over
this parameter, so it generates biclusters with a smaller residue, but also with a
smaller volume.

Table 2. Performance comparison between MOM-aiNet and BIC-aiNet algorithms for
the Movielens dataset. The results are shown in the format (average + std. deviation),
taken over 10 independent runs.

Algorithm Avg. Residue Avg. Volume

MOM-aiNet 1.26+0.68 203.88 + 23.51
BIC-aiNet 0.43 +0.03 83.39 £ 13.56
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Fig. 3. Individuals in the final populations of MOM-aiNet, together with the final
population of biclusters generated by BIC-aiNet for the Movielens dataset. The volume
axis is in logarithmic scale.

FigureBlpresents the residue and volume of the individuals in the final subpop-
ulations, together with the final population generated by BIC-aiNet, obtained in
one of the ten independent runs performed here. As can be seen from Fig.[3] the
individuals of the final population of the BIC-aiNet algorithm are concentrated
on a smaller region of the objective space, and are clearly dominated by some
individuals obtained by MOM-aiNet. It can also be seen that the region popu-
lated by the individuals returned by BIC-aiNet also presents individuals from
MOM-aiNet (although in a smaller number), which illustrates that MOM-aiNet
was also capable of covering the region explored by BIC-aiNet.
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5 Final Remarks

In this paper, a novel multi-objective multipopulation artificial immune net-
work for data biclustering, named MOM-aiNet, was proposed. The MOM-aiNet
algorithm allows the generation of more than a single non-dominated front of
solutions, each one corresponding to a different region of the original dataset.

The proposed algorithm was applied to two well-known datasets from the
literature: a dense matrix called Yeast microarray data (for which MOM-aiNet
was compared with BIC-aiNet, FLOC and CC algorithms); and a sparse dataset
called Movielens (for which MOM-aiNet was compared with BIC-aiNet). The
results have shown that the proposed algorithm was able to produce better
results than the other algorithms on the two datasets, with the advantages of
having a better control over the bicluster quality and also returning a broader set
of non-dominated solutions. Besides that, MOM-aiNet together with BIC-aiNet
also present the advantage of being easily divided into several parallel processes,
which may be explored when dealing with larger datasets.

As future steps, more extensive sets of experiments will be performed with the
MOM-aiNet algorithm and the biclusters generated by the proposed algorithm
will be applied to collaborative filtering in the Web 3.0, which is a method to
perform automated suggestions for a user, based on the opinion of other users
with similar interests.
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Abstract. This paper presents Viral System as a new immune-inspired compu-
tational intelligence approach to deal with optimization problems. The effec-
tiveness of the approach is tested on the Steiner problem in networks a well
known NP-Hard problem providing great quality solutions in the order of the
best known approaches or even improving them.

1 Introduction

Artificial Immune Systems (AIS), introduced in [1], has a wide scope that covers
from optimisation to classifiers or networks. AIS are a biological representation of the
Natural Immune System (NIS). NIS protects the organism from dangerous extern
agents such as viruses or bacteria. Antibodies try to protect the organism from such
pathogens. Immune systems have a lot of peculiarities that make them very attractive
for computational optimization. Examples are pattern recognition, auto-identification,
diversity, autonomy, multilayered, cooperation, robustness, apprenticeship and
memory, self-organization and integration among others. All these aspects make AIS
attractive to manage optimization problems with constraints and objective functions.
Some examples for combinatorial optimization problems are [2], [3] or [4].

Attending to these optimisation capabilities of AIS, we present Viral System (VS)
that makes use of the same infection-antigenic response concept from immune
systems, but from the perspective of the pathogen. In fact, real optimization problems
are complex, especially those that are classified as NP-Hard. Several metaheuristics
(as genetic algorithms, tabu search or simulated annealing among others) have
successfully tried to deal with such problems. However, new research is being
undertaken in order to find more successful methods to solve this kind of problems.
Examples of that are Artificial Life algorithms, in particular predator prey type
models, which are relatively closed to our VS, see [5] for an in-depth description of
such models in a Multi-Agent System context.

The rest of the paper deals with the natural description of VS in section 2 where the
natural immune characteristics of the algorithm are described, the computational
aspects of the system in section 3, section 4 shows the results of VS when applying to
the Steiner problem what is a well-known NP-Hard problem that was used as
framework to test VS, and finally the main conclusions are detailed in section 5.

P.I. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 83194.12008.
© Springer-Verlag Berlin Heidelberg 2008
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2 Virus Organisms and Virus Replication Mechanisms

Viruses are intracellular parasites shaped by nucleic acids, such as DNA or RNA, and
proteins. The protein generates a capsule, called a capsid, where the nucleic acid is
located. The capsid plus the nucleic acid shape the nucleus-capsid, defining the virus.

One of the main characteristics of viruses is the replication mechanism. The phage
(a common type of virus) does follow lytic replication process. Right side of Fig. 1
depicts the biological evolution of the virus infection following the next steps:

1. The virus is adhered to the border of the bacterium. After that, the virus penetrates
the border being injected inside this one, (a) and (b) in Fig. 1.

2. The infected cell stops the production of its proteins, beginning to produce the
phage proteins. So, it starts to replicate copies of the virus nucleus-capsids, (c) and
(d) in Fig. 1.

3. After replicating a number of nucleus-capsids, the bacterium border is broken, and
new viruses are released, (e) in Fig. 1, which can infect near cells, (f) in Fig. 1.

The life cycle of the virus can be developed in more than one step. Some viruses
are capable of lodging in cells giving rise to the lysogenic replication. This case is
shown in the left side of Fig. 1. It follows:

1. The virus infects the host cell, being lodged in its genome, (g) and (h) in Fig. 1.

2. The virus remains hidden inside the cell during a while until it is activated by any
cause, for example ultraviolet irradiation or X-rays, (i) in Fig. 1.

3. The replication of cells altered, with proteins from the virus, starts.

Lytic replication Lysogenic replication

Fig. 1. Lytic (left) and lysogenic (right) replication of viruses

However, some viruses have the property of leading an antigenic response in the
infected organism. In these situations an immune response is originated causing the
creation of antibodies.

The main difference between VS and AIS is the final goal of the process.
Meanwhile AIS are focused on the organism side, VS is focused on the virus side.
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The optimum is got when the organism dies and the infection triumphs. So it follows
other objective different from traditional AIS. Next section describes the process due
to the interaction between the viruses and the organism.

3 Viral System Description

3.1 Viral System Components

VS are defined by three components: a set of viruses, an organism and an interaction
between them: VS = <Virus, Organism, Interaction>.

The Virus component of the VS is a set consisting of single viruses: Virus
{Virus;, Virus,, ..., Virus,}. And each virus is defined in four components: Virus;
<State;, Input, Output, Process;>

Where each component means:

e State; characterizes the virus. It defines the cell infected by the virus. It is typically
the mathematical encoding of the solution in computational terms, which we also
call genome.

e A concrete virus, Virus;, can produce the infection of a cell of the organism
providing a host. Additionally, the evolution of the residence time of the virus
inside the cell can be defined by the number of nucleus-capsids replicated for the
Iytic replication (NR) or the number of iterations for the lysogenic replication (IT).
So, the three-tuple genome-NR-IT defines the State; for the Virus;.

e [nput; identifies the information that the virus can collect from the organism. This
information is always collected in the proximity of the virus. Input; represents the
input’s interaction with the organism (organism’s information - virus). It
corresponds to the neighbourhood of the cell in computational terms.

e Qutput; identifies the actions that the virus can take. Output; represents the output’s
interaction with the organism (virus = organism). It corresponds to the selection
mechanism of the type of virus replication in computational terms.

e Process; represents the autonomous behaviour of the virus, changing the State;. It
corresponds to the replication operator process in computational terms.

The Organism component of the VS is defined by two components:
Organism = < State,, Process,>
Where each component means:

e State, characterizes the organism state in each instant. It consists of the clinical
picture and the lowest healthy cell (the best solution found of the optimization
problem). The set of feasible solutions in a specific space R" is given by the
problem constraints (1).

K={x:g,(x)<0, Vi=1,---,n} (1)

Each feasible solution of problem (1), xe K, has been called a cell. The genome is
the mathematical encoding of each cell or feasible solution. When a virus infects a
cell, this cell enters the population of infected cells. The total amount of infected cells
constitutes the infected part of K for each time instant, and it is named “clinical
picture”. It contains the overall information of the infection needed by the algorithm
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in each instant, ¢. Thus, the clinical picture consists of every three-tuple genome-NR-
IT defining the State; of each Virus;.

In the same way, the overall clinical picture plus the lowest value of fix) defines
the Organism State,. Fig. 2 depicts the State concept for the organism and the viruses.

e Process, represents the autonomous behaviour of the organism that tries to protect
itself from the infection threat, consisting of antigen liberation. Medically, an
antigen is any substance that elicits an immune response. The antigens generate an
immune response by means of antibodies trying to fight the virus infection. The
computational mission of the antigens is to liberate space in the population of
infected cells (clinical picture), trying to maintain free record memory in the
clinical picture to incorporate new infected cells (new feasible solutions). Thus,
due to the antigens’ activity, infected cells (in the clinical picture) can be recovered
(removed) and cells in the organism that could be infected are not infected due to
this antigenic substance.

Genome of cell 1
(encoding of the feasible solution x.)
Genome of cell 2
{encoding of the feasible solution x2 Ni2 2

Genome of cell 3 .
3 | It Virus, Si
(encoding of the feasible solution x3) | 1 3 us, State

[ola[ol-Lfolofof i Jelel] d {:[ [ [ dofo]

Best solution

Genome of cell n
(encoding of the feasible solution xn)

Clinical picture

Organism State

Fig. 2. Organism and virus state

3.2 Viral System Interaction

The Interaction component of the VS is conditioned by the Input and Output actions
that lead to a Process of every virus and the corresponding Organism response. A
Virus; process implies a resulting change in the organism, and the same applies for an
Organism’s process. The interaction is the union of both actions.

3.2.1 Virus Input Sensor: Neighborhood Identification

The input sensor of each virus, Input;, collects information from the organism. The
sensors map the genome of the cell and detect the set of cells close to the infected
one. This set is named the neighbourhood of the feasible solution x, V(x). The
neighbourhood depends on the shape of the constraints of the problem, g;(x).

3.2.2 Virus Output Ejector: Replication Type Selection

The ejector, Output;, selects the type of evolution of the virus. We consider one step
lytic replication (probability p;); and two steps lysogenic replication (probability p,).
See Fig. 1. Where p;, + p;, = 1.
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3.2.3 Process: Lytic Replication

3.2.3.1  Virus process. The lytic replication starts only after a specific number of
nucleus-capsids have been replicated. So, each time instant (iteration t) a number of
virus replications (NR) takes place. The number of replications per iteration is
calculated as function of a binomial variable, Z, adding its value to the total NR.

After a specific number of nucleus-capsids has been replicated inside the cell
(LNR), the bacterium border is broken, liberating the lodged viruses. All these viruses
are active and prepared to infect new cells. The value of LNR depends on the cell’s
health conditions. So a healthy cell (with high value of f{x)) will have low probability
of getting infected, and therefore the value of LNR will be higher. In the opposite it
will have a lower value of LNR. Following equation (3) shows the calculation
procedure for LNR in a cell x:

LNR

cell-x

=LNR" [%J 2

where X is the cell that produces the best known result of the problem (in terms of f(x))

and x is the infected cell being analysed.

LNR Y is the initial value for LNR

The number of nucleus-capsids replicated each iteration can be approximated by a
Binomial distribution given by the maximum level of nucleus-capsids replicated,
LNR, and the single probability of one replication, p,,: Z = Bin (LNR , p,).

Once the distribution has been stated, we can calculate the probability of
replicating exactly z nucleus-capsids, P(Z=z), as well as the average, E(Z), and
variance, Var(Z), equations (3-5).

LNR) | _,
P(Z=2)= [ . ]p:-(l -p, ) 3)
E(Z)= p, LNR )
Var(Z) = p,1- p, JLNR (5)

Once the number of nucleus-capsids surpasses the limit given by LNR, the border
of the cell is broken and the viruses are liberated. For this case, one single cell is
selected to be infected. In order to do so, the neighbourhood is evaluated and one of
the less healthy cells is selected, configuring the new host to expand the infection.

3.2.3.2 Organism process. In this case, the virus selects a cell with a low value of
f(x) in the neighbourhood. However, the virus will not be able to infect those cells
that have developed antigens.

Higher values of f{x) imply healthy cells and therefore cells that have a higher
probability of developing antigenic responses. On the contrary, cells with low value
of flx) imply unhealthy cells with lower probability of developing antigenic
responses.
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In order to represent such phenomenon, we use a hypergeometric function. The cell
with an inverse objective function evaluation, 1/ f(x), in ranking position-i, has a

probability of generating antibodies, p,,(x), that is given by ¢g(1-¢)', being g the
probability of generating antibodies for the worst individual. Finally, a residual
probability remains, which is added to the worst individual.

Then, if the probability of generating antibodies for the case of cell x is p,,(x), A(x)
is defined as a Bernoulli random variable: A(x) = Ber (p,,(x)).

If cell x generates antibodies, the cell is not infected and it is therefore not included
in the new clinical picture. For recording this clinical picture we use the original cell
(that was infected by the virus and that reached the LNR limit) and we initiate a
lysogenic cycle for that cell.

Output ejectors: Iytic replication  Input sensors: neighbourhood

K = {x g, (1) S0, Vi=1on)

Vi
Genome of cell | NR, [ 1t @ L
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Fig. 3. Virus process evolution during the lytic cycle

Fig. 3 defines the algorithm evolution for the infection. The initial state is on the
left-hand side: the virus process starts with viruses breaking the border and starting
the infection of new cells in their neighbourhoods. Each virus selects the most
promising cell, which is the least healthy cell. The Organism process is characterized
by the probability of antigenic response in the least healthy cell. Those cells
developing antibodies are not infected. Finally, the interaction (right hand side of the
figure) defines the new clinical picture, with new infected cells lodging viruses. The
cells generating antibodies follow a new lysogenic replication.
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3.2.4 Process: Lysogenic Replication

3.2.4.1 Virus Process. During the lysogenic cycle the virus remains hidden inside the
cell until an external cause activates the virus. We consider that the activation of the
lysogenic replication can happen after a limit of iterations has passed (LIT). As for the
calculation of LNR, the value of LIT depends on the cell’s health conditions, so a
healthy cell (high value of f(x)) will have a low probability of getting infected, id est.
the value of LIT will be higher. On the contrary, it will have a lower value of LIT.
Equation (6) shows the calculus procedure for LIT in a cell x:

a0

Where LIT? is the initial value for LIT

LIT,

cell-x

Once the virus has been activated, it produces alterations in the cell’s genome. It is
equivalent to a genome mutation process in the mathematical programming encoding
of the feasible solution.

3.2.4.2 Organism Process. The lysogenic interaction is described as the substitution
of the new genome-modified cell by the old one. It is quite similar to a mutation
process in several types of evolutionary algorithms.

3.3 End of the Biological Process

The VS ending is achieved in two ways: the organism beats the virus implying the
host recovery, or the virus beats the defence capabilities of the organism and the host
death takes place.

Computationally, the death of the organism can be reached when the difference
between the best found solution and a known lower bound is smaller than a stated
gap. There exist certain lower bounds known for several NP-problems. Nevertheless,
a lower bound could always be calculated by means of the linear or Lagrangian
relaxation for problems with a linear objective function and linear constraints. In case
of knowing the optimum of the problem, the gap can be set equal to zero. This is a
common case when dealing with trial problem collections.

When the difference between the lower bound and the best found solution is below
a gap, we consider that the organism has collapsed (7), and the VS infection ends.

=If(x*)—LBI

B )

sap

Other possible end appears after reaching a maximum number of iterations
(Nmax), we consider that the viral infection cannot evolve further and the virus is
isolated.

When this criterion is used together with the previous one, the situation denotes
that the gap is not reached, and the virus does not create a serious infection in the
organism. Under this condition, the organism would have survived the virus infection.
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3.4 Viral System Pseudocode Algorithm

Table 1 details the main functions of the VS pseudocode.

Table 1. VS pseudocode

Initiate clinical_picture
Select infection type
Initiate iterations
Do {
if case_infect = massive
{ antigen(clinical_picture)
}
replicat_type(clinical_picture)=
output (clinical_picture)
Do {
if (replicat_type(cell) = lytic)
{ replicate(cell)
NR = NR + replicate(cell)
if (NR = LNR)
{ neighbourhood(cell) = input_lytic(cell)
cell_infected=
process_virus(cell,case_infect)
update_clinical_picture(cell_infected)
}
}
else
{ iter = iter + 1
if (iter = LIT)
mutate_genome (cell) = input_lysogenic (cell)
update_clinical_picture (mutate_genome)
} while (clinical_picture)
} while{ gap () OR Nmax}

4 Computational Results: The Steiner Problem in Networks

We used the Steiner problem (SP), a well-known NP-Hard problem to test VS. SP is
stated as follows: given a non-directed graph G = (N,A) with INl nodes and IAl arcs
with costs ¢; V(ij)eA; and a subset TN with 171 nodes called terminals or targets,
with the rest of the nodes in N called Steiner nodes, the goal is to find a network GrC
G joining all the terminal nodes in 7 at minimum cost. This network can include some
of the Steiner nodes but does not have to include all the Steiner nodes.

4.1 VS Characterization for the Steiner Problem

The Organism state is depicted by the clinical picture representing the infected part of
the SP hull, K. A coverage formulation for the SP is shown in equation (8), [6].
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K:X(3(W))21, VWc N, WNT =D, (N\W)NT =Q)
0<x,<1, V(i,j)e A; x integer

)

®)

Where 8(X) denotes the cut induced by XCN, that is, the set of arcs with one node in
W and one in its complement. It is easy to see that there is a one-to-one
correspondence between Steiner trees in G = (N,A) and {0,1} vectors satisfying K.

We represent the genome of the cells by a bit string of size equal to INl in which
each bit position i corresponds to the node i in the graph. A 1 means that the node i is
connected, while the bit is set to 0 otherwise. As all the terminals must be in the
Steiner tree, it is sufficient to use a bit string of size IN-71 including only the Steiner
nodes belonging to the Steiner tree. So, the Steiner tree can be constructed by a
minimum spanning tree that contains all the terminal nodes (set 7), the subset of
Steiner nodes in the bit string fixed to 1 and, perhaps, some artificial arcs if the set is
disconnected. We made use of the graph construction mechanisms described in [7].

Once we have stated the cell genome we can define the Virus state. The three-tuple
formed by the genome of each cell infected plus the number of replicated nucleus-
capsids (in the case of lytic replication) or the number of generations (in the case of
lysogenic replication) defines the virus state. The entire infected cell population,
which is the clinical picture, and the best solution complete the Organism and
therefore the Virus state.

The Output ejectors of the Virus component of the VS are clearly defined by the
type of replication. On the contrary, the Input sensors must be carefully stated. In
fact, a key decision is to state an adequate cell neighbourhood for the virus in the lytic
replication process and a genome alteration process for the lysogenic replication.

In case of the Steiner problem, the lysogenic replication is characterized as a
genome alteration by flipping a bit in the string. The lytic replication for a feasible
solution xe K, maps the neighbourhood consisting of the set of bit strings that can be
obtained by the removal or the addition of a single Steiner node from/to the current
cell encoding. In order to be efficient, the new MSTs must be found by manipulating
arooted tree data structure carefully, [7].

Finally, the Virus and Organism components are completed by the specification of
the Process. The Organism Process consists of the antigenic response and it is mainly
determined by the determination of the parameter p,,. The Virus Process consists of
the determination of the type of replication that is conditioned by the parameters p;
and p;,. Additionally, the Virus Process depends on the parameters of replication, p,,
infection, p;, and the limits LNR’ and LIT’. Due to the special encoding for the
Steiner problem solutions the neighbourhood size is constant and equal to the number
of Steiner nodes. It must be noted that the neighbourhood is set by changing the value
of each bit from O to 1 and vice versa.

The Interaction takes place after the selection of the Virus Process. It depends on
the random evolution of the viral infection and the antigenic capacity of response.

4.2 Results

We used the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html) for the
Steiner problem: series C, D and E, each one of them including 20 problems. Steiner



92 P. Cortés et al.

series C consists of trials with 500 nodes, arcs varying from 625 to 12,500, and
terminals from 5 to 250; series D consists of problems with 1,000 nodes, arcs varying
from 1,250 to 25,000, and terminals from 5 to 500; and finally series E includes trials
of 2,500 nodes, arcs varying from 3,125 to 62,500, and terminals from 5 to 1,250.

Table 2. Results: a comparison among Genetic Algorithm, Tabu Search and Viral System

Problem  GA-E F-Tabu VS Problem  GA-E  F-Tabu VS
Cl 0.00% 0.00% 0.00% D1 0.57% 0.00% 0.00%
C2 1.67% 0.00% 0.00% D2 0.00% 0.00% 0.00%
C3 0.13% 0.00% 0.00% D3 0.92% 0.06% 0.00%
C4 0.11% 0.00% 0.00% D4 0.52% 0.00% 0.00%
C5 0.00% 0.00% 0.00% D5 0.12% 0.00% 0.00%
C6 0.73% 0.00% 0.00% D6 0.00% 0.00% 0.00%
C7 1.76% 0.00% 0.00% D7 1.94% 0.00% 0.00%
C8 0.63% 0.00% 0.00% D8 1.55% 0.37% 0.47%
C9 1.05% 0.14% 0.00% D9 0.50% 0.21% 0.69%
C10 0.26% 0.00% 0.00% D10 0.13% 0.00% 0.00%
Cl1 1.88% 0.00% 0.00% Dl11 2.07% 0.00% 0.00%
Cl12 1.30% 0.00% 0.00% D12 0.00% 0.00% 0.00%
Cl13 1.01% 0.00% 0.00% D13 0.56% 0.00% 0.00%
Cl4 0.87% 0.31% 0.00% D14 0.30% 0.15% 0.15%
CI15 0.25% 0.00% 0.00% D15 0.16% 0.00% 0.00%
Cl6 0.00% 0.00% 0.00% D16 0.00% 0.00% 0.00%
Cl17 0.00% 0.00% 0.00% D17 0.00% 0.00% 0.00%
CI8 0.71% 0.00% 0.00% D18 1.26% 0.90% 0.90%
C19 0.41% 0.00% 0.00% D19 1.03% 0.32% 0.65%
C20 0.00% 0.00% 0.00% D20 0.15% 0.00% 0.37%

Total 0.64 % 0.02% 0.00% Total 0.59% 0.10% 0.16 %
Problem GA-E  F-Tabu VS
El 0.00% 0.00% 0.00%
E2 0.93% 0.00% 0.00%
E3 0.00% 0.32% 0.24%
E4 0.02% 0.00% 0.00%
E5 0.00% 0.00% 0.00%
E6 0.00% 0.00% 0.00%
E7 0.00% 0.00% 0.00%
E8 0.23% 0.42% 1.14%
E9 0.19% 0.14% 0.47%
E10 0.00% 0.04% 0.14%
Ell 0.00% 0.00% 0.00%
El2 1.49% 1.49% 0.00%
El13 0.70% 0.63% 1.33%
El4 0.23% 0.23% 0.64%
El15 0.00% 0.11% 0.00%

El6 0.00% 0.00% 0.00%
E17 0.00% 0.00% 0.00%
E18 3.37% 1.60% 2.66%
EI19 1.26% 1.19% 1.18%
E20 0.00% 0.00% 0.15%
Total 0.42% 0.31% 0.40 %

Table 2 shows the results (in error percentage with respect to the optimum) for the
Stein-C, Stein-D and Stein-E problems and the comparison with the best Tabu Search
approach from [7] (the F-Tabu method), which is the best approach for the Steiner
problem in terms of solution quality. Additionally we have selected the best
biologically inspired method to solve the Steiner problem. It is the case of the Genetic
Algorithm approach due to [8], (GA in the table).
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Each problem was four times solved and results in Table 2 show the best value
reached in all the considered replications for VS, GA or TS. The standard deviation of
the solutions provided by the methods was less than 5% as average value what is a
feasible value for a design problem (SP).

According to the results of Table 2 (a total of 60 problems), VS was the best
approach in 48 times and outperformed the GA-E (22 times) approach. F-Tabu
showed better performance, being the best approach 51 times. However, VS provided
a better solution for the C9, C14, D3, E3, E12, E15 and E19 problems. VS provided
very valuable results taking into account that F-Tabu was processed after selecting the
100 best different trees found by the MPH algorithm, after executing the P-Tabu
approach as an initial search and reprocessing it into the final Full Tabu Steiner (F-
Tabu). So the quality of the F-Tabu results is very high but it is also very much
conditioned by the very good seed that is provided. On the contrary, we applied VS
directly to the graph without pre-processing it with any special previous heuristic as
MPH or previous metaheuristics as P-Tabu. Nevertheless, the initial clinical picture of
VS was wholly random-generated. We did not use a good seed provided by a good
heuristic because we were interested in observing the quality of the VS evolution to
the final solution, more than on outperforming previous heuristics. However, we
realized that without searching for a good seed we were obtaining results equivalent
(in quality terms) to the best Steiner approach: the F-Tabu algorithm.

With respect to the time consumption, we have to say that time values among
methods cannot be directly compared because tests were run in a different computers.
However, we can estimate the order of time consumption by the algorithm’s
complexity, given in (9).

time ~ O(ITER - NumSteiners - Ngraphz) )

Where ITER is the maximum number of iterations, NumSteiners the number of
Steiner nodes in the graph and Ngraph the total number of nodes in the graph.

The solutions were attained using the parameters of Table 3. We found that VS
efficiency was non-dependent on the probability of generating a great or low number
of nucleus-capsids (parameter P), so its performance showed non-dependency from
this parameter in the SP case. The rest of parameters depended on the percentage of
terminals mainly. So, two set of parameters were considered. We executed four times
the VS with the first set, and four additional times for the second set of parameters.

Table 3. Parameters selection for VS

% Terminals < 15% % Terminals € [15%,30%] % Terminals 30 %
Parameters 1% set 2" set 1" set 2" set 1% set 2" set
ITER 50,000 10,000 50,000 50,000 10,000 50,000
POB 100 50 100 50 50 50
PLITI 0.7 0.7 0.7 0.7 0.7 0.7
LNR 15 15 15 15 10 10
LIT 10 10 20 10 10 10

Pz 0.5 0.5 0.5 0.5 0.5 0.5
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5 Conclusions

We have presented a new approach to optimize combinatorial problems called Viral
System which is inspired in a natural immune system. The main difference between
VS and traditional AIS is the final goal of the process. Meanwhile AIS are focused on
the organism side, VS is focused on the virus side. The optimum is got when the
organism dies and the infection triumphs. So it follows other objective different from
traditional AIS. The method was tested with an extremely difficult combinatorial
problem as the Steiner problem is. It is a well-known NP-Hard problem. In fact, most
of the network problems are proved to be NP-Hard by reduction to the SP.

VS was applied to a large set of trials and was compared with the best approaches
to solve the SP. VS clearly improved the results from the Genetic Algorithms (a bio-
inspired evolutionary methodology close to our proposal) and also outperformed
several times the Tabu Search approach (the best known metaheuristic for the SP).

Our future research is focused on applying VS to other well-known NP-Hard
problems that arises in contexts different from networks in order to test its efficiency.
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Abstract. Specknets consist of hundreds of miniature devices, which are
each capable of processing data and communicating wirelessly across short
distances. Such networks, with their great complexity, pose considerable
challenges for engineers due to the unreliability and scarce resources of
individual devices. Their limitations make it difficult to apply traditional
engineering approaches. In this paper, we describe a model inspired by the
dendritic cells of the innate immune system; often overlooked in artificial
immune systems, dendritic cells possess a unique ability to scout the body
environment and then present an integrated picture of the internal state
of the body to the adaptive system. We adopt a model, inspired by this
approach, to sense the state of a Specknet and provide experimental re-
sults to show that useful information can be gathered from the Specknet
in order to determine local states. Experiments are conducted using real-
istic random topologies in a simulation environment, in a scenario which
models sensing temperature changes.

1 Introduction

Specks are autonomous, minute semi-conductor grains of around 5x5mm? which
possess the capability to sense, process, and transmit data via wireless sensor
networking. Platforms consisting of thousands of such specks, termed Specknets,
offer the potential of truly ubiquitous computing in which collaboration between
specks results in programmable computational networks [2]. A Specknet fully em-
braces the idea of an autonomous system with programmable constituent parts,
where the parts themselves are sustaining the system by showing ‘self’ proper-
ties such as self-organisation, self-sufficiency and self-adaptation. The network
lacks powerful central processing units and relies on each programmable speck to
process and act on information, in collaboration with its neighbours over short
communication ranges of the order of tens of centimetres. These requirements
pose considerable challenges to application developers, on top of the non-trivial
challenges posed by the development of the specks themselves.

Biology, and in particular the immune system, provides a rich and obvious
source of inspiration for working with such systems, given the similar require-
ments for meaningful behaviours to emerge from interactions of substantial num-
bers of individually weak entities. This has already been recognised in the field of
wireless sensor networks (WSNs) [7] and was first proposed as a viable metaphor
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for programming Specknets in [6]. In this paper, we present clarification and fur-
ther results from a model first described in [5], which takes inspiration from the
innate immune system. Despite having received relatively scant attention from
the community of artificial immune systems (AISs) until recently, the innate im-
mune system exhibits many appealing features from a system perspective. Once
thought to simply provide an indiscriminate, rapid defence until an adaptive
response kicked in, it is now clear that the innate system is actually responsible
for activating the adaptive system; this occurs as a result of scouting the body
environment and presenting an integrated picture of the internal state of the
body to the adaptive system, which is then triggered to react, or suppressed,
according to the state information. This metaphor is ripe from exploration in a
system-based application such as a network exposed to both external and internal
signals, as in the body.

This paper presents extensions to the model described in [5] and provides
further initial results obtained in random Specknet topologies, using a simple
scenario in which a Specknet equipped with temperature sensors monitors exter-
nally applied fluctuations. In particular, Sect. Bl discusses related work; Sect. Bl
describes the immunological theory that supports the model for a Specknet,
which is presented in Sect. @ Sect. Bl describes the simulation setup used to ob-
tain the results presented in Sect. [6 finally the conclusions are discussed Sect. [7l

2 Related Work

Although the literature contains a wealth of work relating to biologically in-
spired approaches to WSNs and to immune-inspired algorithms in many diverse
domains, there is little which is directly relevant to the use of immune systems
in the class of WSNs typified by Specknet. We briefly mention some work which
has some similarities, although as far as we can ascertain, our work is novel in
the use of innate immune-inspired mechanisms to WSNs.

The SASHA architecture, proposed by [], presents a self-healing hybrid sensor
network architecture which is inspired by the natural immune system. This work
is motivated by the same ideas as our work in taking a holistic approach to the
immune system; the architecture is implemented on a classic sensor network and
is directed towards achieving fault tolerance and adaptability to pathogens. The
model incorporates many features of the immune system, but includes the use
of high-powered database components and base stations which are not included
in the vision of a Specknet, and hence reduces the applicability of the approach.

Atakan et al. [3] employ a method inspired by the behaviour of B cells in
the adaptive immune system to distributed node and rate selection in a WSN.
The aim is to select appropriate sensor nodes and regulate reporting frequencies
to meet the event estimation distortion constraint at sink nodes, with the mini-
mum number of sensor nodes. Essentially, the problem of reducing the amount of
redundant information transmitted through the network is treated as an optimi-
sation problem, with competitive selection acting on nodes in order to determine
which nodes are best placed to transmit.
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Finally, although not concerned with sensor networks, at a high-level our
work has much in common with the dendritic cell algorithm (DCA) proposed by
Greensmith et al. [§]. However, the implementation details differ at a low-level.
This work was the first to exploit one of the essential properties of the innate
immune system, that of its ability to perform sensor fusion of data and signals
in order to determine system state. The DCA was proposed in the context of
performing anomaly-detection in computer-security; although we do not utilise
their algorithm itself, our approach captures the same essential property; that
of gathering context dependent information over time in order to determine the
state of a system. The DCA’s main function is in determining the context of
collected data; currently our approach focuses more directly on the gathering
process of the data itself in a difficult, distributed environment. However, in
future, the DCA may be employed more directly.

3 The Innate Immune System

As briefly described in Sect.[I], the innate immune system is a key component in a
natural immune system. The innate system consists of a number of players, which
collectively contribute to its overall functionality. In this section, we provide a
brief, high-level overview of the role of one of those players in this system, the
dendritic cell. The description necessarily omits much of the biological detail; the
aim is simply to provide sufficient understanding of the processes that occur in the
natural immune system to motivate the inspiration for our current work in WSNs.

The dendritic cell is often referred to as the ‘sentinel’ of the immune system
[10], playing a unique role in sampling the body’s tissues and reporting back
on the state of them to the next line of defence, the adaptive immune system.
Dendritic cells reside in the epithelial tissues of the body (e.g. the skin), sam-
pling the tissue in their vicinity. Essentially, they soak up molecular debris (e.g.
bacteria or other pathogenic material) and, additionally, sense molecular signals
present in the tissue. The signals may derive from ‘safe’ or ‘normal’ events (e.g
regular, pre-programmed cell death) or from potentially dangerous events, where
cell death occurs due to stress or attack. These signals may be exogenous and/or
endogenous. Whatever their source, collection of ‘sufficient’ signal and antigen
triggers immature dendritic cells to mature. At this point, they travel back to
the nearest lymph node through a complex system of lymphatic vessels.

The lymph nodes function as dating agencies where the different immune cells
of the body congregate. In particular, the dendritic cells that reach the lymph node
carry a snapshot of the current state of the tissues back. The snapshot contains two
important pieces of information: antigen, i.e. (potentially) unsafe material, and
also signals representing the context under which the material was collected. This
snapshot is viewed by the reactive immune cells, in particular T cells, and a process
of communication and collaboration between cells ensues. This process ultimately
results in activation, or tolerance, of the immune system, depending on the content
and context of the information presented. From the perspective of our research
in Specknets, we identify two distinct roles of the innate immune system; firstly,
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the physical role of traversing the immune system and gathering information, and
secondly, the process of presenting that information to the adaptive system in the
correct context. In this paper, we concentrate on the former role. In future work,
we turn our attention to extracting the context of the gathered information and
actuating the system to react accordingly.

4 An Immune-Inspired Model for a Specknet

The innate immune system processes, described in Sect. B offer three major
sources of inspiration for the current model.

— Dendritic cells circulate through body tissues, sampling exogenous and en-
dogenous signals.

— The dendritic cells return to the lymph nodes, via a process of chemotaxis,
when they become mature, where they deliver a snapshot of the current
environment.

— The lymph nodes in the body are distributed; the large lymph nodes are
strategically located to areas of the body that are closer to sources of input
from the environment.

From this, we derive a model consisting of specks and scouting messages (SMs).
We currently distinguish between two different types of specks:

— Tissue specks correlate to tissues in the body, and contain sensors for moni-
toring the external environment (e.g. light, pressure, temperature etc.). They
can also provide internal signals, for example relating to their own state (i.e.
battery power). These specks constitute the majority of specks in any given
environment.

— Integration specks correspond to lymph nodes. These specks receive informa-
tion from dendritic cells, process it, and determine an appropriate response.
These specks may have greater processing power than tissue specks.

A typical environment will contain a high ratio of tissue specks over integration
specks. Although in the body lymph nodes are strategically placed, this is not
feasible in a typical speck deployment, where thousands of specks may be sprayed
at random into an environment. Therefore, we model random placements of
integration specks. Dendritic cells are mapped to SMs. Messages originate at
integration specks and traverse the tissue specks, where they collect information
from each speck visited. Eventually, they return to the integration specks, where
the information collected is processed. The implementation of these processes
are discussed below.

4.1 Traversal of Tissue Specks

Messages originate from the integration speck and follow a random walk through
the tissue. The walk is achieved by using one-hop neighbourhoods. Each speck
maintains a list of IDs that lie within radio range, from where it randomly selects
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the next speck ID to be visited by the SM. If the destination hop is a tissue
speck, the SM collects one more sample, otherwise the integration speck simply
relays the message to another random neighbour. The technical details regarding
the manner in which a speck obtains and maintains its list of neighbours are
described in [5].

Aggregating information from the network via SMs is configurable with respect
to the type of information needed. With every SM it releases, the integration speck
can specify the type of local (L) and group (G) samples to be gathered. A local
sample is the information a SM requests from each tissue speck visited, and may
for example take the form of an average value of sensor readings over a specified
window size. The collection of local samples is returned to the integration speck,
in a form known as group sample, by applying a function to the set of local sam-
ples (e.g. an average, minimum or maximum). The parameters used for processing
sensor readings from the tissues and the functions applied to local sensor values
are application dependent. With respect to group samples, the processing of local
samples can be performed as the SM passes through the network, reducing the re-
quired data rate. However, in other cases this reduction may not be possible, for
example when more complex functions need to be applied.

The life cycle of a SM is shown in Fig. Il Scouting messages that sample
the network are in a naive state, and can either become mature, as a result of
collecting interesting information, Ll or simply expire; in either case they return
to the lymph to present their information. Information gathered by expiring SMs
is of relevance to the integration speck, which can estimate context based on the
proportion of expired to mature messages returning, and also by aggregating
information contained in the expired messages.

4.2 Chemotaxis Back to Integration Specks

In the immune system, cells are directed to the lymph node by a process of
chemotaxis. In this case, dendritic cells express receptors for chemokines, which
are transmitted by the lymph node. As already noted, we wish to avoid indis-
criminate broadcasting of messages, thus ruling out the possibility of integration
specks transmitting homing messages. However, we wish to direct the SM back
to the integration specks. This is implemented by using a simple routing algo-
rithm, based on spanning trees, which is described in detail in [3]. The algorithm
utilised requires that each tissue speck stores locally the root ID, the ID of its
parent in the tree and the number of hops that it is away from the root. It
also requires that the routing paths are refreshed periodically, to restore any
corrupted links due to potential failures of communication between specks.

4.3 Summary of the Model

In summary, integration specks send out SMs which traverse tissue specks,
where they collect external and internal signals. They then return to the nearest

! This is an application dependent feature; candidates, currently being explored, take
advantage of the processing power of individual tissue specks and include measuring
variance of external signals and monitoring of internal signals such as battery power.
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Fig. 1. The life cycle of a scouting message

integration speck, where their information is filtered and aggregated. Eventu-
ally, a decision may be made by the integration speck to act upon the collective
information. This may result in one or more possible actions: effector messages
may be sent out, which modify the external environment (e.g. turning a heat
source on or off); alternatively, the integration speck may modify the internal
variables of the system, for example alerting tissue specks to modify their in-
ternal parameters, or increasing the rate at which it sends out SMs in order to
gather further information. We intend to examine these further in future work.

5 Verification of the Model in Realistic Topologies

5.1 SpeckSim

In the first instance, we test our model in a behavioural speck simulation environ-
ment, SpeckSim [9], provided by the Speckled Computing consortium. Details of
the simulation tool can be obtained from [I]. The simulation tool has been aug-
mented to enable the immune model to be deployed, details for which are given
in [5]. In addition, a heat model was added which simulates ambient temperature
in the environment. Furthermore, it allows the introduction of hot spots, which
radiate heat at variable temperatures. Specks are assumed to contain temper-
ature sensors, which incorporate both white noise and an individual tuneable
random bias in the readings.
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5.2 Simulation Setup

In [5] we presented preliminary results regarding the coverage of the network by
SMs. These results were obtained in static Specknet deployments, in which specks
were arranged in a regular grid pattern on a 2D plane. We now extend this analy-
sis in more realistic topologies, in which specks are randomly distributed on a 2D
plane. The radio range is fixed such that, on average, each speck is within commu-
nication range of four neighbours (the actual value of the range was determined
empirically from extensive investigation with random topologies). Three integra-
tion specks are randomly positioned in the Specknet, as shown in Fig.

y position

Temperature (Degrees °C)

[TTTTTTTTT
&

X position

(a) Example topology (b) Example heat map

Fig. 2. A snapshot from SpeckSim shows an example of one of the network layouts
used for experiments (a). The corresponding heat map is shown in (b).

Initialisation Phase. When a simulation run is launched, devices are initialised
at random times to reduce the chances of collision. After a random start-up
delay, specks establish their local neighbourhoods by broadcasting their IDs. The
one-hop neighbourhood list, that each speck maintains, is updated by periodic
broadcasts of its own ID (further details on the formation of neighbourhoods is
given in [9]). In this phase, the spanning trees are also established. Full details
of this process are given in [5].

Operational Phase. Upon completion of the initialisation phase, integration
specks start producing SMs, currently with fixed, pre-determined frequency.
Each SM contains information regarding the number of tissue specks that the
message must sample (i.e. the path-length) before it expires, the type of local
samples to collect (e.g. local mean or maximum value over a specified window
size), and the type of group sample to return (e.g. the mean of the local samples).
This information may be altered by the integration speck as time progresses,
based on the information it is currently receiving.

Using this Specknet deployment, a number of experiments are performed in
which the path-length of the SMs and the topology of the network is varied,
in an environment defined by the heat model. The results are presented in the
next section.
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6 Results

Experiments were conducted using ten, randomly generated, topologies, each
containing 225 specks. Three randomly positioned specks were assigned to be
integration specks, the remainder allocated as tissue specks. All specks refresh
their list of neighbours every 10 time units; the lifetime of a neighbourhood
record for each speck is 15.1 time units; the spanning trees are refreshed at
a frequency of 5 time units — spanning tree records never expire; SMs are
generated from integration specks every 2 time units. These values are currently
chosen arbitrarily. In the future, extensive experimentation will be performed in
order to optimise the parameter settings and determine the robustness of the
system to each parameter.

6.1 Coverage of Network

To determine the relationship between the coverage of the entire Specknet and
the path-length of the SMs, ten experiments were performed for each topology,
in which the number of scouting messages returning to the integration specks
was measured over a time period of 255 units (in which 100 SMs were sent).
Path-lengths were varied systematically from 1 to 50. Figure [3] presents the
results from the perspective of the number of specks sampled and the number of
messages sent. The percentage of sampled specks refers to the percentage of all
tissue specks that have been sampled by a SM at least once. On the other hand,
successfully sampled specks is the percentage of the tissue samples taken, that
are actually received by integration specks, and therefore may be lower than the
former measure. Finally, we also measure the percentage of SMs that are sent
but do return to an integration speck, which comprise the lost SMs. Loss may
occur due to radio collisions or timed out broadcasts.

100
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Successfully sampled specks %
Lost scouting messages %
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Fig. 3. Sampled specks and lost scouting messages over path-length
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Figure B shows that at low path-lengths, transmission and reception of SMs
is reliable; as the path-length increases, lost messages account for at maximum
30% of messages sent at path-length 50. On the other hand, the success-rate,
as measured by the number of specks successfully sampled, increases with path-
length; the longer path-length allows parts of the Specknet to be sampled that
may not be possible to reach at short path-lengths, given the random placement
of the integration specks. The figure shows that despite the loss of up to a third
of messages at high path-length, almost 100% coverage of the Specknet can
still be achieved. Clearly, the low success-rate at low path-length is inevitable,
but could be countered by increasing the number of integration specks in the
system.

6.2 Locality of Information

The path-length of a SM plays a key role in determining how localised is the
information that is returned to an integration speck. Low path-lengths result
in a snapshot of the immediate environment of an integration speck being ob-
tained. In contrast, high path-lengths result in messages scouting larger areas
and a more general picture being built up. This is illustrated in Figs. and
which depict the tissue specks sampled by each integration speck at path-
lengths 5 and 35 respectively. The shading of specks reflects the number of
times a speck was sampled (lighter shading indicates more samples). Blank ar-
eas indicate regions which were not sampled at all or do not contain any specks
(the topology corresponds to that shown in Fig. . At low path-length, each
integration speck receives a distinct picture of its local environment. On the
other hand, at path-length 35, the regions sampled overlap. We expect that
this will have significant impact on the next stage of our research, in which the
integration specks will be required to route effectors back to sites of interest,
just as the lymph nodes route T cells to infected sites as reported by dendritic
cells.

6.3 Monitoring Environmental Changes

In the above experiments, the heat model used maintained the ambient tem-
perature at 21°C; tissue specks sample the temperature from the environment
every time unit and maintain a window of the last 4 readings. They pass their
local sample mean Sy, over this time window to a SM. Each speck is assigned
a random bias at the start, drawn from a Gaussian distribution with mean 0
and standard deviation 1, and a random measurement noise, again drawn from
a Gaussian distribution with the same parameters.

In order to test the ability of the integration specks to monitor the local
environment based on information returned by SMs, we performed a further ex-
periment in which a hot spot was introduced into the environment at time step
t=30; the temperature at this hot spot increased linearly over 40 time steps,
to reach 40°C at t = 70. The temperature was then maintained at this value
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Fig. 4. Coverage of the tissue specks’ network in terms of scouting messages returning
to each integration speck; shading shows the number of times a speck was sampled

until ¢ = 80, at which point it linearly decreased to a value of 38°C at ¢ = 100.
The hot spot causes a temperature gradient throughout the environment, shown
in Fig. — the hot spot itself is indicated on Fig.

Scouting messages returning to an integration speck, notify the speck of their
group sample mean S¢g. The integration speck maintains a list of the last 5
temperature values delivered by SMs and calculates an estimation mean value
E. In Figs. and we plot the estimation value E against time for each
of the integration specks for path-lengths 5 and 35; the graphs shown are the
result of averaging over 30 separate experiments on a single topology.

From both graphs we can see the initialisation phase of the network, which is
completed in, approximately, the first 20 time units of the simulation runs. This
phase is followed by a start-up transient, during which the integration specks fill
their empty buffers with received SMs. At this stage, the results are inaccurate,
as the integration specks have not yet collected sufficient samples for calculating
their estimation values. This stage lasts for a longer period in the latter figure
due to the much longer path-length that the SMs must complete, before they
expire and head back to an integration speck. After this necessary time lag, the
network enters the operational phase of its life.

In both cases, the temperature at each of the three integration specks stabilises
at the ambient value. Furthermore, in both figures, it is clear that integration
speck 1, which is closest to the hot spot, becomes aware of the temperature
change in its local environment, whilst the remaining integration specks record
only a slight increase in temperature. Figure clearly shows that the short
path-length results in SMs capturing a more tightly localised representation of
the environment; integration speck 1 records a maximum average temperature
of approximately 30°C. This is contrasted in Fig. in which integration
speck 1 registers a maximum temperature of approximately 26°C, reflecting the
sampling of greater regions indicated in Fig.
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Fig. 5. Estimation mean temperature E obtained by integration nodes over time from
returning scouting messages

7 Conclusions

The paper has presented a model inspired by the innate immune system for com-
puting the state of an environment using a Specknet; both external environmental
signals as well as internal system variables, regarding the state of the system it-
self, can be monitored. The experiments presented in the paper, verify the basic
premises of the model when deployed in a simulated environment consisting of
randomly placed specks. The results validate that SMs can be used to sense the
state of the environment; experiments have also analysed the relevance of some of
the parameters of the model, in particular the effect of the path-length of SMs. In
future work, we plan to investigate the scaling up of network size, and analysing
the effect of increasing the number of integration specks. In parallel, we are cur-
rently experimenting with refinements of the model, in which SMs mature as a
result of collecting ‘interesting’ information, and immediately return to the inte-
gration specks. We also intend to examine how information received by SMs can
be integrated and acted upon.

The Specknet environment presents an exciting, but challenging, platform
for research in autonomous systems. The natural immune system formulates an
immune response as a result of the cumulative experience of the immune system
dealing with both the body and the world. Ee hope to achieve desired responses
in a Specknet by computing the state of the Specknet and reacting accordingly.
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Abstract. This paper introduces a hybrid model for network intrusion detection
that combines artificial immune system methods with conventional information
security methods. The Network Threat Recognition with Immune Inspired
Anomaly Detection, or NetTRIIAD, model incorporates misuse-based intrusion
detection and network monitoring applications into an innate immune capability
inspired by the immunological Danger Model. Experimentation on a prototype
NetTRIIAD implementation demonstrates improved detection accuracy in
comparison with misuse-based intrusion detection. Areas for future investiga-
tion and improvement to the model are also discussed.

1 Introduction

Preserving the confidentiality, integrity and availability of networked systems is an
increasingly important and difficult task. Misuse-based network intrusion detection
systems have been an effective safeguard against known threats to networked assets.
Improving these systems with adaptive capabilities to detect novel threats and with
improved accuracy to reduce false alarms will maintain their usefulness.

A long-time goal of the security community has been to create an immune system'
for information systems with the flexibility, effectiveness and robustness of the im-
mune systems that protect organisms [7]. A system that responds effectively to new
threats without human intervention would significantly improve security.

Artificial immune systems (AIS) offer a means to solve complex, dynamic prob-
lems like many of those found in the domain of information system security [5].
However, problems of scalability and detection of a broad range of potential threats
have so far limited the success of intrusion detection systems based solely on artificial
immune systems.

A hybrid threat detection model that combines artificial immune system methods
with conventional intrusion detection techniques has the potential to provide results
superior to that offered by either of these approaches separately. Such an approach
could be a step toward more secure, self-protecting information systems.

This paper presents a model for network threat recognition with immune-inspired
anomaly detection. This model combines immune-inspired mechanisms with proven,
conventional network intrusion detection and monitoring methods. The model builds
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upon these conventional methods, employing them as the foundation for an innate
immune capability rather than replacing them. This approach preserves the functional-
ity of an existing set of information security applications, providing enhanced capa-
bilities via the artificial immune system overlay.

The remainder of this paper is organized as follows. Section 2 provides background
information on the biological inspiration for the model and a brief overview of related
work. Section 3 presents the model, covering the components, representation schemes
and methods of operation. Section 4 relates experimentation on a prototype implemen-
tation of the model. Section 5 discusses conclusions and areas for future work.

2 Background

2.1 Immunological Inspiration

The Danger Model is an alternative to self - nonself discrimination as an explanation
for behavior of the immune system [19]. This theory states that the primary trigger of
an immune response is not the fact that a pathogen is foreign so much as that it does
harm and is therefore dangerous. The Danger Model holds that the body's tissues, not
the immune cells, are the primary controllers of the immune response [21]. Distressed
tissues emit chemical danger signals to stimulate immune reactions while healthy tis-
sues emit ‘calming’ or safe signals to induce tolerance by the immune system [20].

Antigen presenting cells such as dendritic cells exist in tissues throughout the body
as part of the innate immune system. These cells spend a time in an immature state
during which the sample their surroundings to collect antigens. Eventually a dendritic
cell matures, leaving the tissue and migrating to the lymphatic system. Once there,
dendritic cells present their antigens to the adaptive immune system’s T cells.

The Danger Model theorizes that dendritic cells mature due to stimulation from
danger and safe signals. Further, maturation in a context of danger will cause the den-
dritic cell to signal that the antigens presented require an immune reaction while
maturation in a context of safety signals that the antigens should be tolerated.

2.2 Related Work

Several authors apply AIS methods to problems in network intrusion detection. Kim et al.
provide a detailed review of this work [16]. Hofmeyr and Forrest present an implementa-
tion of a network intrusion detection system called the Lightweight Intrusion Detection
System, or LISYS [13]. LISYS uses distributed populations of negative detectors to iden-
tify anomalous TCP SYN connections on a single network broadcast domain. Kim and
Bentley propose a model for an immune-inspired network intrusion detection system
[14]. They subsequently present a dynamic clonal selection algorithm, DynamiCS, that
attempts to overcome scaling issues in the LISYS approach [15].

Aickelin and Cayzer discuss applying Danger Model concepts to AIS [2]. Aickelin
et al. subsequently argue that the Danger Model provides a good source of inspiration
for AIS that address intrusion detection problems [1]. They describe a framework for
intrusion detection based on the correlation of danger signals derived from the state of
systems and observed events, with the type and strength of the signals determining the
occurrence of alerts or other reactions. Kim et al. present a Danger Model inspired
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approach for host-based intrusion detection [17] while Tedesco, Twycross and Aicke-
lin address network intrusion detection [25]. These approaches emulate the interac-
tions of dendritic cells and T cells to identify and respond to pathogens. Dendritic
cells stimulate or suppress the reaction of T cells to a given antigen based on the pres-
ence or absence of danger signals with the antigen. Twycross and Aickelin propose a
larger role for innate immune system concepts in AIS and provide the libtissue soft-
ware framework to facilitate implementation of these concepts [26, 27].

Greensmith, Aickelin and Cayzer discuss fully incorporating Danger Model con-
cepts into an actual AIS anomaly detector by emulating the functioning of dendritic
cells [10]. This proposal has been developed into the Dendritic Cell Algorithm (DCA)
that demonstrates promising results on a number of problems, including network port
scan detection [11, 12].

3 A Model for Immune Inspired Intrusion Detection

The Network Threat Recognition with Immune-Inspired Anomaly Detection (Net-
TRIIAD) model draws inspiration from both the innate and adaptive portions of the
natural immune system. The model can be logically divided into an Innate Layer and
an Adaptive Layer. Figure 1 depicts an overview of the NetTRIIAD model.

The Innate Layer conducts the majority of NetTRIIAD's external data collection.
This layer synthesizes antigens from packets observed on the network. It also synthe-
sizes danger model signals from observed events and the state of the network and its
hosts. The Innate Layer classifies antigens as dangerous or safe and provides this in-
formation the Adaptive Layer for further processing.

The Adaptive Layer emulates the interactions that occur between the adaptive im-
mune system's T cells and dendritic cells in locations such as the paracortex of a
lymph node. This layer processes the antigens presented by dendritic cells migrating
from the Innate Layer. The Adaptive Layer recognizes threats visible on the network,
using a combination of self - nonself discrimination on the presented antigens and the
Innate Layer's classification of the antigens as dangerous or safe.

3.1 Representation Schemes

The NetTRIIAD model uses two primary structures to represent information: antigens
and danger model signals. The antigens represent network traffic, with each observed
packet resulting in the synthesis of a corresponding antigen. The NetTRIIAD antigen
contains two types of features: address features and protocol features. Address fea-
tures are 32-bit, unsigned integer values corresponding to the network-ordered repre-
sentation of an Internet Protocol, version 4 (IPv4) address. Protocol features are
32-bit, unsigned integer values derived from the protocol value found in the IPv4
packet header and, for Transmission Control Protocol (TCP) or User Datagram Proto-
col (UDP) packets, a port value. The value of a protocol feature is: (IP protocol value
* 65536) + port value. A NetTRITAD antigen is then a vector of four real-valued fea-
tures derived from an Internet Protocol Version 4 (IPv4) packet: destination_address,
source_address, destination_protocol, and source_protocol.
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NetTRIIAD danger model signals emulate the various chemical signals that pro-
mote and suppress reactions in the immune system. A danger model signal includes
two functional elements. First is a single feature value that affects the signal’s binding
potential. This is an address or protocol feature value in the same format as the fea-
tures that comprise antigens, described above. The other functional element is a signal
level value. This is an integer value that determines the degree of danger or safety the
signal represents. A danger model signal with a signal level that indicates danger is a
danger signal. Similarly, a danger model signal with a signal level that indicates
safety is a safe signal.
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Fig. 1. NetTRIIAD Model Overview

3.2 The Innate Layer

The NetTRIIAD Innate Layer emulates the functions of the dendritic cells in the tis-
sues of an organism. The Innate Layer consists of a misuse-based network intrusion
detection system (NIDS), a set of danger model signal generators, and a Peripheral
Immune Node in which the artificial dendritic cells, antigens and danger model sig-
nals interact.

The misuse-based NIDS component gives NetTRIIAD an innate ability to recog-
nize known network threats. A NIDS alert event occurs when network traffic matches
an element of the rule set. An alert event includes, as a minimum, both destination
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and source IP addresses and a labeling of the type of alert. The alert event may also
include protocol and other amplifying information.

The danger model signal generators process external data pertaining to the state of
the network and its attached systems, emitting corresponding danger model signals.
Each generator monitors a specific set of external data, synthesizing danger model sig-
nals and forwarding them to the Peripheral Immune Node. NetTRIIAD includes three
danger model signal generators: the Alert Monitor, Host Monitor and Network Monitor.

The Alert Monitor observes the alert events emitted by the NIDS and emits a corre-
sponding sequence of danger model signals. Evidence of danger seen in the network
traffic can thus affect the immune response. This is inspired by the ability of the in-
nate immune system to detect the presence of pathogens through its sensitivity to
various pathogen associated molecular patterns (PAMP).

The Alert Monitor synthesizes two danger model signals for each alert event ob-
served. One signal has its feature value set to that of the alert event source address
while the other has its feature value set to the destination address. The Alert Monitor
sets the signal level of the danger model signals based upon the type of the alert event.
The Alert Monitor contains a mapping of each of the possible alert types to a specific
danger model signal level. For example, an alert event indicating a more serious
threat, such as attempted root access, maps to a correspondingly higher danger value.

The Host Monitor emits danger model signals corresponding to the perceived
'health' of a population of hosts. This allows the state of the hosts to affect NetTRI-
IAD in a manner analogous to the effect of tissue states on the immune response. In-
dications of damage promote immune reactions while indications of normal operation,
or 'health’, suppress immune reactions.

The Host Monitor periodically retrieves status information about each host in the
monitored population. The sampling interval is measured by the network traffic flow,
with a status sample being retrieved each time /, packets are observed. Each Host is
classified into one of four states based upon the status information received and as-
signed a corresponding danger or safe signal level. The Host Monitor emits a danger
model signal for each host with a determined state during each sampling interval. The
feature value of each signal is determined by the IP address of the corresponding host
and the signal level follows from the host’s state. Table 1 describes the host state cri-
teria and resulting signal levels.

Table 1. Host State Classification

Host State Host Status Resulting Signal

Necrotic The host is non- | Full strength danger signal
operational (s=by,)

Stressed The host is operating | Reduced strength danger
but is impaired signal (s=b,/2)

Healthy The host is operating | Safe signal (s=c, )
normally

Undetermined | Host is in scheduled | No signal

down time or status can
not be determined
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The Network Monitor observes the overall state of the network traffic flow, emit-
ting corresponding danger model signals. This emulates the effect of general stress
signals on the immune response. Tissues under stress emit chemical signals that pro-
mote immune reactions while unstressed tissues suppress immune reactions [22]. The
Network Monitor considers four network traffic parameters to determine the network
stress level: the overall traffic rate (X,), the rate of ICMP unreachable packets (X)), the
rate of TCP SYN packets (X|) and the percentage of packets dropped by the misuse-
based NIDS (X,).

The first three parameters are commonly employed to detect undesirable network
activity [6]. The fourth parameter, X,, is a useful indicator of stress in network intru-
sion detection scenarios [3]. The use of network statistics, such as packet rates, for the
synthesis of danger signals has also been explored in related work [13].

The Network Monitor makes an observation of the network parameters after each
interval of /, observed packets, and then compares the observation with a traffic pa-
rameter profile. This profile consists of a separate mean and standard deviation value
for each of the four parameters, computed from previous observations. The Network
Monitor incorporates each observation into the traffic parameter profile, allowing the
stress computations to adapt to routine parameter changes over time.

The Network Monitor computes an individual stress value for each of the four pa-
rameters, using the observed value and the mean and standard deviation.

0 if X, —u; <6
stress _value(i) = X’+§’_5’ if 6, <X;,—u; <36, (1
I if Xy - 230

Where X; is the observed value, y; is the mean and 9, is the standard deviation for pa-
rameter i. The overall stress level is the arithmetic mean of the four stress values:

(stress _value(r) + stress _value(u) + stress _value(s) + stress _value(d ))
4

Stress =

2

The Network Monitor then emits a single, general danger model signal with a
‘wildcard’ feature value that allows it to bind with every artificial dendritic cell. If the
stress value is less than the safe stress level threshold, t,, the signal is safe signal with
strength determined by:

Stress
4

n

s=c,X|1- (3)

Otherwise the signal is a danger signal with strength determined by:

b x stress @
" \-1,)
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Where b, is the danger signal coefficient, ¢, is the safe signal coefficient and s is the
resulting signal strength.

The Peripheral Immune Node (PIN) provides the location in which NetTRIIAD
antigens and danger model signals interact to classify antigens, and thus the corre-
sponding packets, as 'dangerous' or 'safe'. The PIN contains a population of artificial
dendritic cells to carry out the classification process. The PIN takes as its input the an-
tigens corresponding to observed packets and the signals emitted by the danger model
signal generators. Its output is a stream of artificial dendritic cells that present anti-
gens and the corresponding contexts of danger or safety in which they were collected.

An artificial dendritic cell (DC) acts as a container for an antigen and correspond-
ing danger model signals. Each DC presents exactly one antigen while no antigen is
presented by more than one DC at a time. The DC contains a danger level value that
is the sum of the signal strengths of all the danger signals that have bound with the
DC. Similarly, the DC also contains a safe level value for the sum of binding safe sig-
nals. Finally, the DC maintains an antigen count that records the number of antigens
that have arrived since the DC was instantiated and match the DC’s antigen.

When a danger model signal arrives, the PIN compares the signal with each DC to
determine if binding occurs. A danger model signal binds with a DC if the danger
model signal's feature value is equal to any of the feature values in the antigen pre-
sented by the DC. A binding danger model signal adds its signal level to the DC’s
danger level or safe level, as appropriate. Binding does not exhaust or otherwise alter
a danger model signal. A single danger model signal arriving at the PIN may thus
bind with and stimulate multiple DCs.

DCs persist in the PIN until they mature. A DC matures in a dangerous context
when its danger level reaches the danger maturation threshold. Similarly, the DC ma-
tures in a safe context if its safe level reaches the safe maturation threshold. The DC
leaves the PIN and migrates to the Adaptive Layer to present its antigen and the con-
text in which it matured.

3.3 The Adaptive Layer

The Adaptive Layer emulates the interactions that occur between dendritic cells and-
the adaptive immune system's T cells in locations such as the paracortex of a lymph
node. The Adaptive Layer identifies threats through immune reactions triggered by
the activation and proliferation of artificial T cells. This emulates the action of helper
T cells stimulating immune reactions in the natural immune system to specific anti-
gens identified as threats.

The main component of the Adaptive Layer is the Artificial Lymphatic Paracortex
(ALP). The ALP contains populations of artificial T cells (TC), each of which repre-
sents a population of identical, activated T cells. The TC contains a T cell receptor
(TCR), a vector of values defined identically to the NetTRIIAD antigen, specifying
which antigen will bind to the TC. The TC maintains a population value for the quan-
tity of T cells it represents. It also records the sum of the antigen count values of the
DCs that have presented antigens to the TC. TCs exist in two classes: effectors that
promote immune reactions to antigens matching their TCR and regulators that sup-
press immune reactions.
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NetTRIIAD does not attempt to explicitly represent the huge population of naive,
nonself-reactive T cells to implement self — nonself discrimination (SNSD). NetTRI-
IAD uses a positive characterization approach that explicitly defines a set of self anti-
gens. The self set contains antigens representing the network’s normal, threat-free
traffic. An antigen is classified as self if and only if it is found to exist in this self set,
otherwise it is nonself. The presence of a matching naive T cell is implied by the clas-
sification of an antigen as nonself. This avoids the potentially high overhead of gener-
ating negative detectors or other negative characterizations of self [24].

Since client / server communications frequently use dynamically assigned, or
ephemeral, ports for the client endpoint, a series of essentially identical communica-
tions can result in large number of self antigens differing only in one protocol feature
value. NetTRIIAD defines protocol feature similarity classes that specify ranges of
port values that will all be considered equal if used for the client endpoint of a known
client / server session. This allows a single self antigen to provide a summarized rep-
resentation of multiple antigens pertaining to equivalent client / server communica-
tions, significantly reducing the size of the self set.

The ALP manages DCs and TCs using a population update cycle consisting of 12
processing intervals of eight minutes each. Thus the total population update cycle
time is equal to 96 minutes, giving 15 cycles in a 24 hour period. This duration pro-
vides an adequate time window to process the antigens and danger model signals that
may result from multi-staged or stealthy threats. It is also short enough to ensure TCs
do not persist so long that they combine evidence from unrelated events to promote
unwarranted immune reactions and cause false positive alerts [4, 29].

The ALP processes DCs as they arrive throughout the processing interval. The
ALP first uses the SNSD mechanism to classify a DC’s antigen as self or nonself. A
self antigen is tolerated and thus receives no further processing. A nonself antigen re-
sults in activation and proliferation of a TC with matching TCR. A DC presenting in
the dangerous context results in a TC of the effector class with a population equal to
the DC’s danger level. Conversely, presentation in the safe context results in a TC of
the regulator class with a population equal to the DC’s safe level. The new TC’s anti-
gen count is equal to the antigen count of the presenting DC. If a TC of the same class
and TCR value already exists in the ALP, the new TC merges with it, increasing the
total population and antigen count of the existing TC. Otherwise the new TC joins the
ALP population directly.

At the conclusion of each processing interval, the ALP checks for immune reac-
tions and updates the TC population. The ALP determines the effect of immune sup-
pression by calculating a net population for each effector TC. The net population is
the effector TC population minus the population of the regulator TC with a matching
TCR, if such exists.

The ALP carries out a clonal selection process on the effector TCs to ensure only
those most representative of a given threat will promote an immune reaction. The
clonal selection has the effect of clustering the TCs corresponding to a given group of
traffic sources and destinations and eliminating as potential false positives those
stemming from weaker danger signals. The ALP partitions the TC population into
disjoint sets using the address features in their TCRs [8]. Two TCs fall in the same
disjoint set if the same address feature value appears in both their TCRs. The ALP de-
termines the maximum net population value among the TCs in each disjoint set. Any
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TCs in the disjoint set having a net population value less than one half this maximum
value receives no further consideration for immune reaction computations in the cur-
rent interval.

The ALP evaluates the remaining TCs to determine if any triggers an immune re-
action. A TC’s danger concentration is the net population divided by the TC’s anti-
gen count value. This gives greater weight to the antigens, and thus packets, that
appear less frequently in a given dangerous context. If the danger concentration ex-
ceeds the immune reaction threshold, the TC is considered to have caused an immune
reaction to the antigens matching its TCR. The ALP emits a threat alert, using the IP
address, protocol and port information contained in the TCR.

TCs do not persist in the ALP indefinitely. At the conclusion of each processing in-
terval, the ALP carries out a population decay operation that reduces the population
level of each TC by one half. A TC with a population value decaying to zero is elimi-
nated. This gives each T cell a finite lifespan and causes the effect of each antigen
presentation by a DC to fade away over time.

The ALP also includes an acquired tolerance mechanism that allows it to adapt to
changes in the normal traffic on the network, adding self antigens for traffic found
to be safe. If a regulator class TC persists in the ALP for a complete population up-
date cycle during which no immune reaction to the antigen matching its TCR occurs,
the TC causes a folerization reaction. The ALP acquires a new self antigen corre-
sponding to the regulator TC’s TCR and will henceforth classify this antigen as self
and thus tolerate it. Since population decay constantly reduces the TC population,
strong evidence in the form of multiple safe presentations of the same antigen are
needed for a regulator TC to persist long enough to cause a tolerization reaction.

4 Experimentation

Experimentation on a prototype implementation of the NetTRITAD model provides a
comparison of its performance versus that of a conventional NIDS.

The NetTRIIAD components are implemented as separate processes, with socket-
based inter-process communication enabling flexible deployment in support of typical
NIDS architectures. The prototype builds upon proven, conventional information
security tools, augmenting their capabilities. The prototype uses the Snort NIDS, ver-
sion 2.6.1.3 as the misuse-based NIDS component [23]. A custom Snort plug-in syn-
thesizes NetTRIIAD antigens from captured packets and retrieves network statistics
for the Network Monitor. The prototype also uses the Nagios network monitoring ap-
plication to gather information for the Host Monitor [9].

The experimentation compares the detection results of NetTRIIAD with those of a
baseline Snort installation on the DARPA / MIT 1999 Intrusion Detection Evaluation
(IDEVAL99) inside data sets [18]. Host status changes required to drive the Host
Monitor process were reconstructed from the IDEVAL99 documentation and played
back through Nagios in synchronization with the recorded network traffic. The Net-
TRIIAD self set was captured from two weeks of threat-free IDEVAL99 training
data. The 16 million packets in this training data yielded 31, 215 distinct self antigens.

Both installations ran against the two weeks of inside evaluation data with true and
false positive detections determined by comparison of the alert output with the
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IDEVAL99 master identifications list. Figure 2 depicts the true positive rates and
positive predictive value figures from the experimental runs. There were no signifi-
cant differences in the true positive rates (t = 1.01766, df = 16, p > .25). However, the
NetTRITAD implementation had a significantly lower number of false positive detec-
tions. This led to a positive predictive value of 0.65, significantly better than the 0.38
returned by Snort alone (t = 4.85328, df=16, p < .001).
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Fig. 2. Performance of NetTRIIAD and Snort Baseline

5 Conclusions and Future Work

NetTRIIAD demonstrates performance improvements over a conventional, misuse-
based network intrusion detection system. NetTRIIAD shows a significantly better
positive predictive value for threat detection than is achieved by a conventional mis-
use-based NIDS on the same data. A high positive predictive value has two benefits
for protecting networks. One is as a 'priority of work' mechanism for security ana-
lysts, allowing limited resources to be focused on actual threats. The other benefit is
in facilitating intrusion prevention and other automated security responses. Any sys-
tem empowered to automatically respond to threats runs the risk of doing more harm
than good through disruption of legitimate network traffic unless it can accurately dif-
ferentiate true threats from false alarms.

The NetTRIIAD model builds upon trusted information security tools, preserving
their effectiveness while providing improved performance with the addition of im-
mune inspired components.

Several opportunities for future work exist. The initial NetTRIIAD experimenta-
tion occurred in a controlled laboratory environment as an essential first step in de-
veloping a usable security tool from the model. However, further experimentation on
live networks would help to better understand the true utility of NetTRITAD.
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Extending NetTRIIAD to move beyond threat recognition and include automated
threat response would be a step towards a computer immune system and would bene-
fit from the improved positive predictive value. The features in a NetTRIIAD antigen
contain sufficient information to create firewall rules to block or shape the associated
traffic. Such work could extend the adaptive immune metaphor beyond T cell activa-
tion, adding elements inspired by B cells and antibody production.

Improvements to the danger model signal generators, possibly to examine addi-
tional external data sources, could gather better evidence of threats and improve de-
tection. Similarly, a mechanism for accurate reactions to ‘dangerous self’, suggested
by the Danger Model, would permit NetTRIIAD to recognize threats hidden in ‘nor-
mal’ network traffic.
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Abstract. We apply Artificial Immune Systems(AIS) [4] for credit card
fraud detection and we compare it to other methods such as Neural
Nets(NN) [8] and Bayesian Nets(BN) [2], Naive Bayes(NB) and Deci-
sion Trees(DT) [13]. Exhaustive search and Genetic Algorithm(GA) [7]
are used to select optimized parameters sets, which minimizes the fraud
cost for a credit card database provided by a Brazilian card issuer. The
specifics of the fraud database are taken into account, such as skewness
of data and different costs associated with false positives and negatives.
Tests are done with holdout sample sets, and all executions are run us-
ing Weka [I8], a publicly available software. Our results are consistent
with the early result of Maes in [I2] which concludes that BN is better
than NN, and this occurred in all our evaluated tests. Although NN is
widely used in the market today, the evaluated implementation of NN is
among the worse methods for our database. In spite of a poor behavior
if used with the default parameters set, AIS has the best performance
when parameters optimized by GA are used.

1 Introduction

In recent years many bio-inspired algorithms are sprouting for solving the clas-
sification problems as one can see for instance in [3]. In 1998, Neal et al. [J]
developed an artificial immune system (AIS), JISYS, applied it for mortgage
fraud detection, and reported some first results, still based on simulated data.
In 2002, the journal Nature [I0] published an article on AIS where it indicated
that AIS had many kinds of applications, including the detection of fraudulent
financial transactions. Even though this article previewed a possible commercial
application for 2003 by a British company, we are not aware of any subsequent
publication on AIS in financial fraud detection which reported good experimen-
tal results. The current paper reports our studies and application of AIS on
credit card fraud detection. Moreover, in contrast to the poor performance of
AIS with the default parameters, we report here an optimized and robust set of
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parameters under which AIS led to the best results, even when compared to the
best results from all other analyzed methods.

The lack of publicly available database has been a limiting factor for the pub-
lications on financial fraud detection [I4], particularly credit card transactions.
In fact, only few publications on this field bring a real contribution based on
experiments. For instance, the method AdaCost [I6J6] was developed from Ad-
aboost [15] for credit card fraud detection, and resulted in the metaheurists Cost
Sensitive [B], which can be applied for many applications where there are different
costs for false positive and false negative. Comparative studies between Neural
Networks (NN) and Bayesian Networks (BN) in credit card fraud detection were
reported [12], which favored the result of BN.

In this paper, we present our studies of AIS compared to other techniques such
as BN and NN as well. In addition, we have also included comparative studies
with two other methods: Decision Trees (DT) and Naive Bayes (NB). Moreover,
we take into account the skewed nature of the dataset, the different costs for
false positive and false negative in order to evaluate a classifier performance, as
well as the need of a parametric adjustment in order to obtain the best results
for every compared method.

Background: Fraud prevention is interesting for financial institutions. The ad-
vent of new technologies as telephone, automated teller machines (ATMs) and
credit card systems have amplified the amount of fraud loss for many banks.
Analyzing whether each transaction is legitimate or not is very expensive. Con-
firming whether a transaction was done by a client or a fraudster by phoning
all card holders is cost prohibitive if we check them in all transactions. Fraud
prevention by automatic fraud detections is where the well-known classification
methods can be applied, where pattern recognition systems play a very impor-
tant role. One can learn from past (fraud happened in the past) and classify
new instances (transactions). In credit card business today, perhaps the most
commonly used technique is Neural Networks, for example in Fair Isaac’s Falcon
software as claimed in its website (http://www.fairisaac.com/fic/en/product-
service/product-index/falcon-fraud-manager/). In general, the NN implementa-
tion is inside a complex work-flow system which is integrated with the bank
database. When a new transaction comes in, the work-flow calculates all the in-
put variables and outputs a fraud score. Then this score is used to decide which
transaction is going to be checked manually and to order its priority.

Skewed data and other discussions: Fraud detection model is among the most
complicated models used for the credit card industry. Skewness of the data,
search space dimensionality, different cost of false positive and false negative,
durability of the model and short time-to-answer are among the problems one
has to face in developing a fraud detection model. In this article we focus our
attention on skewness of the data by comparing five methodd] .

! The problem of taking into account the different cost between false positive and
false negative during the training phase needs a special investigation which is what
we intend to conclude before December this year. The durability and short time-to-
answer problem we intend to start to analyze next year.
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Fraud Tagging: We have obtained our database from a large Brazilian bank, with
registers within time window between Jul/14/2004 through Sep/12/2004. Each
register represents a credit card authorization, with only approved transactions
excluding the denied transactions. One applies the following rule for classifying
an authorization: a transaction is considered fraudulent if, in the next 2 months
after the date of the transaction, which is called performance period, either the
client queried the transaction, or the bank distrusts it as a legitimate transaction
and confirms it does not belong to the client; otherwise the transaction is tagged
as legittimate. When an authorization is tagged as fr:auudulentlg7 the Bank has
almost 100% of certainty about this claim, but when the transaction is tagged
legitimate, it cannot be affirmed this is in fact legitimate, but it can only be sure
that the transaction was still not identified as fraudulent in the performance
window. However, according to the Bank, at least 80% of the occurred frauds
are identified as fraudulent in 2-month period.

Sampling: The sampling of transactions is done in two steps: first, one randomly
samples card numbers to be analyzed in this period, irrespective to whether the
card had or not a fraud transaction in the historical period; second, there is a
weighted sampling of the class where 10% of legitimate transactions are selected
and 100% fraudulent transactions are selected.

In the end, the database that we have received from the bank contains 41647
registers, from which 3.74% are fraudlent.

Categorization: We preprocess the database in three steps:

1. We apply statistical analysis in order to remove variables that are consid-
ered unimportant for the modeling (ex: card number). From 33 variables in
the beginning we had 17 independent variables and 1 dependent variable
(flag fraud) after this phase;

2. We bind the variables. All variables but Merchant Category Code (MCCE
are categorized in at most 10 groups, one digit only. See Table [l

3. We generate 9 splits (also known as samples) from the databases. Each split
contains a pair of databases: 70% of transactions for development (training
set), and 30% of transaction for validation (testing set, holdout sample).
Table 2 shows that these splits have about the same number of frauds and
legitimates transactions.

All 9 splits are subsequently converted to Weka [I8] format (.arff), on which our
studies are executed. The software Weka-3-4-11 is used for all of our studies and
the implementations used for DT, BN, NB and NN are built in Weka. The only
plugged in implementation was the AIS, the ATRS2 version 1.6 (March 2006)
implemented by Jason Brownlee [I], originally designed by Watkins et al. [I7].

2 According to the scope of the annotated dataset provided by the Bank, we dealed
with the fraud modalities Lost/Stolen, Skimming, Mail Order, Account Take Over
and Telephone Order; and we did not manage other types like Never Received Is-
suance, Manual Counterfeit and Fraud Application.

3 MCC got 33 categories so it could fit the number of groups of Transaction Category
Code (TCC).
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Table 1. Number of categories for each variable. Previous represents the value of the
last transaction made for the same client.

name mcc mcc previous zip code  zip code previous value trans
# of categ. 33 33 10 10 10
name value trans previous pos entry mode credit limit brand variant
# of categ. 10 10 10 6 6
name score type person type of trans # of statements speed
# of categ. 10 2 2 4 8
name diff score credit line flag fraud
# of categ. 6 9 2

Table 2. Number of frauds and legitimates in each split

base 1 2 3 4 5 6 7 8 9
development frauds 1,084 1,092 1,088 1,075 1,081 1,116 1,099 1,106 1,100
development legitimates 27,904 28,012 28,061 28,145 28,045 27,973 28,113 27,884 28,188
validation frauds 475 467 471 484 478 443 460 453 459

validation legitimates 12,184 12,076 12,027 11,943 12,043 12,115 11,975 12,204 11,960

Performance measures: In order to evaluate the classifiers, we have considered
the use of KS, ROC Curve, Lift Curve, Precision (Hit Rate) and Recall accuracy
(Detection Rate). From conversations with fraud prevention specialists and the
first results using ROC curve and Hit Rate, we found out that we would obtain
more appliable results if we used a cost function in which we adopted an average
cost of $ 1 for every verification, and an average loss of $ 100 for every undetected
fraud. This cost function combines Hit Rate and Detection Rate in one unique
measure, and evaluates the function in only one point, the applicable cut-off. This
was considered to be more similar to the used practice of a fraud score than a
ROC curve that compares multiple references simultaneously. If we denote tp,
fp and fn as the number of true positives (true frauds), false positive and false
negatives, the final cost is given by:

$cost = $100 x fn + $1 x (fp +tp).

Since the received database had only 10% of legitimate and 100% of fraudulent
transactions, we had to adjust the cost function to:

$cost = $100 x fn + $10 x fp + $1 x tp.

Once we prepared the data, we chose the methods to compare with the opti-
mization criteria.

2 Parameter Space

In this small section we just introduce a very short description of the input
parameters for the five chosen methods. A better description of these parameters
can be found in the Appendix, and details about the methodologies and their
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parameters can be found in Weka documentations [T9/I8] as well. The methods
and their respective parameters are:

— NB has no parameter;

— DT has 2 parameters ( C, M);

— BN has 3 parameters ( D, Q, E) and 3 sub parameter (P, S, A);
— NN has 7 parameters ( L, M, N, V| S, E, H);

— AIS has 9 parameters ( S, F, C, H, R, V, A, E, K).

The methods NB and DT have a small parameter space. The parameter space
of BN is also quite small, especially if we notice that there are few choices for
many of them.

3 Optimization of Parameters

The parameter spaces of the methods Decision Tree, Bayesian Network and
Naive Bayes are small enough in such a way that an exhaustive exploration of all
possible parameter is possible. However, this is not the case for Neural Networks
and Artificial Immune Systems. In order to find an optimized parameter set for

these methods, we performed a parameters set optimization based on a Genetic
Algorithm (GA).
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Fig. 1. Genetic Algorithm for parameters optimization

As showed in Figure [Il we start with an initial pool of 50 random execu-
tions, followed by 20 Genetic Algorithm (GA) generations. Each GA generation
combines two randomly selected candidates among the best 15 from previous
generation. This combination performs: cross over, mutation, random change
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or no action for each parameter independently. As the generation goes by, the
chance of no action increases. In the end, we perform a local search around the
optimized founded by GA optimization. Notice that the final solution cannot be
claimed to be optimal, and it is usually not optimal, but only suboptimal.

4 Robustness of the Parameters

Given a classification method M, after the parameter optimization, all opti-
mized parameters may be independent of the split. In this case we say that this
parameter set is robust and we name it ROBUST (M).

When this does not happen, the optimization process is not as strong since
the obtained optimized parameter set loses generalization power. In this case
we decided to sacrifice prediction in order to gain robustness in the parameter
set. In order to rewrite the optimization function that should be used in a GA
algorithm, we have used a visualization procedure with computed costs for many
equally spaced parameter sets in the parameter space. After defined a good
optimization function, we proceeded not with another GA optimization because
our time constraints, but we reused our initial runs used in the visualization,
with the following kind of multiresolution optimization [9):

1. we identify those parameters that have not changed, and we freeze these
values for these respective parameters;

2. for any other parameter we screen the 20 best parameter sets for each split
and identify reasonable range;

3. for all non-robust parameters, we choose an integer step s so the the searching
space does not explode;

4. we evaluate the costs for all possible combinations according to the searching
space defined above, and find the parameter set P that brings the minimum
average cost among all the different used splits;

5. we zoom the screen to the neighborhood of P, refine steps s, and repeat the
process from then on, until no refinement is possible.

In this case, after this process, we also call this parameters set robust and we
name it ROBUST(M). We should notice that we could also have used a GA
optimization instead of a multiresolution optimization like the one performed by
our multiresolution optimization.

In order to run the multiresolution optimization, we elected 6 splits (2,3,4,5,6
and 7) as the robustization split group, and 3 others (8,9 and 1) as the evaluation
split group for posterior evaluation and comparison of all methods.

5 Results

We compare the following five classification methods: Naive Bayes (NB), Neural
Network (NN), Bayesian Network (BN), Artificial Immune System (AIS) and
Decision Tree(DT). For any method M, we have applied three different strategies:
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DEFAULT(M),OPTIMIZED(M) and ROBUST (M), in which DEFAULT
means to use default parameters provided by Weka; OPTIMI1Z ED refers to an
optimized set of parameters obtained as described in Section [3, and ROBU ST
is an optimized robust set of parameters.

BN NB DT AIS NN
—— =t —A H } | ’__,.-l i
default I < — o I
parameters BN T
__.-‘j,j\I'i\I_/,/--"""
AIS _,-"'DT__/*' NB
} +— | F—
optmized | . i N ]
parameters | i N |
! BN
AIS DET NB T NN
F L N 1
robust | o — ' ' I|
parameters | 1
R$20K R$30K R$40K

Fig. 2. Summary results for the methods in all strategies. Average and standard devi-
ation (statistics based on the 3 evaluation splits) are represented by small error-bars,
for the 5 methods, for the 3 strategies. The figure is divided in three stacked horizontal
lines with their methods statistics (the error-bars) in order to separate strategies: de-
fault parameters, optimized parameters and robust parameters, in order of evolution.
All 3 large horizontal lines represent the cost functions, ranging from R$ 20 thousand
in the left end to R$ 40 thousand in the right end. In order to better display the error-
bars, some of them were vertically shifted. AIS led to the smallest cost with robust
parameters, followed by DT, and NN led to the largest cost.

Table 3. Summary results for the methods in all strategies. Average and standard
deviation for the 3 evaluation splits.

Strategy DT AIS BN NN NB

DEFAULT  32.76 (4.83%) 35.66 (3.21%) 28.91 (2.65%) 39.10 (4.68%) 30.44 (1.68%)
OPTIMIZED 27.84 (4.16%) 24.97 (5.43%) 28.90 (2.69%) 29.98 (4.38%) 30.44 (1.68%)
ROBUST — 27.87 (4.21%) 23.30 (2.29%) 28.90 (2.69%) 36.33 (9.75%) 30.44 (1.68%)

One can see in Figure 2] and Table [3] the final costs of the classification meth-
ods obtained for all strategies. We show here only the average costs with their
standard deviations for the 3 splits used for evaluation of the robust parame-
ter sets. The cost is represented in thousand of Reais (Brazilian Currency), the
smaller, the better. The standard deviations (num%) are considered in the same
way as errors. From these results one can notice that:

— The Bayesian methods BN and NB are such that their results are indepen-
dent from the used strategies. This is expected for NB, since there are no
parameters. For BN, the default parameters performed almost in the same
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way as the optimized strategies, independently from the splits. The maxi-
mum number of node parents influences the final topology and probability
tables but not enough to impact the final costs;

— For strategy DEF AU LT we used the default parameters. BN was the best
method. AIS and NN got relatively poor results compared to the others. Par-
ticularly, NN improved only 15.4%] in relation to a strategy which considers
all transactions as legitimate;

— For what concerns the strategy OPTIMIZED with optimized parameters,
we verified that almost all the methods led to reduced costs in comparison to
the case with default parameters. The method that reduced its cost the most,
with 29.98%8 of cost reduction, was AIS and it became the best method
for this strategy. The second best method was DT, that reached a 15.01%
of cost reduction. NN reduced its cost by 23.33%09 ;

— When we analyzed the strategy ROBUST, we saw two important facts:
first, there was an abrupt cost increase for ROBUST(NN) in relation to
OPTIMIZED(NN), that shows the over-fitting tendency of method NN
with optimized parameters. There was a cost reduction for ROBUST(AIS)
in relation to OPTIMIZED(AIS). We suppose that this happened due
to the fact that AIS has more parameters and also the largest parametric
search space. In this way, when the parametric space is reduced, after the
freezing of some parameters during the parameters robustization process, it
can be observed a more efficient optimization. This phenomenon is many
times mentioned as “Curse of Dimensionality”.

Robust set of parameters: The table @ shows the set of optimized robust param-
eters for each method.

At first glance, we can observe that for DT we have a tree with minimum
pruning according to parameter M. For NN, we see that the parameters L and
M achieved very interesting values with a big L (Learning Rate) and very small
M (Momentum). This fact allows us to trace a parallel with DT, saying that,
as well as DT, NN takes a step to less pruning and more over-fitting. BN was
already optimal with default parameters. Finally, for AIS, we obtained a very
good set of parameters from GA execution, which made the multiresolution
optimization phase quite easy in order to obtain a good optimized and robust
set of parameters. One of the most surprising results was K equals to 1, which
means that no voting is necessary: the first rule that matches decides the class.

Final comparison of all methods: Since the standard deviation seen in Figure 2]
suggests us that DT, BN and NB could have the same costs, we performed four
statistics t-student tests with 100 new random splits in the same proportion.

115.4% = $39.1 thousands/$46.2 thousands, where $46.2 thousands corresponds to
the average cost of the validation part of the splits 8, 9 and 1 when one simply
decides letting frauds happen unwatched.

®29.98% = 1 - $ 24.97 thousands / $ 35.66 thousands = 1 — OPTIMIZED(AIS)/
DEFAULT(AIS).

523.33% = 1 - $ 29.98 thousands / $ 39.10 thousands = 1 — OPTIMIZED(NN)/
DEFAULT(NN).
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Table 4. Summary of optimized robust parameters. Parameters N,S for NN and A,S
for AIS were not iterated. Parameters E,V for NN and K,F,H,V for AIS were frozen for
the multiresolution optimization. Parameters L,M,H for NN and C,R,E for AIS needed
a multiresolution optimization. Parameter H=20 in NN is the number of attributes +
number of classes + 1, parameter P=17 for BN is the number of attributes.

Average Cost
Method on validation Robust parameters in command line display
DT $ 27,870.66 -C 0.49 -M 1
NB $30,439.33 n/a
BN $ 28,901.66 -D -Q weka.classifiers.bayes.net.search.local. K2 — -P 17 -S BAYES
-E weka.classifiers.bayes.net.estimate.SimpleEstimator — -A 0.5
NN $36,332.33 -L040-M0.12-H20 -EO0-V0O -N500-S0
AIS $23,303.00 -C30-R177-E5 -K1-F0-H10-V1 -A-1-S1

These splits were specially created for these tests. We tested if ROBUST(AIS)—
ROBUST(DT) =0, ROBUST(DT)— ROBUST(BN) =0, ROBUST(BN) —
ROBUST(NB) =0 and ROBUST(NB) — ROBUST(NN) = 0. Not surpris-
ingly, with 99.9% of certainty, all HO were rejected, which means that none of
them is equal. In the end, the average of costs for strategy robust is what defines
the rank of methods. From the Figure 2l we can notice that AIS produced the
best classifiers, followed by DT, BN, NB, and NN, in this order.

6 Future Work

We intend to analyze in details the optimized parameters in the coming future,
and try to reach better relations between the value of each parameter and its
relation to the skewness of the data, at same time that we enquire why AIRS2
implementation of AIS outperforms the implementations of other methods. We
are also extending the analysis in such a way to evaluate the influence of a
metaheuristics like Cost Sensitive Classifier [0], which takes into account the
different costs of false positive and false negative in the training phase. Using
this metaheuristics, in our preliminary and unfinished results, we are observing
that one may obtain better classifiers for all methods, up to Naive Bayes. We
also consider the inclusion of Support Vector Machines (SVM) in the pool of
compared methods. And given we are using AIS, a suitable comparison method
would be k nearest neighbour.

We intend to apply the models for unseen out-of-date datasets to compare
stability and life expectancies. Since, as we know, the fraudulent behavior is
very dynamic, often a model loses its prediction power in a short time. Besides
knowing which method generates the most accurate model, it is important to
know which one generates the model that remains predictive for a longer time.

7 Conclusions

In this paper, we present a comparative study of five classification methods
(Decision Tree, Neural Network, Bayesian Network, Naive Bayes and Artificial
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Immune System). The used definition of an objective function to be optimized
that takes into account different costs for false positives and false negatives is
important. In all our executions, except for NB (no parameter needed) and BN,
we concluded that the best results had not been reached with default set of
parameters as given in Weka. Particularly for AIS and NN, the results gotten
using default parameters are very poor if compared with those gotten after a
parametric adjustment using GA. Our tests results show that BN is better than
NN, the most used method in real application today, which reproduces the results
from Maes [I1J12]. In addition, we obtained that AIS and DT also surpass NN.
Perhaps because DT is a classic classification method, it has been forgotten in
recent works. However, it still reveals itself as one of the best methods, with
sufficient competitive results. On our tests AIS had a surprisingly large increase
of performance from default parameters to GA optimized parameters, and this
performance was kept in the obtaining of an optimized robust parameter set.

To sum up, AIS produced the best classifiers, followed by DT, BN, NB, and
NN, respectively.
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Appendix

For next paragraph, let us define VR = [X1;X2; step = S] as been the al-
lowed variation range from X1 to X2 and S, the precision step for this specific
parameter S.

Naive Bayes: NB does not have any parameter.

Decision Tree: DT has two parameters C and M:

— C: the confidence threshold for pruning. (Default: 0.25). VR = [0.01;1.00;
step = 0.01].

— M: the minimum number of instances per leaf. (Default: 2). VR = [1;100;
step = 1].

Bayesian Network: BN has three parameters ( D, Q, E):

— D: defines whether a structure called ADTree will or not be used;

— Q: defines which search for topology algorithm will be used. The available
ones are: GeneticSearch, HillClimber, K2, LocalScoreSearchAlgorithm, Re-
peatedHillClimber, SimulatedAnnealing, TabuSearch e TAN. Every search
algorithm has two parameters:
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e P: defines the number of parent’s allowed in the topology.
e S: defines the type of score to be used to build the conditional table,
they are: BAYES, BDeu, MDL, ENTROPY e AIC;

E: defines the estimator algorithm to calculate the conditional tables. In
Weka they are: BayesNetEstimator, BMAEstimator, MultiNomial BMAEs-
timator and SimpleEstimator (this estimator has one parameter (A), called
alpha, and it ranges between 0% e 100%, and it represents a start value for
the conditional probability.).

Neural Network: NN has seven parameters ( L, M, N, V, S, E, H):

L: the learning rate. (default 0.3). The closer to zero, the smaller the impact
of the incoming information to be learnt. VR = [0.01;1.00; step = 0.01].
M: the momentum (default 0.2). Its inclusion (values greater than zero) has
for objective to increase the speed of the training of a neural net and to
reduce the instability. VR = [0.00;1.00; step = 0.01].

N: the number of epochs to train through. (default 500). our tests indicates
that using N greater than 500 does not increase the performance significantly,
and fixing it to its default 500. VR = [500;500; step = 0].

V: the percentage size of the validation set from the training to use. (default
0 (no validation set is used, instead number of epochs is used). It ranges
between 0% and 99,99%, when this parameter is greater that zero intend to
reduce over-fitting. VR = [0.00;0.99; step = 0.01].

S: the seed for the random number generator. We used default value. VR =
[0;0; step = 0.

E: the threshold for the number of consecutive errors allowed during valida-
tion testing. (default 20). Number between 1 and 100. This parameter par-
ticipates with N to form the stop condition of the algorithm. VR = [1;100;
step = 1].

H: string of numbers of nodes to be used on each layer. Each number rep-
resents its own layer and the number of nodes on that layer. There are also
some wildcards: ’a’, 1", ’0’, 't’. These are ’a’ = (number of attributes + num-
ber of classes) / 2,1’ = number of attributes, 0’ = number of classes, and
't” = number of attributes + number of classes. VR = [1;20; step = 1].

Artificial Immune System: AIS has 9 parameters ( S, F, C, H, R, V, A, E, K):

S: the seed for the random number generator. (default 0). We adopted the
fixed value 1. VR = [1;1; step = 0].

F: the minimum number percentage affinity threshold (see [17] page 6). VR
= [0.00;0.5; step = 0.01].

C: the Clonal Rate is an integer that ranges between 0 ant 100. VR = [1;100;
step = 1].

H: the Hyper-mutation rate. Ranges between 0 and 100 and determines the
percentage of clones (from last parameter) that will suffer mutation. VR =
[0;10; step = 1].
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R: the total resources is the maximum number of B-Cell (or ARB) allowed
in the system. VR = [0;200; step = 1].

V: the Stimulation threshold is a number between 0 and 1 used as criteria
to keep or drop a given B-Cell. VR = [0.00;1.00; step = 0.01].

A: the number of affinity threshold instances. Because of lack of documen-
tation in [I] we used the default (-1) value. VR = [-1;-1; step = 0].

E: the memory pool size. Define the number of random initialization instances.
By simplicity we varied it between 0 and 10. VR = [0;10; step = 1].

K: the number of nearest neighbors representing B-Cells to be matched and
consulted in a voting election of which class the current transaction belongs
to. K equals to 1 means no voting. VR = [0;10; step = 1].
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Abstract. Artificial Immune Recognition System (AIRS) has shown an
effective performance on several machine learning problems. In this study, the
resource allocation method of AIRS was changed with a nonlinear method. This
new algorithm, AIRS with nonlinear resource allocation method, was used as a
classifier in Traditional Malay Music (TMM) genre classification. Music genre
classification has a great important role in music information retrieval systems
nowadays. The proposed system consists of three stages: feature extraction,
feature selection and finally using proposed algorithm as a classifier. Based on
results of conducted experiments, the obtained classification accuracy of
proposed system is 88.6 % using 10 fold cross validation for TMM genre
classification. The results also show that AIRS with nonlinear allocation
method obtains maximum classification accuracy for TMM genre classification.

Keywords: Artificial Immune System, AIRS, Music Genre Classification,
Nonlinear Resource allocation.

1 Introduction

Interest on music information retrieval systems for the storage, retrieval and
classification of large collections of digital musical files has grown in recent years.
Metadata such as filename, author, file size, date and genres are commonly used to
classify and retrieve these documents. Such manual classification is highly labor-
intensive and costly both in terms of time and money [1]. An automatic classification
system that is able to analyze and extract implicit knowledge of the musical files is
therefore highly sought. One approach to automated musical classification that is
currently being widely studied is classification based on musical genres.

Musical genres are labels created and used by humans for categorizing and
describing music [2]. Examples of a few Western musical genres are such as Pop, Rock,
Hip-hop, and Classical. Several systems for automated genre classification and retrieval

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 1321141,12008.
© Springer-Verlag Berlin Heidelberg 2008
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of musical files have been researched and developed [2], [3]. However, most of these
studies were conducted using only western dataset and we focus on non-Western
musical genres, and more specifically on Traditional Malay Music (TMM). Norowi et al
[4] have shown the significance effect of beat features for TMM genre classification in
comparison to Western musical genres. Therefore the behavior of TMM genres is
different from western music genres and need more studies to explore it.

Artificial immune system (AIS) is a computational method inspired by the biology
immune system. It is progressing slowly and steadily as a new branch of computational
intelligence and soft computing [5],[6]. One of AIS based algorithms is Artificial
Immune Recognition System (AIRS). AIRS is a supervised immune-inspired
classification system capable of assigning data items unseen during training to one of
any number of classes based on previous training experience. AIRS is probably the
first and best known AIS for classification, having been developed in 2001 [7].

In this study, the proposed approach consists of three stages: feature extraction,
feature selection preprocessing and finally classification with AIRS. Feature selection
is used to improve the quality of data that has been extracted in manual manner. Also
non linear resource allocation is used in AIRS to increase its classification
performance by means of resource number. The performance of the proposed method
was tested with regard to classification accuracy. The obtained classification accuracy
of our method is 88.6% using ten fold cross validation for TMM genre classification.
Based on the results, AIRS with nonlinear resource allocation has most accuracy
among the classifiers that used in the experiments.

The remainder of this paper is organized as follows: Section 2 gives the briefly
description about Traditional Malay Music. Section 3 and 4 describe about feature
extraction and feature selection methods, respectively. AIRS and using nonlinear
resource allocation method in AIRS are explained in Section 5. In Section 6, we
explain the experiments and discuss about the results and consequently in Section 7,
we conclude the paper.

2 Traditional Malay Music

Traditional Malay music is mainly derivative, influenced by the initial overall Indian
and Middle Eastern music during the trade era and later from colonial powers such as
Thailand, Indonesia, Portuguese and British who introduced their own culture
including dance and music. A thorough overview on the origin and history of TMM
can be found in [8]. The taxonomy of TMM depends on the nature of the theatre
forms they serve and their instrumentations. Categorization of TMM genres has been
studied extensively by Ang [9]. Music of these genres is usually disseminated non-
commercially, usually performed by persons who are not highly trained musical
specialists, undergoes change arising from creative impulses and exists in many
forms. The musical ensembles usually include gendangs or drums that are used to
provide constant rhythmic beat of the songs and gongs to mark the end of a temporal
cycle at specific part of the song [10].

One common attribute that is shared by most TMM genres is that they are
generally repetitive in nature and exist in ‘gongan’-like cycle. ‘Gongan’ is defined as
a temporal cycle marked internally at specific points by specific gongs and at the end
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by the lowest-pitched gong of an ensemble [8]. It is an important structural function
as it divides the musical pieces into temporal sections. Once every measure has been
played, musicians continue playing in a looping motion by repeating the cycle from
the beginning again until one of the lead percussionists signals the end of the song by
varying their rhythms noticeably. In general, TMM does not have a chorus that plays
differently than other parts of the songs, which is the usual occurrence in western
music. Its repetitiveness and constant rhythms are two aspects that are taken into
account to facilitate classification by genre later.

Very little study has been conducted on automatic traditional Malay music genre
classification in the literature. Norowi et al [4] studied the effects of various factors
and audio feature set combinations towards the classification of TMM genres. Results
from experiments conducted in several phases show that factors such as dataset size,
track length and location, together with various combinations of audio feature sets
comprising Short Time Fourier Transform (STFT), Mel-Frequency Cepstral
Coefficients (MFCCs) and Beat Features affect classification. This study also only
used the J48 classifier and achieved 66.3% classification accuracy for TMM genres
[4]. We could not find more researches about TMM genre classification. In this study,
we propose the hybrid system that includes feature extraction, feature selection and
AIRS classifier with new resource allocation method to improve the performance of
automatic TMM genre classification.

3 Feature Extraction

Ten TMM genres were involved in this study. The breakdown for each genre and its
number of musical files are listed in Table 1. A relatively small dataset was used in
this experiment due to the difficulty in obtaining digital files of TMM, as traditional
Malay musical culture is fast corroding with little preservation in digital format.
Whilst it was much easier to obtain dataset for western music, the number was also
kept small to match the size of TMM dataset.

Musical files for this experiment were obtained from the Malaysia Arts Academy,
Sultan Salahuddin Abdul Aziz Shah’s Cultural and Arts Centre at Universiti Putra
Malaysia, Student’s Cultural Centre at Universiti Malaya and also personal
collections of audio CDs from many individuals. The dataset became available in both
digital and analog format. Quite a number of musical data for TMM genres were in
analog format and were digitized manually. All of the digital music files were then
converted into wav files; the only audio format supported by the existing feature
extraction tool used at the time of study. The whole dataset was later trimmed to
specific length and location in the file by executing certain audio commands through
batch processing before extraction began.

The features were extracted from the music files through MARSYAS-0.2.2; a free
framework that enables the evaluation of computer audition applications. MARSYAS
is a semi-automatic music classification system that is developed as an alternative
solution for the existing audio tools that are incapable of handling the increasing
amount of computer data [2]. It enables the three feature sets for representing the
timbral texture, rhythmic content and pitch content of the music signals and uses
trained statistical pattern recognition classifiers for evaluation.
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Table 1. Overall number of musical files for each genre

NO Genre Class Label Number
1 Dikir Barat A 31
2 Etnik Sabah B 12
3 Gamelan C 23
4 Ghazal D 17
5 Inang E 10
6 Joget F 15
7 Keroncong G 43
8 Tumbuk Kalang H 13
9 Wayang Kulit I 17

10 Zapin J 10

4 Feature Selection

Feature selection is the process of removing features from the data set that are
irrelevant with respect to the task that is to be performed. Feature selection can be
extremely useful in reducing the dimensionality of the data to be processed by the
classifier, reducing execution time and improving predictive accuracy (inclusion of
irrelevant features can introduce noise into the data, thus obscuring relevant features).
It is worth noting that even though some machine learning algorithms perform some
degree of feature selection themselves (such as classification trees), feature space
reduction can be useful even for these algorithms. Reducing the dimensionality of the
data reduces the size of the hypothesis space and thus results in faster execution time.

Feature selection techniques can be split into two categories — filter methods and
wrapper methods. Filter methods determine whether features are predictive using
heuristics based on characteristics of the data. Wrapper methods make use of the
classification algorithm that will ultimately be applied to the data in order to evaluate
the predictive power of features. Wrapper methods generally result in better
performance than filter methods because the feature selection process is optimized for
the classification algorithm to be used. However, they are generally far too expensive
to be used if the number of features is large because each feature set considered must
be evaluated with the trained classifier. For this reason, wrapper methods will not be
considered in this study. Filter methods are much faster than wrapper methods and
therefore are better suited to high dimensional data sets. We have used Gain Ratio
(GR) feature evaluation method. Since the GR does not perform feature selection but
only feature ranking, this method usually is combined with searching strategy in
feature subset space when one needs to find out the appropriate number of features.
Forward selection, backward elimination, bi-directional search, best-first search,
genetic search, and other methods are often used on this task. Specifically, we
experimented with the best first search in this study. For detailed information about
GR, readers are referred to [11], [12].
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S AIRS

Artificial Immune Recognition System (AIRS) is investigated by Watkins [7]. AIRS
can be applied to classification problems, which is a very common real world data
mining task. Most other artificial immune system research concerns unsupervised
learning and clustering. The only other attempt to use immune systems for supervised
learning is the work of Carter [13]. The AIRS design refers to many immune system
metaphors including resource competition, clonal selection, affinity maturation, memory
cell retention and also used the resource limited artificial immune system concept
investigated by [14]. In this algorithm, the feature vectors presented for training and test
are named as antigens while the system units are called as B cells. Similar B cells are
represented with Artificial Recognition Balls (ARBs) and these ARBs compete with
each other for a fixed resource number. This provides ARBs, which have higher
affinities to the training antigen to improve. The memory cells formed after the whole
training antigens were presented are used to classify test antigens.

AIRS has four stages. The first is performed once at the beginning of the process
(normalization and initialization), and other stages constitute a loop and are
performed for each antigen in the training set: ARB generation, Competition for
resources and nomination of candidate memory cell, promotion of candidate memory
cell into memory pool. The mechanism to develop a candidate memory cell is as
follows [7], [15]:

1. A training antigen is presented to all the memory cells belonging to the same class
as the antigen. The memory cell most stimulated by the antigen is cloned. The
memory cell and all the just generated clones are put into the ARB pool. The
number of clones generated depends on the affinity between the memory cell and
antigen, and affinity in turn is determined by Euclidean distance between the
feature vectors of the memory cell and the training antigen. The smaller the
Euclidean distance, the higher the affinity, the more is the number of clones
allowed.

2. Next, the training antigen is presented to all the ARBs in the ARB pool. All the
ARBs are appropriately rewarded based on affinity between the ARB and the
antigen as follows: An ARB of the same class as the antigen is rewarded highly for
high affinity with the antigen. On the other hand, an out of class ARB is rewarded
highly for a low value of affinity measure. The rewards are in the form of number
of resources. After all the ARBs have been rewarded, the sum of all the resources
in the system typically exceeds the maximum number allowed for the system. The
excess number of resources held by ARBs are removed in order starting from the
ARB of lowest affinity and moving higher until the number of resources held does
not exceed the number of resources allowed for the system. Those ARBs, which
are not left with any resources, are removed from the ARB pool. The remaining
ARBs are tested for their affinities towards the training antigen. If for any class of
ARB the total affinity over all instances of that class does not meet a user defined
stimulation threshold, then the ARBs of that class are mutated and their clones are
placed back in the ARB pool. Step 2 is repeated until the affinity for all classes
meet the stimulation threshold.
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3. After ARBs of all classes have met the stimulation threshold, the best ARB of the
same class as the antigen is chosen as a candidate memory cell. If its affinity for
the training antigen is greater than that of the original memory cell selected for
cloning at step 1, then the candidate memory cell is placed in the memory cell
pool. If in addition to this the difference in affinity of these two memory cells is
smaller than a user defined threshold, the original memory cell is removed from
the pool.

These steps are repeated for each training antigen. After completion of training the
test data are presented only to the memory cell pool, which is responsible for actual
classification. The class of a test antigen is determined by majority voting among the
k most stimulated memory cells, where k is a user defined parameter.

Some researches have been done to evaluate the performance of AIRS [15], [16],
[171, [18], [19]. The results show that AIRS is comparable with famous and powerful
classifiers.

5.1 Nonlinear Resource Allocation

Resource competition is one stage of AIRS. The purpose of resource competition
stage is improving the selection probability of high-affinity ARBs for next steps.
Resource competition is done based on the number of allocated resources for each
ARB. According to this resource allocation mechanism, half of resources is allocated
to the ARBs in the class of Antigen while the remaining half is distributed to the other
classes. The distribution of resources is done by multiplying stimulation rate with
clonal rate that shown in (1). Mervah et al [15] have used a different resource
allocation mechanism. In their mechanism, the Ag classes occurring more frequently
get more resources. Classical AIRS and Mervah study use the linear resource
allocation and the number of allocated resources has linearly relation with affinities.
In linearity approach the difference in allocated resource number between high
affinity ARBs and low affinity ARBs is not very wide. Therefore, the more number of
low affinity ARBs remain in the system and algorithm uses excess resources.

Rsources = StimulationRate X ClonalRate @))

In this study, we use the nonlinear coefficient for clonal rate in (1) to solve this
problem. The appropriate nonlinear coefficient should allocate more resources for
high affinity ARBs and less resources for low affinity ARBs in comparison to linear
method. Resource allocation is done in nonlinearly with affinities, by using this type
of coefficient. Also, the difference in resources number between high-affinity ARBs
and low affinity ARBs is bigger in this approach than linear approach. In this study,
we use very simple mathematic function to satisfy maintained condition. This
function is shown in (2). To evaluate the proposed method, we apply the AIRS with
this nonlinear resource allocation method to TMM genre classification and compare
its accuracy to accuracies of some famous classifiers.

1
Rsources — 4 (Stimulatio n Rate)? X ClonalRate  if Stimulatio n Rate > 0.5 )

(Stimulatio n Rate)* X ClonalRate if Stimulatio n Rate < 0.5
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6 Experiments and Results

In this study, the feature extraction method, described in section 3, was used to extract
the TMM features. The result of this phase was a data set with 63 features and 193
instances. After that, we used the GR feature subset evaluation with best first search
strategy to reduce the dimensional of data set. The feature selection method reduced
the number of features to 25 features.

Some experiments were carried out in order to determine how AIRS with nonlinear
resource allocation method performed TMM genre classification in compared to
AIRS and some other famous classifiers. One advantage of AIRS is that it is not
necessary to know the appropriate settings and parameters for the classifier. The most
important element of the classifier is its ability to be self-determined. The used values
of AIRS parameters can be found in Table 2.

Table 2. Algorithm Parameters

Used Parameter Value

Clonal rate 10
Mutation rate 0.1

ATS 0.2

Stimulation threshold 0.99

Resources 150

Hyper mutation rate 2.00
K value in KNN classifier 4

As we mentioned earlier, we couldn’t find more researches about TMM genre
classification problem. Therefore, to evaluate the performance of proposed method,
the follow classifiers were chosen.

e Bagging

e Bayesian Network

e Cart

e Conjunctive rule learner (Conj-Rules)
Decision Stump

Decision Table

IB1

J48 (an implementation of C4.5)
Kstar

Logistic

LogitBoost

Multi-layer neural network with back propagation (MLP)
Naive Bayesian

Nbtree

PART (a decision list [20])

RBF Network

SMO (a support vector machine [21])
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Table 3. TMM Genre Classification Accuracies

Method Accuracy (%)
Conj-Rules 31.60
Decision Stump 33.68
Decision Table 52.85
CART 61.67
PART 68.39
J48 73.06
Nbtree 75.13
Bagging 76.68
Naive Bayesian 77.72
RBF 80.31
Bayesian Network 80.83
Kstar 80.83
LogitBoost 81.35
MLP 84.47
IB1 84.97
Logistic 86.01
SMO 86.01
AIRS 86.01
The Proposed Method 88.60

Table 4. Confusion Matrix

A | B D |E| F G H 1 J
Al29]0 0 0 0 2 0 0 0 0
B 2 6 0 0 0 0 0 0 4 0
C 0 0] 22 0 1 0 0 0 0 0
D 0 0 0 17 | 0 0 0 0 0 0
E 0 0 0 0 8 0 0 0 0 2
F 0 0 1 0 2|1 12 0 0 0 1
G 0 0 0 0 0 0 41 1 0 0
H 0 0 0 0 1 0 0 12 0 0
I 0 0 0 0 1 0 2 0 14 0
J 0 0 0 0 0 0 0 0 0 10

This list includes a wide range of paradigms. The code written on the WEKA [12]
data mining package and the default parameters were used for each algorithm.

A 10-fold cross validation approach was used to estimate the predictive accuracy
of the algorithms. In this approach, data instances are randomly assigned to one of 10
approximately equal size subsets. At each iteration, all but one of these sets are
merged to form the training set while the classification accuracy of the algorithm is
measured on the remaining subset. This process is repeated 10 times, choosing a
different subset as the test set each time until all data instances have been used 9 times
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for training and once for testing. The final predictive accuracy is computed over all
folds in the usual manner but dividing the number of correct classifications taken over
all folds by the number of data instances in all folds. This approach was used in all
experiments to control the validity of experiments.

The achieved accuracies by classifiers are shown in Table 3. Based on the results,
the proposed method not only increases the accuracy of AIRS from 86.1% to 88.6 %,
but also has most accuracy among the classifier.

Table 4 shows the confusion matrix obtained by applying proposed method to
TMM genre classification. Results show the class B has the worst behavior among
classes and only 50% of this class instances are classified truly. More exploration on
the data collection and feature extraction for this class can be done in feature work to
achieve more accuracy.

7 Conclusions

AIRS is the most important classifier among the Artificial Immune System based
classifiers. In this study, the resource allocation mechanism of AIRS was changed
with a nonlinear resource allocation method. In the application phase of this study,
this new version of AIRS was used to classify Traditional Malay Music genres. Some
experiments were conducted to see the effects of proposed resource allocation
method. According to experimental results, AIRS with nonlinear resource allocation
method showed a considerably high performance with regard to the classification
accuracy for Traditional Malay Music genres. The obtained classification accuracy of
proposed algorithm for Traditional Malay Music genre classification was 88.6%. Also
this accuracy was maximum accuracy among accuracies that obtained by used
classifiers in experiments.
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Abstract. As an immune-inspired algorithm, the Dendritic Cell Algo-
rithm (DCA), produces promising performance in the field of anomaly
detection. This paper presents the application of the DCA to a standard
data set, the KDD 99 data set. The results of different implementation
versions of the DCA, including antigen multiplier and moving time win-
dows, are reported. The real-valued Negative Selection Algorithm (NSA)
using constant-sized detectors and the C4.5 decision tree algorithm are
used, to conduct a baseline comparison. The results suggest that the
DCA is applicable to KDD 99 data set, and the antigen multiplier and
moving time windows have the same effect on the DCA for this partic-
ular data set. The real-valued NSA with contant-sized detectors is not
applicable to the data set. And the C4.5 decision tree algorithm provides
a benchmark of the classification performance for this data set.

1 Introduction

Intrusion detection is the detection of any disallowed activities in a networked
computer system. Anomaly detection is one of the most popular intrusion detec-
tion paradigms and this involves discriminating between normal and
anomalous data, based on the knowledge of the normal data. Compared to tra-
ditional signature-based detection, anomaly detection has a distinct advantage
over signature-based approaches as they are capable of detecting novel intru-
sions. However, such systems can be prone to the generation of false alarms.
The Dendritic Cell Algorithm (DCA) is an Artificial Immune Systems (AIS)
algorithm that is developed for the purpose of anomaly detection. Current re-
search with this algorithm [6l4] have suggested that the DCA shows not only
excellent performance on detection rate, but also promise in assisting in reducing
the number of false positive errors shown with similar systems.

To date, the data used for testing the DCA have been generated by the authors
of the algorithm. While this approach provided the flexibility to explore the func-
tionality of the algorithm, it has left the authors open to the criticism that the
performance of the DCA has not been assessed when applied to a more standard
data set. In addition to examining the performance of the DCA, such application
allows for comparison with more established techniques. For this purpose, the

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 142 2008.
© Springer-Verlag Berlin Heidelberg 2008
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KDD Cup 1999 (KDD 99) data set [7] is chosen as the benchmark for evalua-
tion, as it is one of the most widely used and understood intrusion detection data
sets. This data set was originally used in the International Knowledge Discov-
ery and Data Mining Tools Competition. During the competition, competitors
applied various machine learning algorithms, such as decision tree algorithms
[12], neural network algorithms [T0] and clustering and support vector machine
approaches [2]. In addition to these traditional machine learning algorithms, a
range of AIS algorithms have been applied to this data set, such as real-valued
Negative Selection Algorithm (NSA) [3].

The aim of this paper is to assess two hypotheses: Hypothesis 1, the DCA
can be successfully applied to the KDD 99 data set; Hypothesis 2, changing the
‘antigen multiplier’ and the size of ‘moving time windows’ have the same effect on
the DCA. We also include a preliminary comparison between the DCA, the real-
valued NSA using constant-sized detectors (C-detector) and the C4.5 decision
tree algorithm to provide a basic benchmark. This paper is organized as follows:
Section 2 provides the description of the algorithm and its implementation; the
data set and its normalization are described in Section 3; the experimental setup
is given in Section 4; the result analysis is reported in Section 5; and finally the
conclusions are drawn in Section 6.

2 The Dendritic Cell Algorithm

2.1 The Algorithm

The DCA is based on the function of dendritic cells (DCs) of the human immune
system, using the interdisciplinary approach described by Aickelin et al. [II,
with information on biological DCs described by Greensmith et al. [5]. The
DCA has the ability to combine multiple signals to assess current context of the
environment, as well as asynchronously sample another data stream (antigen).
The correlation between context and antigen is used as the basis of anomaly
detection in this algorithm. Numerous signal sources are involved as the input
signals of the system, generally pre-categorized as ‘PAMP’, ‘danger’ and ‘safe’.
The semantics of these signals are shown as following:

— PAMP: indicates the presence of definite anomaly.

— Danger Signal (DS): may or may not indicate the presence of anomaly,
but the probability of being anomalous is increasing as the value increases.

— Safe Signal (SS): indicates the presence of absolute normal.

The DCA processes the input signals associated with the pre-defined weights to
produce three output signals. The three output signals are costimulation signal
(Csm), semi-mature signal (Semi) and mature signal (Mat). The pre-defined
weights used in this paper are those suggested in [5], as shown in Table[Il The
equation for the calculation of output signals is displayed in Equation [I1

O;=> (Wi; xS) Vj (1)

=0
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Table 1. Suggested weights for Equation [I]
PAMP Danger Signal Safe Signal

SO Sl S2
Csm Og 2 1 3
Semi O, 0 0 3
Mat O, 2 1 -3

where O; are the output signals, S; is the input signals and W;; is the trans-
forming weight from S; to O;.

The DCA introduces individually assigned migration thresholds to determine
the lifespan of a DC. This may make the algorithm sufficiently robust and flexible
to detect the antigens found during certain time periods. For example, in real-
time intrusion detection there are always certain intervals between the time when
attacks are launched and the time when the system behaves abnormally. The
use of variable migration thresholds generates DCs whom sample different time
windows, which may cover the intrusion intervals.

An individual DC sums the output signals over time, resulting in cumulative
Csm, cumulative Semi and cumulative Mat. This process keeps going until the
cell reaches the completion of its lifespan, that is, the cumulative Csm exceeds the
migration threshold, the DC ceases to sample signals and antigens. At this point,
the other two cumulative signals are assessed. If the cumulative Semi is greater
than the cumulative Mat value, the cell differentiates towards semi-mature state
and is assigned a ‘context value’ of 0, and vice versa - greater cumulative Mat
results in the differentiation towards mature state and a context value of 1. To
assess the potential anomalous nature of an antigen, a coefficient is derived from
the aggregate values across the population, termed the ‘MCAV’ of that antigen.
This is the proportion of mature context presentations (context value of 1) of
that particular antigen, relative to the total amount of antigens presented. This
results in a value between 0 and 1 to which a threshold of anomaly, termed
‘MCAYV threshold’, may be applied. The chosen value for this threshold reflects
the distribution of normal and anomalous items presented within the original
data set. Once this value has been applied, antigens with a MCAV which exceeds
this threshold are classified as anomalous and vice versa. To clarify the algorithm
a pictorial representation is present in Figure [l

2.2 The Implementation

The general function of the system is to read data instances of the data set and
then output the MCAV of each type of antigens. In order to implement this
function, three major components are implemented:

— Tissue: processes the data source to generate antigens and signals, in each
iteration Tissue stores the antigens into random indexes of an antigen vector
and updates current signals to a signal vector.
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Fig. 1. The illustration of the DCA processes

— DCell: manages the DC population and interacts with Tissue to process the
antigens and signals.
— TCell: interacts with DCell to produce the final results.

Two additional functions, antigen multiplier and moving time windows, are
added into the system for the purpose of optimization. The DCA requires multi-
ple instances of identical antigens, termed the ‘antigen type’, so processing across
a population can be performed in order to generate the MCAV for each antigen
type. The antigen multiplier is implemented to overcome the problem of ‘antigen
deficiency’, that is, insufficient antigens are supplied to the DC population. As
one antigen can be generated from each data instance within a data set such
as KDD 99, the antigen multiplier can make several copies of each individual
antigen which can be fed to multiple DCs.

The inspiration of applying moving time windows is from processes seen in
the human immune system. The signals in the immune system persist over time,
thus they can influence the environment for a period of time. The persistence of
the signals can be presented by the cascade of signals within their affective time
period. Due to missing time stamps in the KDD 99 data set, tailored window
sizes for each data instance are not applicable, and a fixed window size is applied.
The new signals of each iteration are calculated through Equation 2

1 1+w .
NS = > 08, Y (2)

where N S;; is the new signal value of instance ¢ in category j, w is the window
size, and OS,; is the original signal value of instance n in category j.
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input : antigens and pre-categorized signals
output: antigen types plus MCAV

initialize DC population;
while incoming data available do
update tissue antigen vector and signal vector;
randomly select DCs from DC population;
for each selected DC' do
assign a migration threshold;

while cumulative Csm<=migration threshold do
get and store antigens;
get signals;
calculate interim output signals;
update cumulative output signals;
end
if cumulative Semi<=cumulative Mat then
cell context=1;
else
cell context=0;
end
log antigens plus cell context;
terminate this DC and add a naive DC to the population
end

end
while T'Cell analysis is not completed do

for each antigen type do
calculate MCAV;
end
log antigen types with corresponding MCAV;
end

Algorithm 1. Pseudocode of the implemented DCA

In brief the DCA combines multiple sources of input data in the form of pre-
categorized signals and antigens. This input is processed across a population of
DCs to produce the MCAV which is used to assess if an antigen type is normal
or anomalous. Antigen multiplier and moving time windows are added to the
algorithm to adapt the KDD 99 data set for use with this algorithm, as well
as to assess the hypothesis of they having the same effect on the DCA. The
pseudocode of the implemented DCA is shown in Algorithm [

3 The KDD 99 Data Set and Normalization Processes

3.1 The Data Set

The KDD 99 data set is derived from the DAPRA 98 Lincoln Lab data set [§] for
the purpose of applying data mining techniques to the area of intrusion detection.
The DAPRA 98 data set contains two data sources, which are the network sniffer
data from the sniffer placed between a router and the outside gateway and the
Solaris system audit data from the Solaris audit host. The KDD 99 summarizes
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the two data sources into connections (data instances), each connection has 41
features (attributes), which can be grouped into four categories [I1]:

— Basic Features: derived from the packet headers without inspecting the
payload.

— Content Features: from the assessment of TCP packets by using domain
knowledge of intrusion detection.

— Time-based Traffic Features: from the statistical analysis to captures the
properties with a time window of two seconds.

— Host-based Traffic Feature: from the statistical analysis of the properties
over the past 100 connections.

The KDD 99 is one of the few labeled data sets available in the field of
intrusion detection. The data instances are labeled as normal connections or
attack types, and the attacks can be grouped into four categories: Denial of
Service (DOS), Remote to Local (R2L), User to Root (U2R) and Probe. The
data set used in this paper is the 10% subset of the KDD 99 data set that
is commonly used by other researchers. It consists of 494021 data instances,
which are relatively massive. The whole data set would be more computational
extensive, and hence much more difficult to handle, especially for the real-valued
NSA with C-detector and the C4.5 decision tree algorithm. Both algorithms
require training stage, the large the data set is, the longer the training would
take. The 10% subset is statistically compared with the whole data set, and it
features the similar ratio of the normal connections and the attacks.

3.2 Normalization of the Data Set

As anomaly detection is a two-class classification, the labels of each data instance
in the original data set are replaced by either ‘normal’ for normal connections or
‘anomalous’ for attacks. Due to the abundance of the attributes, it is necessary
to reduce the dimensionality of the data set, to discard the irrelevant attributes.
Therefore, information gains of each attribute are calculated and the attributes
with low information gains are removed from the data set. The information gain
of an attribute indicates the statistical relevance of this attribute regarding the
classification [II]. The information gain, termed Gain(S, A) of an attribute A
relative to a collection of examples S, is defined as Equation Bl [13],

Sy

Gain(S, A) = Entropy(S) — Z (| g ‘Entropy(Sv)) (3)
veValues(A) ‘ |

where Values(A) is the set of all possible values for attribute A, and S, is the

subset of S for which attribute A has value v. The entropy of S relative the
2-wise classification, termed Entropy(S), is defined as Equation [ [13],

2
Entropy(S) = Z —pilogap; 4)

i=1

where p; is the proportion of S belonging to class i.
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The histograms of the remainder attributes are assessed for the normalization
of the DCA, to abstract the knowledge of both normal and anomalous. Based
on the characteristics of the input signals, ten numeric attributes are grouped
into the categories as follows:

— PAMP: serror rate, srv serror rate, same srv rate, dst host serror and dst
host rerror rate.

— DS: count and srv count.

— SS: logged in, srv different host rate and dst host count.

Let  be the value of an attribute, if it is certain that anomalies appear when
x € [m,n], this attribute can either be PAMP or DS; otherwise if normality
arises in this range, this attribute can be SS. The value of this attribute is then
normalized into the range from 0 to 100 through linear normalization defined by
Equation B

0 x € [0,m)
fle)y=< % x100 € [m,n] (5)
100 x € (n,+00)

where f(z) is the normalization function. The average of the multiple attribute
values in each signal category is the value of that category. In addition, the other
data steam of the DCA, the antigens, are created by combining three nominal
attributes, which are protocol, service and flag. Multiple instances of each antigen
type can generated through this way, which satisfies the requirement of the DCA
for multiple observations of each antigen type. It makes sense in the case of both
human immune system and intrusion detection: since antigens with the same
pathogenic patterns can invade the human immune system over and over again;
and attacks with the same patterns can be launched discretely over time in a
networked computer system.

The ten attributes selected for the signals in the DCA are chosen to represent
the detectors and antigens in the NSA. These attributes are normalized into
the range from 0 to 1, using max-min normalization, thus the data space is
a unitary hypercube [0,1]'%. The data set is then rearranged to generate ten
subsets through 10-folder cross-validation. The training data is made of the nine
folders and the testing data is made of the one folder in each subset. The self set
of the NSA is derived from all the normal data instances in the training data,
and the antigens are the data instances in the testing data. The input data of
the C4.5 decision tree algorithm contains the same attributes as those of the
NSA but without normalization, and the labels of normal and anomalous are
provided for the purpose of training.

4 Experimental Setup

Both the DCA and the NSA are implemented in C++ with the g++ 4.2 com-
plier, and the C4.5 decision tree algorithm is performed in Weka [14], which is a
collection of machine learning algorithms for data mining tasks. The experiments
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are run on a PC on which Ubuntu Linux 7.10 with a kernel version of 2.6.22-
14-generic is installed. The receiver operating characteristics (ROC) analysis is
performed to evaluate the classification performance of the DCA and the NSA.
The true positive (TP) rate, false positive (FP) rate, true negative (TN) rate
and false negative (FN) rate of each experiment are calculated, and the relevant
ROC graphs are plotted as well. Three sets of experiments are performed: various
DCA versions (E1), the real-valued NSA using C-detector (E2), and the C4.5
decision tree algorithm (E3).

In all experiments related to the DCA, the size of the DC population is set as
100 and it is constant as the system runs. The migration threshold of an individ-
ual DC is a random value between 100 and 300, to ensure this DC to survive over
multiple iterations. The ‘perfect MCAV’ of an antigen type is calculated based
on the labels of the original data set, normal is equivalent to context value 0 and
anomalous is equivalent to context value 1. To generate the classification results
of the DCA and the ‘perfect classification results’ from the perfect MCAVs, a
MCAYV threshold of 0.8 is applied. The MCAV threshold is derived from the
proportion of anomalous data instances of the whole data set , which is equal to
80%. The classification results of the DCA are then compared with the perfect
classification results, to assess the TP, FP, TN and FN. Three experiments of
E1 are performed corresponding to the DCA versions as following:

— E1.1: the basic version of the DCA.

— E1.2: the system with antigen multiplier, the antigens are multiplied by 5,
10, 50 and 100.

— E1.3: the system with moving time windows, the window size is respectively
equal to 2, 3, 5, 7, 10, 100 and 1000.

For each single experiment, ten runs are performed and the final result is the
average of the ten runs. In order to make the results from different experiments
more comparable, a fixed sequence of random seeds for ten runs is used. For E1.2
and E1.3, the two-sided Mann-Whitney test is performed to assess if various
parameters can make the results statistically different from each other. The
statistical significance « is set as 0.05, thus giving a confidence of 95% to either
accept or reject the null hypothesis.

E2 includes a range of experiments of the NSA, as the data space increases
from two dimensional to ten dimensional. According to the parameters men-
tioned in [9], the self radius is equal to 0.1 and the detector amount is increased
to 1000 because of the large size of the data, and the matching rule used is the
Euclidean distance matching. The results produced by the algorithm are com-
pared to the labeled testing data, namely the ‘perfect result’, to perform the
ROC analysis. The final results of each dimension is the average of ten subsets.
The experiment setup of C4.5 decision tree algorithm are as follows: the clas-
sifier chosen in Weka is J48, which is a class for generating an unpruned or a
pruned C4.5 decision tree; the test option of the classification is set as 10-folder
cross-validation.
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Table 2. The ROC results of the experiments in E1

Category Parameter TP Rate TN Rate FP Rate FN Rate

El.1 - 0.7375 1 0 0.2625
E1.2 5 0.75 1 0 0.25
E1.2 10 0.74375 1 0 0.25625
E1.2 50 0.75 1 0 0.25
E1.2 100 0.75 1 0 0.25
E1.3 2 0.75 1 0 0.25
E1.3 3 0.75 1 0 0.25
E1.3 5 0.74375 1 0 0.25625
E1.3 7 0.75 1 0 0.25
E1.3 10 0.75625 1 0 0.24375
E1.3 100 0.71875 0.96 0.04 0.28125
E1.3 1000 0.7 0.979592 0.0204082 0.3

Table 3. The ROC results of the experiments in E2

Data Dimension TP Rate TN Rate FP Rate FN Rate
2 0.98367  0.42944  0.37055 0.01633

3 0.23462  0.71834  0.08165 0.76538
4 0.08971  0.79289  0.00711  0.91029
5 0 0.79993  0.00007 1
6 0 1 0 1
7 0 1 0 1
8 0 1 0 1
9 0 1 0 1
10 0 1 0 1

5 Result Analysis

The results of E1 are shown in Table 2 which indicate the antigen multiplier
cannot consequentially enhance the system performance. The signals associated
with the misclassified antigens are generated incorrectly from the original data
set, thus the DCs always assign wrong context values no matter whether the
antigens are multiplied or not. Moreover, the moving time windows cannot sig-
nificantly improve the system performance either. Due to the limitation of the
data set, the tailored window sizes of each data instance that may result in
better system performance are not applicable. Furthermore, the Mann-Whitney
test suggests a 95% confidence to accept the null hypothesis, that is, the results
of all the experiments in E1 are not statistical different from each other.

The results of E2 are shown in Table Bl and the ROC results E2 from two
dimensional to ten dimensional are shown in Figure 2l The algorithm produces
acceptable results when the data space is two dimensional. But as the dimen-
sionality increases, the classification performance is getting worse and worse.
The algorithm cannot detect any anomalies when the the data space is six
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Fig. 3. The ROC graph of E1, E2 and E3 as data space is ten dimensional

dimensional or more. As the dimensionality of the data space increases, the
search space grows exponentially, thus it is becoming more and more difficult to
generate sufficient detectors that can effectively cover the space of non-self.
The ROC graph of the results in E1 and E2 when the dimensionality is ten
is shown in Figure[Bl The results of the DCA are located on the top-left corner
of the graph, showing that all versions the DCA can successfully detect around
75% true anomalies over all actual anomalies as well as produce no or few false
alarms. The real-valued NSA with C-detector cannot produce any useful results,
as it fails to detect any anomalies. Moreover, as expected the C4.5 decision tree
algorithm produces superb results, the true positive rate is 0.988 and the false
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positive rate is 0.008. This algorithm is designed specifically for the purpose of
data mining, its classification performance is supposed to be better than the
other two algorithms that are designed for the purpose of anomaly detection.
But in terms of false positive rate, the classification performances of the DCA
and the C4.5 decision tree algorithm are comparable with each other.

6 Conclusions and Future Work

This paper presents the algorithm behaviors of the DCA, when it is applied to
a standard data set, the KDD 99 data set. The results show that the DCA is
able to work with the data set and produce reasonable performance, therefore
Hypothesis 1 is accepted. Moreover, the DCA is an unsupervised learning al-
gorithm, it does not require training with normal data instances. It acquires
the knowledge of normal and anomalous through the categorization of signals
based on basic statistical analysis. Besides, it is not constrained by high dimen-
sionality of the data sets. Thus the DCA is applicable to large data sets with
high dimensionality. The real-valued NSA with C-detector has poor classification
performance on the high dimensional KDD 99 data set, it could not manage to
detect any anomalies as the dimensionality increases up to six or more. There-
fore, this algorithm is not applicable to the data sets with high dimensionality.
As a specialized machine learning algorithm, the C4.5 decision tree algorithm
produces excellent results, it provides a benchmark showing the ideal results of
the KDD 99 data set.

Due to limitations of the data set, the DCA could not be optimized by either
antigen multiplier or moving time windows. First of all, it is only possible to
generate one unique antigen from each data instance, leading to the insufficient
observations of each antigen type by relative DCs, the problem cannot be solved
with the antigen multiplier. Furthermore, the time stamps of each connection are
unavailable, thus it is impossible to apply tailored window sizes in the system,
and hence the advantage of the moving time windows is not fully utilized. Even
though, both antigen multiplier and moving time windows have the same effect
on the DCA for this particular data set, and hence Hypothesis 2 is accepted.

Some future directions of DCA research can be: first of all, to perform more
rigorous comparisons between the DCA and other AIS algorithms; Secondly, to
apply the DCA to other data sets, to further explore the limits of the DCA and
to understand the antigen multiplier and moving time windows; Thirdly, to add
more features to the DCA, to make the algorithm more adaptive and flexible.
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Abstract. An existing system - AISEC - which categorises email as
interesting or uninteresting using an immune-inspired algorithm is im-
plemented as a plug-in to Outlook to allow seamless user testing. Ex-
periments are performed with a new, large data set to validate previous
published results. We show comparable results can be obtained on differ-
ent data-sets if the system parameters are correctly tuned; the algorithm
is particularly sensitive to certain parameters. Some flaws in the origi-
nal algorithm are identified; a modification is proposed to the learning
process of the algorithm and to the mutation operator. Tests with the
modified algorithm in a number of scenarios in which users’ interests fre-
quently change show the improved algorithm is capable of continuously
adapting to achieve high classification accuracy and can accurately track
changes in user interests. The improvements are statistically significant
when compared to the original system.

1 Introduction

According to a survey carried out by White Collar Productivity Index [9], in
2004 a person spent on average 8.8 hours a week handling email. The survey
showed that even if all spam is removed, a significant amount of time is spent
reading and subsequently ignoring emails that we have no interest in. For exam-
ple, emails from a Faculty administrator regarding timetabling information are
of no interest to a lecturer on sabbatical but are not “spam” in the classical sense.
Users’ interests change continuously change however; at the end of the sabbatical
period, the emails may become of interest again. On the other hand, a lecturer
may lose interest in emails relating to conference during semester due to a busy
teaching timetable. It is important to distinguish the difference between spam
and mail that is simply uninteresting; spam refers to unsolicited mail that at no
time is of interest to the user. Many highly specialised pieces of software exist for
identify and removing spam email — this is not the concern of the application
described in this paper. Indeed, spam filtering necessitates that the false positive
ratd] of a filter must be minimised, as the consequences of mis-classifying and
removing legitimate email from a user’s inbox can be enormous.

In 2003, Secker et al published a system named AISEC which was capable of
classifying emails as interesting or non-interesting and removed un-interesting

! Incorrectly identifying legitimate mail as spam.
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mail from a user’s inbox. Furthermore, the system was shown to be capable
of continuous learning; following changes in a user’s interest, the system could
adapt to the new interests. Results were published from a single set of 2268
emails of which 32.7% were classified as uninteresting and the remainder inter-
esting. The results were compared to performance on the same data set with a
naive Bayesian system; although performance was similar overall, AISEC showed
improved performance during certain periods of time. It was postulated that this
was due to the ability of AISEC to adapt to changes in the data, such as a word
used commonly in uninteresting emails suddenly beginning to appear in inter-
esting email. However, this hypothesis was never explicitly tested by examining
the data in detail or by testing specific scenarios in which emails were known to
change in content. Therefore, in this paper we specifically address the following
objectives:

— to validate published results by running system on a completely different
set of test emails - this is partly due to the unavailability of original set,
but furthermore, offers an opportunity to investigate the sensitivity of the
algorithms parameters to different data sets.

— to explicitly test the ability of the algorithm to adapt to changing interests,
by setting up a number of test scenarios in which the users interest in emails
from a particular source changes from interesting to un-interesting (and vice-
versa) over a period of time.

— to provide a number of modifications to the algorithm which improve
the speed at which it adapts and the overall accuracy of the classification
algorithm.

The remainder of the paper is organised as follows. Section 2 gives an overview
of the existing algorithm. Section [B] describes the re-implementation of AISEC
as an Outlook plug-in and the experimental test-bed used to investigate its
performance. Section Ml reports results on experiments designed to validate the
performance of the existing algorithm. This is followed by a description of two
extensions to the existing algorithms in sections B and [G including presentation
of new results. We conclude with some remarks on the use of immune algorithms
in a continual learning scenario and recommendations for future work.

2 AISEC

The algorithm is presented briefly — this description is taken directly from the
original publication of Secker et al. For pseudo-code and implementation details
of the algorithm, the reader is referred to [§].

Essentially, AISEC classifies mail into two classes, semantically labelled as
‘interesting’ or "uninteresting’. The algorithm is inspired by some of the proper-
ties observed in the natural immune system. It uses inspiration from B-cells to
represent one class of data, that of uninteresting emails. A B-cell consists of a
set of words derived from the subject and sender fields of a training set of unin-
teresting emails and occurs in one of two states - those that are naive potentially
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classify uninteresting mail, those that are mature have received co-stimulation
from a user confirming their classification and are regarded as memory cells.
Gene libraries are used to store words that have been used in uninteresting mail
and are used to mutate existing B-cells. Cells become stimulated via matching
process which matches words in the B-cell against incoming emails. B-cells be-
come stimulated once their stimulation level exceeds a pre-defined threshold.
Cloning of high-affinity existing cells is used to generate new cells - the original
authors note the impractically of generating random detector cells given the size
of the search space, therefore all new naive cells are mutants of existing cells.
The algorithm is dynamic - user feedback and cloning continuously produce new
cells. In order to prevent unlimited population growth, a cell-death process is
implemented in which cells which do not receive sufficient stimulation over a pe-
riod of time are purged from the system. User feedback is given asynchronously
to aid classification but on a regular basis. As the algorithm is designed to ad-
dress concept drift over long periods, the design of the algorithm ensures that
reasonable pauses in this feedback do not cause an undue drop in classification
accuracy.

A number of other immune-inspired approaches to email classification exist
in the literature. In the main, these relate to the classification of email into
spam and non-spam sets. As noted in the introduction, this task has signifcantly
different requirements from classifying mail as interesting/not-interesting — for
example, while a user’s interest in a particular topic may wax and wane over
time, their interpretation of what is spam email is likely to remain constant.The
reader is referred to the works of Yue [I0] and Oda [6] for examples of immune-
inspired spam classification systems and also to [5] for related work in the domain
of adaptive information filtering (using documents rather than emails).

3 Experimental Approach

The AISEC system was converted to .NET using Visual Studio Tools for Office.
New buttons and new folders are added to Microsoft Outlook 2007 using an
add-in project. The add-in allows seamless integration of AISEC with Outlook
such that the system can run in real-time. The new system is referred to as
AISEC-Outlook to distinguish it from the original.

The working of the Microsoft Outlook add-in is shown in Whenever a
new email is downloaded from the email server, AISEC-Outlook classifies the
email as interesting or uninteresting for the user and places in an appropriate
folder. As the user reads the email feedback is taken from the user depending on
his/her actions. There are two kinds of feedback that can be given to AISEC-
Outlook, positive, for correct classification of the email and negative, implying
incorrect classification of the email. In the case of positive feedback, the user
is not required to do anything except read the email, upon which Microsoft
Outlook 2007 marks the email as read by assigning the unread property of the
email item to false. AISEC-Outlook identifies such emails and assumes positive
feedback. When AISEC-Outlook has mis-classified an email, the user is required
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Fig. 1. An overview of AISEC used as an add-in Microsoft Outlook, showing the testing
procedure and illustrating the integration of the system into Outlook for testing

to move the email to its correct folder. AISEC-Outlook recognizes the moved
emails and interprets this as negative feedback. Based on this feedback, AISEC-
Outlook rewards the BCells. In the case of positive feedback, all the BCells
with a higher affinity than the affinity threshold for the correctly classified email
are stimulated and the one with the highest affinity is cloned and mutated to
generate new BCells belonging to the next generation. In the case of negative
feedback, all the BCells with an affinity above the affinity threshold for the
mis-classified email are removed, and the words from subject, sender and return
address fields are removed from the repository of words for each field. This avoids
further mis-classification of similar emails. If an email which is uninteresting is
mis-classified as interesting then, the emails words in subject, sender and return
address fields are added to the repository of the words. The email is added to
nave BCells. This avoids further mis-classification of such kind (similar in topic)
of emails. This process is repeated for every incoming email and the system
adapts to the users interests if there has been a change.

Providing feedback for every email in a large test set during testing would be
time consuming and a tedious process. Therefore all the stages in classifying an
email are automated. New buttons and folders are created in Outlook. Identify-
ing a single email which has been read by the user in a folder requires iterating
through the entire set of emails, which is time and processor consuming process.
To avoid this, new folders are added and at each stage in the process of clas-
sifying the email the email is moved between the folders. At any time a particular
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folder only contains the emails that need to be classified or taken feedback from.
Figure[L(b)]illustrates the buttons that have been added to facilitate testing and
classification of emails.

3.1 Methodology

A test set of 2412 emails are used gathered during a period of approximately 9
months. The email set consisted of personal email plus emails that were received
after deliberately subscribing to a number IT related sites such as WebProNews
[1], and a set of sites advertising job vacancies, e.g. IT Job Board, Jobsite Va-
cancy etc. Of these emails, 70.81% are classified by hand as interesting and 29.19
% were classified as uninteresting. As in the original paper, the temporal order-
ing of emails within the test was preserved and only the words contained in the
subject and sender fields of the e-mail were used. The sender information also
included the return address, as these fields may differ. The fields were tokenized
using spaces and the characters ., ,, (, ), !, @, i, § as delimiters and each token
inserted into a separate element of the correct feature vector. Simulated user
feedback was given to both algorithms after the classification of each e-mail.

The standard measure of classification accuracy was used to evaluate results,
i.e, the percentage of all emails correctly classified. However, as the data set
is unbalanced in terms of the number of samples in each class, a confusion
matrix [7] was also used to examine the recognition rate of each individual class.
We additionally report the precision and recall for each test using standard
definitions of these terms.

Table 1. Comparison of predictive accuracy of AISEC-Outlook with original parame-
ters and optimised parameters (standard deviation given in brackets)

Accuracy  Precision Recall

Original Test Set 89.09 (0.97) 82.20 81.13
New Test Set (original parameters) 78.68 (2.00) 99.67 (0.04) 70.43 (2.80)
New Test (optimised parameters) 88.61 (1.27) 99.58 ( 0.07) 84.44 (1.81)

4 Results: Validation

The system was trained with a training set of 25 emails — the first 25 uninterest-
ing ones. The system was first run with the parameters specified by Secker in [8];
as the system is stochastic, 10 runs were performed in order to derive an average
classification accuracy. This however produced disappointing results, reported
in lines 1 and 2 of table[[l A mean classification accuracy of 78.68% + 0.04 was
obtained, compared to that of 89.09% + 0.97 reported by Secker. Interestingly
however, the precision obtained on the new dataset is significantly higher than
originally reported; this occurs however, at the expense of recall in the system,
which shows a considerable drop over the figure reported in [8]. Following this,
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extensive experimentation was performed in which the settings of two param-
eters were investigated. The affinity threshold, which determines the minimum
affinity between two compared cells required to cause stimulation of a cell, and
the classification threshold, which determines whether or cell is ultimately clas-
sified as interesting or uninteresting. Lack of space prevents all results being
presented here; however, test results showed that the mean accuracy could be
significantly improved by tuning the parameters. Figure[2(b)]shows the results of
one experiment in which the effect of the classification threshold parameter was
investigated; clearly the system is particularly sensitive to this value. The final
classification accuracy obtained with optimised parameters is shown in table [T
- this was obtained with the classification threshold set to 0.3 and the affinity
threshold 0.5. Once again, the precision of the optimised system is very high;
the optimised parameters lead to an increase in recall in the system, and overall
to a classification accuracy similar to that reported in [8].

Variation of Classificatic dlassification
threshold with affinity threshold at 0.5

=
g

3
3

S

g
£
5 g
8 ER
5 =i
] S:
s . . E=H
g Published parameters Optimised parameters b Y,
2 {
S 50 E
£ L
H 3
% ol
o &
s
2
b

2
3

s
8

g

- w
S

L L L L
0 500 1000 1500 2000 2500

Number of emails Classification Threshold
(a) Classification Accuracy (b) Effect of Classification
threshold

Fig. 2. Tests showed that performance of AISEC on the new data set could be increased
by optimising the parameters. In particular, the classification threshold parameter sig-
nificantly affected the results.

Figure shows the trends in accuracy for the original reported parameter
set as the optimised set as emails are presented to the system. At each data-
point, the classification accuracy was measured following presentation of each
email, taking into account all previous classifications. The graph shows that
although both systems stabilise quickly to a high classification accuracy, the
optimised parameters perform significantly better (this has been verified by a
t-test). However, with a dataset which is biased towards one class, the classifica-
tion accuracy does not necessarily reveal the whole picture. Therefore, confusion
matrices are presented in figure and The matrices clearly show that
AISEC produces a very low false positive ratdd — 0.59% in the original parame-
ters and 1.03% in the optimised set. The false negative rate however is higher in
both cases (26.32% and 13.25% respectively), suggesting that the system has a

2 Uninteresting mail classified as interesting.
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tendency to wrongly classify interesting mail as uninteresting. In an email clas-
sification application, this could lead to interesting mail being ignored by the
user.

Overall, the results serve a useful validation of AISEC published in [§]. Al-
though we are unable to obtain the details of the email set used in []], it seems
reasonable to assume that the content of the email set used in our experiment is
largely different. Nevertheless, the algorithm performed with comparable accu-
racy, and in fact, provided higher precision than originally described. However,
our results emphasises the perhaps obvious necessity to tune the system to a
particular users inbox. Results are likely to vary widely depending on the pre-
cise nature of the relationship between words in a particular inbox and in the
frequency and nature of the changes in interest. We return to this later in the

paper.

Predicted Predicted
Actual uninteresting interesting Actual  Uninteresting interesting
uninteresting 675 4 uninteresting 672 7
interesting 226 1480 interesting 226 1480
(a) original parameters (b) optimised parameters

Fig. 3. Confusion matrices obtained from a single run of the system with the originally
specified parameters and optimised parameters

5 Extension 1: Adaptability of AISEC: Reacting to
Changing Interests

Although results in [8] show that AISEC capable of continuous learning, and
potentially of tracking concept drift, no results have been published in which
explicit changes in user interest are tested. Therefore, we designed tests to ver-
ify whether explicit changes in a user’s interests could be tracked. Two tests
are performed; in the first, emails from the source WebProNews [1], currently
designated as uninteresting, are designated by the user to to be interesting
and therefore moved to the user’s Inbox from the Junk folder. In the second
test, the reverse operation is performed; the user’s interest change once more
and new emails in the Inbox from WebProNews are moved back to the Junk
folder.

Figures and show the effect on the classification accuracy over time
as emails are classified. Figure clearly shows that AISEC adapts quickly
to a change in interest from Junk to Inbox. Figure [§ shows the testing proce-
dure used by the AISEC algorithm: when AISEC classifies the first email from
the changed as uninteresting, the user supplies negative feedback. Based on this
feedback, AISE penalizes all the BCells responsible for the recognition of the
email and removes the BCell with the highest affinity. This has the overall effect
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of reducing the affinity of the BCells with the type of emails in which the user is
now interested. Upon repetition of this process, all the BCells with high affinity
towards the interesting emails are eventually removed. As reflected in the graph,
AISEC adapts to the interests of the user. However, ﬁgureshows an obvious
decrease in classification accuracy when the reverse process occurs: when the
user’s loses interest in a topic, AISEC fails to react. Further examination of
the algorithm presented in figure [l reveals the reason: the verification of the
classification by the user only happens when an email has been classified as
uninteresting. Therefore, mails wrongly classified as interesting by AISEC do not
receive user feedback. AISEC was modified accordingly: when the user supplies
negative feedback from mis-classification of an item in the Inbox, the email is
now added to the repository of B-Cells responsible for classifying mails. This new
B-Cell will recognise any further remains of this type, increasing its stimulation
and causing the cell to be cloned.

Variation of Classification accuracy with changed interests.of the user Variation of classification accuracy when emails maved fram [nbox &
[emalls maved from Junk to abox] Junk

Classification accuracy

o

Point at which classification
is changed from junk to Inbox

Classification acouracy
Classification accuracy

Period during which emails
of changed class received

Number of classified mails ‘
et v [—

(a) Junk to Inbox (b) Inbox to Junk

Fig. 4. Ability of AISEC to adapt to changes: the figures show change in classification
accuracy in two scenarios. In the left-hand figure, the user gains interest in a set of
emails - the top most line indicates classification accuracy. In the right-hand figure,
the user now designates a set of emails as uninteresting.

Results of Modified Algorithm. To test the modified algorithm, a further
experiment was run: 265 emails received from the source WebProNews were
moved from the Inbox to Junk after 1200 emails has been classified. At iteration
1600 (i.e after 1600 email classifications), 143 emails that had been received from
WebProNews during this interim period were moved back to the Inbox. Figure
shows the classification accuracy against number of emails received obtained
using the modified algorithm; the point at which the emails which undergo a
change in classification are highlighted on the graphs: the figure shows that
the modified version of AISEC is now able to adapt to all changes in the user
preferences, i.e. in both directions.
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44 Pick one email from Running set I

T
Interesting Uninteresting
Wrong
( Correct
y v
| Penalize AISEC | | Reward AlsEC |
No Is testing

complete

Fig. 5. The classification and reward procedure used in the original published version
of AISEC. A flaw exists in that mails classified incorrectly as interesting are never
penalised.

6 Extension 2: Mutation

The original version of AISEC employs a simple mutation operator for mutating
B-cell vectors, which selects a random word in the feature vector and replaces
it with a random word from the gene library store. However, a vast array of
literature is available in the document/text analysis domain, which provides
inspiration for refining this operator to better exploit relationships and semantics
between words in a vector. One simple such suggestion is described here.

Word collocation (e.g. [3]) is a technique used in computational linguistics
and text analysis which utilises the facts that words that are related to each
other are located within a fixed distance of one another in a text. Thus, in a
text about immunology, infection and pathogen are likely to occur in (say) a
distance 10 from each other. B-Cells are created in the first instance by scan-
ning an email’s subject and sender lines, placing words from these fields into
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ra

ST —

Classification Accuracy
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Fig. 6. The modified system is capable of maintaining classification accuracy as the
user preferences for a particular set of emails change from interesting to uninteresting
(first vertical line) and then back to interesting again some time later (2nd vertical
line)

a vector. The subsequent ordering of words in the vector reflects the order they
were originally encountered in the email; word collocation suggests that words
located next to each other in the resultant vector may be related in subject. For
example, a university administrator sends a mail“timetable for software engi-
neering course” which results (after removal of stop-words) in a vector [timetable
software engineering course| in which the words software and engineering are lo-
cated consecutively. The original mutation operator described in [8] randomly
selects a single word from the vector and replaces it with a random word from a
gene library. However, we propose that the positional bias between words in the
B-cell vector can be exploited during mutation by use of a positionally biased
mutation operator. Therefore, we replace the mutation vector currently used
in AISEC with a position-biased mutation operator proposed by Kelsey and
Timmis in [4] and later analysed theoretically in [2]. This operator, known as
“hot-spot” mutation, selects a position in the vector at random, and then applies
mutation to a contiguous region of the vector starting from this position, thereby
increasing the chance of replacing collocated words. The size of the region is fixed
at 2, and the operator selection a starting position between position 0 and (n-1)
in the vector, with no wrap-around. Although simplistic, we postulate that this
may be particularly useful in speeding up adaptation of the B-cell repertoire
after changes in a user’s interests. For example, following on from the example
given above, the academic in question may stop teaching a particular module
and hence no longer be interested in emails concerning the software engineer-
ing degree. The proposed mutation operator increases the chances of the words
software and engineering being replaced in a single application of the mutation
operator.
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The operator is updated as described. The modified version of AISEC was
again re-run 10 times on the test set, and the classification accuracy recorded as
each new email was classified. The results are shown in figure [ which compares
the performance of the original algorithm and the hot-spot modified version.
Although the modified operator appears to be less effective when the algorithm
has only been exposed to a small number of email, its effectiveness increases
and it is seen to maintain a more consistent classification accuracy than the
original operator. T-test confirmed that the final classification accuracy after
presentation of the emails was significantly better with the modified algorithm.

Accuracy

Modified mutation operator

m

COriginal mutation operator

Elavefic sien Accur sy

.

Number of classified emails

Fig. 7. Comparison of modified mutation operator to original operator

7 Conclusion

The paper has presented further experimental evidence that an immune-inspired
learning algorithm, AISEC, is capable of performing continuous learning in a
dynamic environment. Our research firstly provides verification of previously
published results by testing the performance of the algorithm on a new test set of
data; for any algorithm to become acceptable it is crucial that it is benchmarked
on a number of problem data-sets. The context of in which AISEC applied —
a continuous learning environment — renders existing publically available email
datasets unsuitable as traditionally these are designed for use with one-shot
learning algorithms. As personal mailboxes are likely to differ greatly from one
person to another it was reasonable to hypothesise that the parameters of AISEC
would need to be tuned in order to work with a new dataset. Although this did
prove to be the case, AISEC proves to be a relatively robust algorithm, with
many of the parameters robust to changes in them. The key parameter from the
point of view of tuning appears to be the classification threshold. Secondly, we
have explicitly tested the ability of AISEC to adapt to changing interests for
the first time. Results obtained in these scenarios necessitated a modification to
the algorithm to cope with changes from interesting to uninteresting. Finally,
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we have further improved the algorithm to exploit the positional bias present
in the B-cell representation which produced additional increases in classification
accuracy.

Whilst the system is relatively simplistic as a machine learning tool and lacks
the theoretical basis that perhaps make the use of more traditional learning tech-
niques more seductive, the results suggest that the system is worthy of further
exploration. An obvious avenue for future extensions is to investigate using the
body of the mail in the classification - this is likely to require more sophisticated
processing of the body text before including in a B-cell in order to maintain
tractability. More generally, the results suggest that immune-inspired learning
algorithms may have a role to play in tackling continuous learning problems.
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Abstract. When a set of heterogeneous agents is considered to solve different
kinds of problems, it is very challenging to specify the necessary number of
elements, which functionally of each one will be used and the schedule of these
actions in order to solve these problems. To deal with scenarios like this, the
present article suggests an innovation at the Intelligent Agent Theory, a new
concept called Dynamic Polymorphic Agent (DPA). This approach implies on
the dynamic generation of one agent, built from the cooperation of existing
agents and specific to fulfill the demanding task. To create this new entity, a
monitor identifies and reads information regarding the functionalities of avail-
able agents present in the scene and, when a new problem is presented, it gener-
ates a task list to solve it. This list and the agents whose functionalities are
necessary to solve the problem generate the new polymorphic agent. To fulfill
this approach, two major paradigms are used: Aspect-Oriented Program (AOP)
and Artificial Immune System (AIS).

Keywords: Polymorphic Agent, IA Planning, Artificial Immune Systems
(AIS), multi-agent systems, Aspect-Oriented Program (AOP).

1 Introduction

An agent is, in a simple way, a premolded component that, given an input, executes a
processing and generates a result. From this general concept, the agents’ theory is
applied to a large spectrum of problems: systems optimization, robotics, and business
procedures [1]-[2], among others. This success is greatly due to the capacity to effi-
ciently define the input information and the result generated by the processing of the
agent. This predefinition of variables and functionalities generates, among other bene-
fits, great portability, reliability and modularity to this paradigm. However, the
agents, even those with the capacity of knowledge analysis and generation, are fixed
functionality structures. Thus, even if the agents are capable of altering their capacity
to iterate mutually or with the environment, what each element does is necessarily
what it has been projected to do. In order to expand this paradigm, this work suggests
a new methodology named Dynamic Polymorphic Agent (DPA).

The idea of polymorphism is not a new one. Inside the theory of analysis and
object-oriented programming, which appeared in the 80’s, polymorphism is a concept
used to avoid implementation redundancy and to increase the reutilization of nuclear
elements. In this concept, basic components are implemented and used by more
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complex elements through inheritance. The new derived elements inherit the proper-
ties and methods of many basic classes, thus making it possible to hold new function-
alities. Even though it is flexible, polymorphism is a static concept, that is, it is only
implemented during the process of problem modeling, and, once it is operating, the
derived classes stay static in relation to new properties and methods.

A more flexible concept, Aspect Oriented Programming [3]-[4], appeared in the
late 90’s as a necessity to solve problems related to the entanglement of methods and
functionalities in highly complex systems. The presence of functionalities that cut
across many classes leaves the system with low reutilization and difficult modulariza-
tion. Thus, the idea of aspect is one more level of abstraction, that is, the visualization
of parts of the problem as being general, almost to the algorithm level, and that may
be attributed to a given agent that has a specific signature during run time. Therefore
this paradigm changes the systems’ structure and associations during run-time, ena-
bling to use new functionalities added into the scenario without any adjust.

However, to use this paradigm in multi-agents situations, the agents must be built
over a framework that enables the access to their Hyperdata. The Hyperdata is de-
fined here as a data set that combines the metadata — which is responsible to inform a
list of all methods with their return data type, input parameters, etc — and PDDL [5]
scripts that give a full description of how each method must be used, including their
pre-conditions, needed parameters and consequences. Having access to the Hyper-
data of a given agent it is possible to know its functionalities, how they work and how
to invoke them. This structure enables the creation of new calls to different types of
methods present in different types of agents in run time, without these having been
previously implemented during the project. Therefore, with hyperdata, it is possible
for a planner to read the data that a problem supplies as input, check all functionalities
present in the available agents, and present one or more plans of action.

After recognizing the required set of agents, it is necessary to execute the plan. For
that, a new process is open in the monitor agent, which is responsible to invoke, in the
correct order, the functionalities of each agent. This process and all the involved
agents incorporates the DPA and it is also responsible to check if each action is cor-
rectly carried out and in negative cases a new action plan must be calculated.

An important part of this methodology is the planner. It is responsible to provide
the action plan and, therefore, must be fast and reliable. Most of the planners present
in literature [6-8] are based on intelligent methodologies; however, most of them just
provide one possible solution at the end of the search process. By means of a different
approach, this paper proposes the utilization of a planner based on the Artificial Im-
mune System (AIS). The AIS is based on the biological principle of bodies’ immune
systems [9-11]. An immunological system has major characteristics that can be used
in search and optimization: proliferation, mutation, selection, and memory. While
proliferation is the capability of generating new individuals making the search process
dynamic and global, mutation is the ability of searching through the solution space for
sub-optimum local points. The selection is responsible for eliminating low-affinity
cells, while memory is responsible for storing high-affinity cells from other solutions
and using these recollections in new problems intending to reduce the search time.
The AIS methodology is based on niching process and all the individuals influenced
by the same attractor (a local optimum) will converge to a unique point. As result the
final population may holds several different ways of solving a problem forming a
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repertoire of solutions. This may seem irrelevant, but in real case applications where
hundreds of agents are present in the scenario, a planner may take several minutes to
generate a solution. Therefore, if a problem occurs during the execution time, it is
possible to use this repertoire and check if any other pre-calculated solution fits to the
new scenario before calculating a new plan.

This paper is structured as follows: section 2 shows the architecture developed us-
ing Aspect-Oriented Modeling, section 3 shows the Artificial Immune System Plan-
ner, section 4 shows a simulation using an virtual environment and, finally, section 5
the results are discussed.

2 Using Aspect-Oriented Modeling in Polymorphic Agents

AOP is a programming paradigm that has been proposed to address problems with
high index of entanglement among components. It works decomposing the problem
into parts for further composition. The great outcome of this paradigm is related with
the new composition mechanisms that greatly decrease the number of dependencies
among the components. In AOP, problems are decomposed and modeled following
the domain knowledge. Some parts of that model compose with the others using OOP
mechanisms — those, represent agents, are normal components —, but others require
more advanced composition mechanisms — those are called aspectual components of
the problem (or aspects, for short). What differentiates an aspect from a regular com-
ponent is its composition with the rest of the system. A regular component represents
an agent of the system and has access only to its internal functionalities. An aspect
takes a set of agents present at the model and creates external connections among
them. The composition of the system is done through a Weaver, an element that has
access to all functionalities, and is responsible to bind the different agents together.

The noteworthy property of this methodology is that the agents present on the sys-
tem are variables themselves — they are not known at programming-time, implying
that if any new agent is added to the system, the Weaver has automatically access to
its metadata without any extra effort. However, to know the metadata contained in the
agents present in the system does not implying that the objective of each functionality
is known, leading to a typical case where data do not generate information. In order to
transform these data into information it is necessary to develop another set of data,
called here Hyperdata. Thus, for each method developed in an agent, a hyperdata
should be developed containing all of the necessary and pertinent information of the
functionalities. The information contained in hyperdata are related to description,
overload, parameters, meaning of the output and parameters, preconditions and ef-
fects, but still coherent with the PDDL language, meeting the necessities of the plan-
ner, which will be discussed next.

With this set of hyperdata, it is possible to know all functionalities associated with
the agents presented in the system with the respective pre-requirements necessary for
its execution, as well as the effects obtained with the action execution.

Using the benefits of the AOP methodology, it is possible to develop a highly flexi-
ble multi-agent system. The idea is to develop regular components representing each
agent (a given device, robot, sensor or even computational system) independent of the
problem and scenario that they will work. Each agent has a Hyperdata responsible for
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informing its actions, variables and predicates. To apply the presented ideas in a multi-
agent system, four sets of agents were designed: Execution Agents, Problem Agents,
Monitor Agent, and Polymorphic Agent.

Execution Agents (EA) are components that will solve a problem. They represent
robots, conveyors, sensors, lifters, computational systems and others. Each one has its
own Hyperdata responsible to inform how it may be used. The Problem Agents (PA)
represent PDDL scripts responsible to inform the final desirable state of the system.
The Monitor Agent (MA) is responsible for seeking all available Execution and Prob-
lem Agents present in the system. It is also responsible to read the agents’ hyperdata,
plan the task list, and weave the used EA along with the Polymorphic agent resulting
in the final Dynamic Polymorphic Agent (DPA). The Polymorphic agent is respon-
sible to bind the actives EA and execute the tasks necessary to accomplish the final
state designed by the PA.

An info-graphic exemplifying these ideas is shown in figure 1 where several Exe-
cution and Problem Agents are present in the scenario. The process starts when the
Monitor Agent recognizes a specific signature present in the agents. After that it
chooses one given problem to solve, runs the planner procedure and generates a task
list. This task list is passed to the Polymorphic Agent along with the EAs needed to
execute the selected problem. The Polymorphic Agent binds all the agents generating
the Intelligent Dynamic Polymorphic Agent (DPA), responsible to fulfill the task. In
practical applications, the Polymorphic Agent is a computational system that gener-
ates a specific process, the DPA, which is able to invoke the active agents’ functional-
ities. Another important note is that a given Execution Agent may be present in sev-
eral DPA depending of its availability.

Monitor Agent Polymorphic Agent

Execution
Agent

Execution
Agent A

CER
< Agent J Intelligent Dynamic Polymorphic Agent

Fig. 1. Info-graphic representing the AOP in Multi-Agents Environments

3 The Artificial Inmune System Planner

Al Planning is an area that studies the automatic generation of a plan to solve a prob-
lem within a particular domain. Basically, a plan is a sequence of actions provided by
a planner that, given an initial state, tries to find how it is possible to achieve some
goal conditions. Planners can be domain-dependent or domain-independent. The do-
main-independent planners are not tied to a particular domain - they can solve prob-
lems in a variety of different domains, given a model of that domain in a suitable
input language. To standardize the input language, and also, to make easier to evalu-
ate the planners performance, the planning community created the PDDL language,
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which is used by most planners, and so, will be used in this work. There are a lot of
methodologies used by the planners to reach their goals. Most of them use search
methods with heuristic functions. The present proposal is to use a methodology based
on the immune system.

The natural immune system (NIS) is responsible for defending the body against
dysfunctions from its own cells, and actions from substances and infectious foreign
cells, known as non-self elements. The body identifies these non-self elements by
using two related systems: the innate immune system and the adaptive immune sys-
tem. The innate immune system is inborn and unchanging. It ensures resistance to a
variety of antigens (Ag’s) during their first exposure to the body by providing a set of
initial antibodies (Ab’s). This general defense operates mostly during the early phase
of an immune response. When the body is exposed to a given Ag, the NSI identifies
the highest affinity Ab (hAb), and starts the proliferation process. This process is
responsible for dividing the hAb, and then generating clones. Many of these clones
present somatic mutation from the original cell, generating a new level of affinity to
the Ag. The new Ab’s, with the highest level of affinity, pass through a process of
maturation and become either plasma cells, which are responsible for attacking the
Ag’s, or memory cells, which store characteristics of the successful Ab’s, providing a
faster immunological response when, later exposure to the same Ag occurs. An im-
portant feature of the NIS is the ability to react against external, harmful agents (non-
self or pathogens), while, most of the time, remaining unresponsive to itself (self
tolerance). However, the NIS also acts against its own Ab’s in a way to benefit itself.
In fact, if the number of memory cells increases, the reaction time against a given Ag
would also increase, because it should meet every single Ab present in the system
before starting the cloning and differentiation process. Therefore, the NIS only memo-
rizes the Ab’s with a high affinity level and the other memory cells are eliminated.

The AIS intends to capture some of the principles previously described within a
computational framework. The main purpose is to use the successful NIS process for
optimization and learning. As in every intelligent-based method, the AIS is a search
methodology that uses heuristics to explore only interesting areas in the solution
space. However, unlike other intelligent-based methods, it provides tools to perform
simultaneous local and global searches. These tools are based on two concepts: hy-
permutation and receptor edition. While hypermutation is the ability to execute small
steps towards a higher affinity Ab leading to local optima, receptor edition provides
large steps through the solution space, which may lead into a region where the search
for a hAb is more promising.

The technical literature shows several AIS algorithms with some variants. One that
has shown good results was the GbCLONALG algorithm presented in [11]. The main
statement of GbCLONALG is that progressive adaptive changes can be achieved by
using numerical information of the system, instead of only computational brute-force.
It will lead to a significant reduction in the number of clones and, consequently, in
computing effort. The numerical information to be used can be the entropy or just the
first order derivatives or gradient, also known as the tangent vector (TV).

The GbCLONALG, however, does not use two powerful characteristics present in
the NIS: memory cells and maturation control. By using a memory of results from
former system states, it may be possible to have a better solution in terms of computa-
tional effort and accuracy. It is also possible to assemble a repertoire of solutions for a
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given problem, and in case of any marginal change in a system, check if any of the
existence solutions is valid. This strategy, besides does not provide new local optima,
enables a quick valid solution, avoiding stop the current solution process. The second
characteristic is related to the fact that keeping track of the evolution of all artificial
Ab’s is not a good strategy, because during the hypermutation process several solu-
tions may suffer influence of the same attractor and, therefore, converge to a very
similar state. Thus, the identification and further elimination of all similar individuals
but the best one would provide a major speed up on the convergence process. This
step must be able to correctly identify all attractors present in the system and, for that
purpose a cluster strategy will be used.

There are several algorithms for clustering data, and in this work, the MAXMIN
distance (MMD) method [12] is used. This method presents two major advantages: it
automatically estimates the number of clusters, which it is an essential feature since
there is no previously knowledge of the number of local optima present in the system,
and it demands only one parameter, which can be heuristically adjusted or can be set
by a simple standard deviation method. The algorithm is presented as follows:

To demonstrate these concepts, Fig. 2 shows an example of the niching and cluster
process in function (1). Fig. 2a shows the initial population, in 2b the population is at
the third interaction and the clusters are defined, and in 2¢ the maturation control took
place and all individual, except the best of each cluster, were eliminated. Finally, Fig.
2d shows the final population over the function mesh. For this particular example, the
population started with 60 individuals and, at the end of the simulation process, only
38 remained.

Maximize f(x,,x, )=x-sin(47mx, )—x, -sin(4me, + 7 )+1. (D)

Although the maturation control can provide a major speed-up on the convergence,
several optimization problems may present dynamic behaviors that change the origi-
nal scenario. Even the slightest change implies a full execution of the optimization
process, demanding unnecessary computation effort. Thus, the process could still be
faster if the initial population presents a high level of affinity, which can be achieved
using memory from previous cases. Using this memory from former states of the
system, it may be possible to have a better solution in terms of computational re-
sponse and quality.

Adding these features in the GbCLONALG yields the proposed algorithm shown
in Fig. 3, named Cluster-Gradient-based AIS (CGbAIS). Each step or block of this
diagram is detailed as follows:

CGDAIS Algorithm:

1. Randomly choose a population p = {Ab,,...,Ab,...,Ab,}, with each individual
defined as Ab; = {x,...,x;...,X,.}, where n, represents the number of control vari-
ables or actions. If there is a memory set present, it must be used as part of the ini-
tial population;

2. Calculate the value of the objective function for each individual; this result pro-
vides the population affinity for the optimization process;

3. For each individual Ab, a new subpopulation of hyper-mutated clones ¢g; =
{Ab;},...,Ab;j...,Ab; .} is generated, where Ab;; = {X;j,..., X;j+ MX;j..., Xinc), and n;
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Fig. 3. CGbAIS algorithm

represents the number of hypermutated clones. The hypermutated clones are then
used to evaluate the numerical information NInf utilized to evolve the population;

4. A new individual Ablj is assessed through (2), where AAb; means a value given
by the Ninf,

Ab, = Ab, + AAb; ; 2

5. Calculate the affinity of this new individual Ab,-' and check if it has a higher affin-
ity compared to the original Ab;; if it does, the hypermutated clone takes its posi-
tion in the population p;

6. The bests n, individuals among the original p population are selected to stay for
the next generation. The remaining individuals are replaced by randomly gener-
ated new Ab’s. This process simulates the receptor edition (re) and helps in
searching for better solutions in different areas;

7. Use the MMD algorithm to cluster all individuals that converge to a single attrac-
tor. This step will generate the C; clusters;

8. For each cluster, eliminate all the individuals but the best. If it is the end of the
simulation, generate a memory of these individuals.

To adapt the principles of CGbAIS to a dynamic search, some initial considerations
must be taken into account:

a) In a discrete scenario, a change in the control variables (in this case represented
by using or not a feature) can lead the system into a complete different operational
state, making imprecise the idea of small changes around the current state. Thus,
during the hypermutation the adopted strategy is to keep the nLocalBest clones in-
stead of just one. By using this concept the algorithm allows that a given antibody,
which is not well classified at first, may evolve and became the best. This concept is
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the same as other successful algorithms such as the Simulate Annealing and Tabu
Search. To avoid a combinatorial explosion, at each interaction, all the clones are
compared and just the nGlobalBest are kept alive by the maturation control.

b) An antibody represents a partial path over a tree search. It starts at level 1 know-
ing just one node and, as its evolution occurs new nodes are added to the path. This
implies that the initial population can swaps the entire solution space and during the
evolutionary process the search starts to be more concentrated in certain areas.

c¢) In any application, a membership of an element in a given cluster must obey
some similarity index. In the case of continuous optimization, the initial population of
antibodies evolves and the clusters are found using the MAXMIN distance algorithm.
However, in combinatorial optimization, the path in a tree search contains more valu-
able information than the final result. It indicates the way that an element evolves and
can be used as a similarity level. Thus, if an element has the same n-first nodes than
another one, they can be clustered together at level-n.

d) The clones are responsible for analyzing a given node. Their population expands
branches from their parents and the numerical information obtained from this process
indicates the likelihood of finding the best solution following a given path. However,
the success of this idea depends on the accuracy of the numerical information that
presents two major problems. The first one is how to correctly evaluate each branch.
If just the minimum value of a clone is taken in account, it implies that all others are
disregarded and valuable information may be lost. To avoid this problem, the evalua-
tion function EvalF; used in the present algorithm is shown as follows.

EvalF; = u; X@{ uy,....pipcaivest / - 3)

It takes the mean value ¢ provided by the nLocalbest individual of each branch, and

multiplies it by each individual clone value ;. The second problem is that, if a tree
search has two or more branches with very similar success likelihoods, the probability
of not finding the best one at the end of simulation depends on the proximity of these
branches and how many clones were used to generate the necessary numerical infor-
mation. In scenarios like this, the final solution might be close to the global best and
may be easily improved through a local search (hypermutation).

4 Application and Results

In order to validate the methodology, a didactic manufacturing scenario was built
using the software VIRTUALMANUFACTURING [13]. The proposed environment
is shown in Figure 4. Where there is: two conveyor belts (C1,C2) with positions (P1
and P2), 1 input table (IT), 1 output table (FT), 4 manipulators (R1, R2, R3, R4), 4
storage magazines (M1, M2, M3, M4) and 4 blocks (B1, B2, B3, B4). Under the pro-
posed methodology taxonomy, each of the described items is an Execution Agent.
The Monitor Agent, a computational system running in a different computer, uses
Remote Procedure Call (RPC) to check and read the Hyperdata of available agents.
Thus, each one of the EA must provide Hyperdata containing PDDL scripts and
metadata responsible to pass information about how to invoke its functionalities. Back
to the virtual scenario, the problem is, given a specific ordering of the input blocks, to
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find a sequence of action capable of putting them in the correct order in the output
table. The problem supposes that the initial order is (B1, B2, B3, B4) which should
be transported to the final table in the order (B4, B3, B2, B1).

The objective passed to the CGbAIS planner — a functionality of the Monitor
Agent — is to solve the problem involving the minimum number of execution agents
as possible. The output provided 4 possible plans, each one involving different sets of
agents, sequences and steps. The processing time was 210ms. Comparing with an-
other planner, the FF achieved 135ms. However, the CGbAIS found 4 possible solu-
tions against just one provided by the FF — the same as the best found by the CGbAIS.
An important mention is that, at each action step of each plan, the state of the system
is informed. This is crucial if a re-planning is necessary. To solve the problem, the
first and most indicated plan is taken in account. This plan has 28 steps and uses as
agents R1, R2, R3, C1, M1 and M2. To execute this plan, the MA creates a new proc-
ess, the Polymorph Agent. The PA binds the agents used in the plan forming one new
entity, the DPA, which is responsible to solve the problem. The PA, using the hyper-
data, is able to invoke the agent’s functionalities and therefore, to fulfill the plan.

To simulate a fault in the system, in step 6 the R2 agent was set as unavailable. The
DPA detects the fault, informs the MA that reads the current state of the system and
check over the 3 other plans if a similar state is present. In this example, the same
state is present in solution 3 that uses R1, R2, R4, C1, M1 and M3 to complete the
plan and reach the final state. Then, the MA Kkills the process of the current DPA and
starts a new one with this new configuration. An intermediate step of the generated
plan can be visualized in Figure 4b.

@ ®)

Fig. 4. (a) Application Environment using the VIRTUALMANUFACTURING (b) Intermedi-
ate step

5 Conclusion

This paper proposed an innovative architecture of intelligent agents. Using a frame-
work that works through aspect-orientation, it is possible to generate a methodology
based on hyperdata capable of describing and invoking the functionalities of the
agents. A Monitor Agent is responsible for identifying available functionalities, plan-
ning the actions and generating a polymorphic entity during run time, dedicated to the
resolution of a determined problem. The methodology uses open concepts of domain-
free modeling, which provides a high-level of reutilization. A new planner, based on
Artificial Immune System, is able to provides several local optima and, keeping
memory of these alternatives solutions, it is possible to check for new solutions if a
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fault happens. This major advantage avoids the necessity of searching for a new plan.
To test the method, a virtual scenario using the software VIRTUALMANUFACTUR-
ING was used, however, not only manufacturing problems are applicable to the sys-
tem. Any domain that can be modeled in the PDDL language, can be inserted in the
system scenario. More complex and real domains are the goal in this work’s next step.
The results demonstrated that the approach was able to find a plan and quickly re-plan
the actions and involved agents under the presence of a fault. Therefore the system
has proven to be extremely flexible and with great applicability power.
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Abstract. It is important to identify the mechanism of energy transfer
in protein structures in understanding their functions. Highly enriched
energy in some hot spots of protein structures is transferred to other
residues during some functional activity such as binding. The transferred
energy reaches at various residues and make them to change their three
dimensional structures to make other functional effects. In this paper, we
use Bayesian network learning in identifying the route of energy transfer
from the estimated energy status of residues. Artificial immune systems
(AIS) approach is used for bootstrapping the Bayesian network learning.
The analyzed results give a quantitative map of route for energy transfer
in 1be9 protein.

Keywords: Protein energy transfer, Bayesian network, Hot spot, Arti-
ficial immune systems.

1 Introduction

Proteins are basic building blocks of biological functions in living organisms.
There are many approaches in revealing the functions of specific proteins. Among
various perspectives, the structural characteristics of proteins are considered as
major clues in revealing their functional roles.

In general, genes exist in living cells as sequences of nucleic acids (e.g., DNA
or RNA). For each of specific functional roles, some selected sequences are tran-
scribed and finally compose an amino acid sequence according to the original
sequence of the nucleic acids. The amino acid sequence then folds into some three
dimensional structure according to its chemical characteristics, energy status and
electromagnetic force between those amino acids.

Fig. [l shows a three dimensional structure of the protein 1be9. Such a three
dimensional structure plays a significant role in interacting with other proteins
or molecules. When a protein binds other proteins or molecules, their three
dimensional structure should match the structural shape of the binding position.
Once binding occurs successfully, the energy levels of the residues in the binding
positions become higher than before. These highly activated energy is transferred
to other residues in the protein according to its structural characteristics. The
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Fig. 1. Three dimensional structure of the protein 1be9. From the Protein Data Bank
(http://www.rcsb.org).

transferred energy then reaches some residues and can change their structural
characteristics. Thus understanding the mechanism of energy transfer in proteins
is very important in understanding their actual functional mechanisms.

There have been various approaches to identify the mechanisms of energy
transfer in protein structures [I] [2]. Popular studies are researches on finding
out binding sites of proteins. Not only the structural shapes of those binding
sites but also energy levels have been significant interests of many researchers.

The initial approach for energy levels in protein structures is identifying the
quantitative energy level of energy-enriched residues in binding sites. Such quan-
titative energy levels were measured by experimental approaches and also ex-
pected from various indirect information such as amino acid sequences [I] [2].
Because it is not easy to quantitatively measure such binding energy levels via
experiments, it has been common approach to expect the energy level of residues
from amino acid sequence conservation information [I]. The intuition in this ap-
proach is that highly conserved amino acid sequences may play important roles
in functioning of the specific protein. Thus it is widely accepted that such highly
conserved regions of protein sequences are possible candidates of binding sites
and can have highly enriched energy levels. Several studies were conducted to
expect the energy levels of protein residues during binding processes. Such ap-
proaches mainly target to identify the specific energy levels and binding sites
which are usually called hot spots.

Another issue related to protein energy is understanding the changing dy-
namics of energy status in protein structures. Chennubhotla and Bahar [2] used
a Markov propagation model [3] [] [5] of energy transfer in protein structures
to expect the distribution of energy levels after energy transfer dynamics ar-
rived at the stable status in a protein structure. The Markov propagation model
was successful to some extent in expecting the energy status after binding of
proteins. However, the Markov transition matrix, which describes the energy
diffusion process from each residue, is not proper for identifying possible route
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of energy transfer. For this reason, we propose a method to identify the route of
energy transfer, which was initially defined with the Markov transition matrix.
A Bayesian network model which describes the dependencies of energy trans-
fer is built using energy transfer instances from the Markov propagation model.
An artificial immune systems-based bootstrapping approach is used to construct
sub-optimal Bayesian networks to give quantitative information on the route of
energy transfer.

We first present in Sect. 2 the previous Markov propagation model of energy
transfer in a protein structure. Then, Sect. 3 mentions the approach of using
Bayesian networks to describe the route of energy transfer. We also explain how
the Bayesian network model can be a compact description of energy transfer
which was originally defined as a Markov transition matrix. In Sect. 4 we present
artificial immune systems-based bootstrapping approach for learning a number
of sub-optimal Bayesian networks. The learned results on the route of energy
transfer are described in Sect. 5. Lastly, we conclude and give some perspectives
in Sect. 6.

2 Markov Propagation Model of Energy Transfer

In this section, we introduce the previous Markov propagation model of energy
transfer in protein structures. In Chennubhotla and Bahar’s approach, they used
a discrete-time, discrete-state Markov process model for energy transfer between
residue pairs. The Markov process model sets the transfer probability between
residues. The probability of energy transfer between two residues r; and r; can be
defined as their interaction strength, also called affinity. First, the (4, 7) element
of the affinity matrix A can be defined as

Ny;

VNiN;
where Nj; is the number of atom-atom contacts between two residues r; and r;
within a given specific cutoff physical distance between centers of residues. N;
and N; are the number of heavy atoms in the corresponding residues r; and r;.
This definition comes from the intuition that more contacts between atoms have
larger affinity in composing structures. The affinity of self contact a;i can be
defined from this intuition, but we do not consider the self affinity here.

Using this definition of affinity, the local interaction density d; of a residue r;
can be defined as

(1)

Aij

dj = ;=) aji (2)
i=1 j=1

where n is the number of whole residues in the protein. If we consider d; as a
diagonal element of the diagonal matrix d,
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d = diag{d;} (3)
we can define the conditional probability m;; of transferring energy from residue
r;j to residue r; in one time step as follows:

A4
mi; = (4)
d;
Because d; works as a normalizing factor, the sum of every conditional proba-
bility of energy transfer becomes 1 at residue 7.

We can define the conditional probability matrix M = {m;;}, also called the
Markov transition matrix as follows:

M = Ad! (6)

Now let us denote the initial energy level at some residue r; is p?. If we use the
conditional probability of energy transfer m;;, the amount of energy transferred
from r; to r; is mijpg. Assuming linear summation of such transferred energy
to r; from every residue, we can use the following matrix notation of energy
distribution after one time step:

p' = Mp’ (7)

where p* = [p¥, ..., pF]. This propagation process can be iterated. After 3 steps,
the distribution of energy on residues can be represented as:

p’ = M"p’ (8)

As 3— o0, p” converges to a stationary distribution, given by m; =d;/ >y _, dy.
Chennubhotla and Bahar analyzed these stationary distribution for their inter-
ested proteins and their results showed patterns of energy distribution in protein
structures in the binding processes. Their results showed that such a method for
identifying energy distribution pattern can be predictive in finding out energet-
ically related residues.

The Markov transition matrix represents information on how the energy is
transferred between residues in a protein. It is a proper approach when we want
to see the global patterns of energy distribution on the residues. However, we
need to make an abstracted energy transfer route for finding out residues which
are significantly involved in the whole energy transfer process.

3 Using Bayesian Network Learning for Route
Identification

Previous studies [2] showed patterns of energy distribution in protein struc-
tures. The Markov propagation model can describe local characteristics of energy
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transfer from each residue. However, the Markov transition matrix used in the
Markov propagation model may not be proper in identifying the route of en-
ergy transfer in the protein structure. Basically, the transfer of energy from any
residue in the structure can be directed all directions toward other residues. Even
though such entire information of energy flow can be important, the abstraction
of the energy flow in the protein structure can be very helpful in compactly de-
scribing and understanding such dynamic flow of energy in the protein structure.

The Bayesian network model is the graphical representation of a joint condi-
tional probability distribution [6]. A Bayesian network B is represented as (G, ©),
where G is a directed acyclic graph and @ is the set of probabilistic parameters.
Each node in G corresponds to a probabilistic random variable and each edge
represents conditional dependency between two random variables. Representing
the whole joint probability distribution of a set of random variables is infeasible.
By assuming Markov condition, where a random variable is independent of its
nondescendents given its parents, a Bayesian network can represent the target
joint conditional probability distribution in a very compact way.

There are many ways in learning an optimal Bayesian network B from ob-
served data D [8] [9] [11] [12] [10] [7]. Because B is composed of G and ©, learning
Bayesian networks is composed of two parts - learning the dependency structure
G and learning the probabilistic parameters ©. Learning © is easier than learn-
ing GG in general because once we have some dependency structure G, then we
can find out corresponding probability values to the dependency structure from
the observed data D. Further, our interests is much more in learning the struc-
ture G because the dependency structure between the residues in a protein can
represent possible major route of energy transfer. Learning the structure G from
the given observed data D is to find out G which maximizes P(G|D). This can
be considered as a conventional search problem for optimal solution and several
scoring schemes have been proposed.

In this paper, we focus on the ability of Bayesian networks where some prob-
abilistic distribution can be compactly represented in the graphical form. For
applying the Bayesian network model to our problem, we need to consider each
residue in a protein as a probabilistic random variable which has some proba-
bility values for possible values of energy level. Let us assume that each residue
r; is a probabilistic random variable where specific probability value exists for
each possible energy status of ;. One instance of observation for the set of ran-
dom variables R = {rq, ra, ..., 7, } now corresponds to one observation of energy
distribution for those residues, and we denote it as xj. If we observe the differ-
ent energy distribution on the residues in a protein m times, an observed set of
data instances D = {1, x2, ...,z } can be constructed. By learning an optimal
Bayesian network B = (G, ©) from D, we can get a graphical representation of
conditional dependencies between protein residues. Because the conditional de-
pendencies in a learned Bayesian network represent the probabilistic dependen-
cies between energy levels of different residues, we can interpret the dependency
structure G of B as a route of energy transfer of the protein.
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We should observe the distribution of energy level in a protein structure ex-
perimentally to build the observed data instances D. However, experimental
observation of energy level for certain protein can be very difficult. Instead, we
use the Markov propagation model to generate a set of observations on the en-
ergy distribution. Suppose that we have a set of s initial energy distribution
PY = {p¥,pY, ...,pY}. For each p?, we can get p}, pz, ..., pf by iteratively mul-
tiplying the Markov transition matrix M until convergence. Then we can make
D as follows:

D:{p%7...7p‘f‘7p%,...,p§7...7pi,...,p3} 9)

By the way, the number of observed data instances |D| is usually insufficient to
learn an optimal Bayesian network. The number of residues in our target pro-
tein 1be9 is 115. Learning an optimal Bayesian network for 115 random variables
may require tremendous amount of observations. Note that more than 30,000
observations were used to learn Bayesian networks of 37 random variables with
around 95% of structural accuracy in previous studies. Because searching an op-
timal directed acyclic graph (G of the optimal B) is an NP-hard complexity, the
required number of observation data grows super exponentially for 115 random
variables. For this reason, we use artificial immune systems-based bootstrapping
approach for learning several sub-optimal Bayesian networks. The approach of
learning Bayesian networks using artificial immune systems-based bootstrapping
will be discussed in the following section.

4 AIS-Based Bootstrapping of Bayesian Networks

In this section, we present our AIS-based bootstrapping approach for learning
several sub-optimal Bayesian networks. We use the clonal selection algorithm.
The benefit of using clonal selection algorithm for Bayesian network analysis
is that learning Bayesian network structures and the bootstrapping procedure
is handled simultaneously. In conventional bootstrapping methods, any selected
learning algorithm should be used for each subset of given training data. Be-
cause learning Bayesian network structures is a very complex problem (NP-
hard), greedy algorithms are widely used in for the learning method in the case
of bootstrapping where not just one but k(>> 1) structures should be learned.
The use of clonal selection algorithm for Bayesian network structure bootstrap-
ping provides population-based learning algorithm for subsets of given training
data. Thus incorporating the clonal selection algorithm for bootstrapping let us
avoid local minimum with more chances and capture more true patterns of the
solution space. The conventional structure of the clonal selection algorithms is
described in Algorithm [II

For our case, an antibody ab; corresponds to a Bayesian network struc-
ture Gj. Antigens are constructed from the observed energy distributions D =
{p%7...7p‘f‘,p§7...7pg, s PL, ..., PY}. We define an antigen ag; as a subset of D
and make every ag; has the same size. As mentioned in the previous section,
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Algorithm 1. ClonalSelection

1: Randomly initialize a population of n antibodies Ab

2:

3: while Stopping criteria do

4 for each antigen ag; in Ag do
5: Determine affinity to each antibody ab; in Ab
6 Select m(< n) antibodies of highest affinity from Ab
7 Clone and mutate the selected antibodies
8: end for
9:
10:  Select I(< n) antibodies of highest affinity from Ab to make new Ab’
11:  Add random n — [ antibodies to Ab’
12:  Replace Ab with Ab’
13: end while

D is constructed using the Markov propagation model. Then each antigen ag;
is generated by randomly selecting the predetermined number of instances from
D. The affinity between an antibody ab; and an antigen ag; should represent
how well the antibody(G;) matches to the antigen(a subset of observed data
instances D). Thus we can use one of existing scoring schemes for Bayesian net-
work structures given data instances as an affinity measure, such as BDeu score
G; given ag; [13]. The BDeu score evaluates P(G|D) for a graph structure G
given observed set of data instances D. Mutation of an antibody ab;(a Bayesian
network structure G;) can be done by using one of following structure modifica-
tion operations - edge addition, edge deletion and edge reversion. By replacing
corresponding terms and operations in Algorithm [l with those for Bayesian net-
works given above, we can define an algorithm ClonalBootstrapping for learning
several sub-optimal Bayesian network structures as follows:

5 Results and Analysis

5.1 Environments

We analyze the route of energy transfer in the structure of protein 1be9. 1be9
protein is one of the PDZ domain family. There are total 115 residues (from
r301 t0 r415. Indexes are given from number 301.) in 1be9. 15 residues among
those 115 are selected as hot spots by conservation score analysis, which are
energetically enriched during the binding processes. The conservation score anal-
ysis evaluates the degree of conservation during evolution for a given gene se-
quence by comparing gene sequences of many different kinds of species. Selected
15 residues have higher evolutionary conservation scores than other residues.
Higher evolutionary conservation score means that the sequence of the residue
have been conserved more during the evolution process of species. This supports
a widely accepted hypothesis that well conserved regions of a protein do im-
portant roles in the biological processes. By interpreting the conservation score
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Algorithm 2. ClonalBootstrapping

1: Randomly initialize a population of n graph structures Ab

2:

3: while There is improvement larger than 0 in average BDeu(Gj|ag;) do
4:  for each antigen ag; in Ag do

5: Evaluate BDeu(Gj|ag;) for each antibody G; in Ab

6: Select m(< n) graph structures of highest score from Ab

T Clone and mutate the selected structures

8: end for

9:
10:  Select I(< n) structures of highest score from Ab to make new Ab’
11:  Add random n — [ structures to Ab’
12:  Replace Ab with Ab’

13: end while
14:

15: Return k structures of highest score from Ab
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of a residue as a degree of being a hot spot and thus as an enriched amount
energy for that residue, we assigned following initial energy level to 15 residues

in Table [Tl

Table 1. Initial energy levels of hot spot residues

Residue Energy (kKT™)

7318
322
7323
7324
325
7326
327
7328
7329
7331
7339
372
7376
379
7380

0.3
0.2
2.3
2.7
6.4
2.2
1.5
2.0
0.5
2.0
0.5
5.7
2.0
2.3
1.9

When 1be9 binds to another protein or molecule, every hot spot residue may
not be bind to its counterpart. For example, binding proteins to 1be9 may have
different mutated sequences in some part of their binding residues and thus some
of those 15 hot spots may not bind to their counterparts. Then the energy enrich-
ment may occur only subset of those 15 hot spots where the counterpart protein
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binds successfully. This means that there are 2'° = 32768 sets of combination
of the initial energy distribution for those 15 residues. We constructed P with
1,820 pYs by randomly selecting 1,820 combinations of initial energy distribution
among 2'° combinations for 15 residues and setting the energy level of other 100
residues as 0. By iteratively multiplying the pre-computed Markov transition
matrix M to each of 1,820 p¥s, D of 32,760 instances of energy distribution for
protein 1be9 is finally constructed.

The ClonalBootstrapping of Algorithm [ was applied to D for learning k =
100 suboptimal Bayesian network structures. The number of antibodies in the
population was 1,000, the number of antigens was 100, m = 200 antibodies were
selected during the processes, and [ = 950 antibodies were survived at each
epoch.

As a result, we have got 100 suboptimal Bayesian network structures. A con-
fidence value was evaluated for each possible connection between two residues r;
and r; in the structure as follows:

26, including r;—r; BDeu(Gs|D)

Conf(ri — ;) = S"All 100 ¢ BDeu(G|D)

(10)

With enough convergence, the 100 suboptimal structures have very similar scores
each other while they can have different topologies. Thus the confidence value
for an edge can be approximated in easier way as follows:

The number of G including an edge r; — 7

Conf(r; —rj) ~ 100

(11)

5.2 Results

Figure [2 shows the result of our analysis. Nodes correspond to residues and
edges correspond to conditional dependencies between residues. Those condi-
tional dependencies can be interpreted as major routes of energy transfer be-
tween residues. Edges with confidence less than 0.5 (edges which were shown
less than half of 100) were omitted. Nodes with no connected edges of confi-
dence larger than 0.5 were omitted also in the figure. Gray colored nodes are 15
hot spot residues in Table [[l The thickness of edges linearly corresponds to the
confidence value, where confidence of 0.5 corresponds to the thickness of 0.5pt
and confidence of 1 corresponds to the thickness of 12pt.

From this result, we can identify in which route the energy is transferred
between residues. Even though the direction of edges in Bayesian networks do
not mean causality, it is known that the order in the Bayesian networks has
some correlation with causality. Thus we can consider the direction of edges as a
direction of energy flow to some extent. This can be useful because we can find
the destination residues of energy flow from selected starting residues, such as
binding residues.

In Figure @l we can find that the map of route is disconnected into several
sub-networks. This may represent that there may exist several different valleys
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Fig. 2. Estimated route of energy transfer in protein 1be9

of energy flow even in a single protein. Even though there is little experimental
evidence which can support this hypothesis, this analysis of identifying energy
route can give some clue about it. Identifying several valleys of energy transfer
in a protein can give a blue print for modifying the protein structure with our
preferences. Suppose that there is a starting residue and a target residue of en-
ergy transfer in a protein. The energy transfer may alter the structural shape or
molecular status of the target residue. If we want to block the energy transfer
to the target residue, we may need to change the structure of some residues
included in the energy transfer. Now assume that there are two energy transfer
routes between starting and target residues. If it is hard to change the structures
of residues in one of the routes, we can take another as our experimental target
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route. This is just an example with a hypothesis on the energy route but can
give intuition on the impact of our method.

6 Conclusion

In this paper, we have presented the AIS-based bootstrapping of learning
Bayesian networks. The proposed approach has been applied to the identifi-
cation of energy transfer route in a 1be9 protein. The result can be interpreted
as a map of major energy transfer route between residues.

A bootstrapped learning algorithm of Bayesian networks has been proposed
based on the clonal selection algorithm. The proposed algorithm incorporates
several schemes which are needed in learning Bayesian networks. A lot of analysis
problems suffer the lack of data situation. Besides the conventional bootstrap-
ping and Monte Carlo methods, this clonal selection-based bootstrapping can be
another choice. We have learned the Bayesian network model in this paper, but
that approach can be adapted to any other models where bootstrapping can be
applied.

Further works may include the experimental or theoretical validation of the
learned energy transfer route in the protein. The relationships between initial
residues of energy transfer and the destination residues needed to be studied.
During the works given in this paper, we did not set those hot spot residues
to become the topmost nodes in the route. If we have some knowledge on the
initial location of energy diffusion or the order of the energy transfer, we can
adapt that information in maintaining the population of antibodies. Addition of
such a prior knowledge can improve the quality of this route analysis.

The comparison of the presented AIS-based bootstrapping method was not
compared to conventional bootstrapping methods. Further, the power of learning
Bayesian networks with the proposed method can be compared with Markov
Chain Monte Carlo method for learning Bayesian networks. This future work
will show the actual characteristics, pros and cons of the clonal selection-based
bootstrapping of Bayesian network learning.
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Abstract. We present a novel Neuro-Immune inspired real-time track-
ing system that is capable of tracking morphing moving targets over non-
benign backgrounds. We have employed ideas from antigen-presenting
cells, T-cell interaction, together with cytokine interaction with neural
systems. Our experiments show that the neuro-immune tracking system
has the ability to maintain tracking a target even if the target changes
shape, or is covered for periods of time by other objects.

Keywords: Neuro-Immune inspired, Visual tracking, Morphing target,
Non-benign background, Cellular Immune Network (CIN).

1 Introduction

This paper proposes a real-time visual tracking system that is capable of tracking
objects whose aspect, shape and/or size change whilst they transit across a
background that is likely to confuse the tracking process due to a transient
similarity to the object being tracked. We define this type of deformable object
a morphing target and we define the background against which it moves as non-
benign. Real time tracking is an important subject in machine vision applications,
and accuracy, robustness and speed are the primary concerns for a reliable real
time tracker. There are two major approaches in designing a visual tracker,
model-driven and data-driven.

The model-driven approach, also known as a top-down process, has its roots
in control theory. Visual information is abstracted into a state space and tracked
by applying Bayesian filtering techniques. The essence of Bayesian filtering the-
ory is a recursive process of prediction and correction, given a priori knowledge
and proofs. With this knowledge, we could clearly (though not easily) track
the target and outline its profile in the image even if the background is clut-
tered. Many ad-hoc Bayesian filters for visual tracking have been developed,
such as Extended Kalman Filters [I]. Unfortunately, many problems occur when
applying these filters to practical applications. Firstly, there may be limited a
priori knowledge about the object, i.e. the exact motion model and morphing
laws. Secondly, abstracting the feature vector from a deformable target is com-
putationally expensive, since deformable targets suffer from a more complicated
representation compared to rigidly-shaped objects. Two alternative solutions are

P.J. Bentley, D. Lee, and S. Jung (Eds.): ICARIS 2008, LNCS 5132, pp. 188}199|2008.
(© Springer-Verlag Berlin Heidelberg 2008
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either to enhance conventional computing capabilities and structures to satisfy
such algorithms, or, alter the algorithms to fit current hardware conditions many
of which are still slow and cumbersome.

Data-driven approaches are generally bottom-up processes, and derive from
the area of image processing. It is often preferable to use the actual image data
from the camera rather than an estimation from a Bayesian filter. Some sim-
ple visual tracking systems, not exploiting filtering techniques, turn to image
segmentations. There are many image segmentation algorithms: some e.g. [2]
are simple histogram based, edge detection and region growing; and others are
more sophisticated like level-set [3]. Compared with model-driven methods, data-
driven ones do not need a predefined model, and significantly, they are much
faster especially when supported by a dedicated pixel processing hardware plat-
form such as a Field Programmable Gate Array (FPGA). However, data-driven
methods are not so robust at dealing with a cluttered environment. The advan-
tages and shortcomings of the two approaches are mutually exclusive that many
researchers [4] in the machine vision community often attempt to combine them
and make them operate complementarily. Motivated by these characteristics,
in this paper, a novel visual tracking method is introduced, which is inspired
by biological, neuro-immune interactions. It has features of both model-driven
and data-driven approaches, and exploits their individual advantages to provide
robust and fast tracking of morphing targets against non-benign backgrounds.

The paper is structured as follows: Section [2] introduces a novel immune-
inspired 2-D planar array platform ready for image segmentation, Section
presents the neuro-immune inspired tracking model, Section @] analyse the sys-
tem performance when applied to a representative test scenario and Section
summarises the tracking system.

2 A Cellular Immune Network Platform

In this section we outline a novel image segmentation approach, based on ideas
taken from the immune system, that is capable of visual representing a object
of interest in the image and track morphing, moving targets over non-begin
backgrounds.

2.1 The Structure and Representation of CIN

In order to quickly and robustly represent an object of interest, a system should
provide a reliable image segmentation ability and parallel computation features.
2-D cellular computing platforms are widely used in image processing literature
due to their 2-D planar array structure. On these platforms, a single cellular unit
corresponds to a pixel in the image. The image processing function on a pixel
level is equal to the state updating rule of the cellular units. There are many
examples of applications that have provided good image processing results of
applying such a structure, for example work using cellular automata (CA) [5],
cellular neural network (CNN) [6] and pulse coupled neural network (PCNN)
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[7]. However in these examples, algorithms on CAs are typically employed for
noise filtering and algorithms on CNN are typically employed for edge detecting;
they are not used in general for object representation. Although PCNN performs
well at image segmentation, the output is a series of pulse-codes which is not
convenient to present to an object before an extra frequency processing module.
What is required is a new mechanism dedicated for simple image segmentation,
i.e. distinguishing the object of interest from the background. In this section, a
cellular immune network (CIN) platform is proposed to visually represent the
target. The final output of CIN is binarised (1 and 0) to indicate the membership
of a pixel being part of the target or not.

_____
____

Fig. 1. The structure of CIN

In our CIN, T-cells are classified by the types of cytokines they produce. We
define each type of T-cell as being able to secrete several kinds of cytokines,
with different types of T-cells being able to secrete the same kinds of cytokines.
However, in our case each type of T-cell is affected only by a single type of cy-
tokine. Therefore, the number of cytokine types that a certain type of T-cells
is able to secrete is equal to the number of T-cells types that this concerned
type is able to act on. We map all types of T-cells into the CIN planar array.
Figure [ illustrate the 2-D array structure of CIN. T-cells and the kind of cy-
tokines exclusively acting on it are coupled and represented by a cellular unit.
This mapping mechanism means that the distance between 2 cellular units does
not represent the physical distance between two T-cells, but represents the dif-
ference between two types of T-cells according to their cytokine secretion ability
i.e. the type of cytokines they secrete.

In the context of image processing, each pixel is represented by such a cellular
unit with each unit having two non-negative state variables C'el and Cyt, rep-
resenting a T-cell concentration and the coupled cytokines concentration, with
respect to the planar position (4,7). For instance, Cel(i,7)=0 means the con-
centration of T-cells of type (i,j) are zero. Seg is defined as the CIN output
which is the binarised Cyt value by a threshold (see figure 2 block “activation
threshold”) and represents the segmentation result: 1 means part of the object
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and 0 means that it is not part of the object. Each cellular unit has two inputs
Env and Ape. Env is the environmental factor which is defined as the inverse
of gradient value at each pixel. This value is always less than 1 and designed to
decrease the cytokine concentration at various areas. Apc has 3 states: absent,
inactivated and activated. Any unit with Seg value of 1, is with the Apc state
of absent; otherwise, it is inactivated if did not find the SIBO pixels (took as
antigens), and if found, the Apc state turns to be activated. This mechanism is
for anti-interference in visual tracking.

2.2 The Interactions of the Cellular Units

In our CIN, the closer the 2 cellular units are, the more the same kinds of cy-
tokines they are able to secrete, which means they have similar cytokine secretion
ability. We establish the rule that each kind of T-cells secretes certain kinds of
cytokines only to affect the units in it’s neighbourhood (including itself) and
define the cytokine secretion ability of each type of T-cells as:

$2 2
Mz =eop(-" ") ayel-nn) (1)

Where (z,y) is the relative position according to the concerned cellular unit
and r is a nonlinear scaling parameter of the amplitude of M, and therefore
the cytokine secretion ability decreases as the distance increases. n is the radius
of the cytokine secretion area, and reflects the cytokine secretion ability. If it
is mostly one, then this means that the cytokine secretion area for a cellular
unit is in the closest neighbourhood, including it’s eight closest neighbours and
itself. So M (x,y) is also expressed as a 3x3 matrix, as figure 2] block “Secretion
matrix” shows. In the figure, colour represents the value of coefficient in M: the
brighter the unit’s colour, the higher the coefficient value.

At each pixel, e.g. at position (7, ), the Cyt value is defined as equation
This means at each grid the cytokines concentration is the summation of all
amount of cytokines secreted from the neighbourhood. Since an image usually is
considered as a 2-D matrix, this equation is also expressed in a 2-D convolution
form by equation Bl where Conv2(,) is the 2-D convolution function, opera-
tor ‘e’ is the element-by-element multiplication of two matrices. In this form,
cytokine secretion matrix M is the convolution kernel. Equation 2] and [3] are
mathematically equivalent.

Cyt(i, ) = Env(i, )« Y (Cel(i+x,i+y) « M(z,y)) (2)
Cyt = Env e Conv2(Cel, M) (3)

For any time step, the Cel value is updated by equation @] and Bl The pro-
liferation rate ACel in a cellular unit is decided by a proliferation function f(-)
with respect to its corresponding Cyt value. The bell-shaped function of f(-) is
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shown in figure @ by the block “proliferation function”. Looking at the func-
tion diagram, there are two limits value along the Cyt axis, a lower limit and
a higher limit. Where the Cyt value is below the lower limit or over the up-
per limit, ACel value is zero. t is the time step, k is the natural death rate,
and c is the proliferation rate which mimics the process of T-cells encountering
antigen presenting cells (APC) in an activated state. These input states of Apc
is for anti-interference in visual tracking system and will be discussed later in

section [3.11
ACel(t) = f( Cyt(t) ) (4)

Cel(t+1) = ACel(t) + Cel(t) — k + ¢ (5)

2.3 The Image Segmentation Process

Our image segmentation algorithm can be likened to a diffusion process. The
Cel and Cyt are all initialised at zero, and then an area is selected as a seed
area (a small group of conjunctive pixels) in the object area, we set their Cel
and the system begins operation. First of all at their close neighbour pixels, the
Cel value will increase from zero, if their C'yt value at a moderate level. Over a
certain threshold Cyt, the pixel in question is considered as part of the object.

As the recognised area expands, the environment parameters act as a stoping
force to inhibit it at the object edge area. Edges are generally the pixels with high
intensity gradient value. Intensity gradient is the local intensity changes between
conjunctive pixels and usually calculated by edge detectors [2]. As previously
mentioned, the inverse of gradient value at each pixel works as the environment
parameter, we know from equation 2l that a very small value of environment pa-
rameter decreases, or dilutes, the cytokine’s concentration, and the proliferation
function shows that a very low cytokine concentration inhibits the cell’s prolifer-
ation. Therefore, the intensity gradient value could limit the T-cells expanding
across the edge. After several iterations, the output should cover the whole visual
object in the image and maintain the shape the same as the object’s.

This section has introduced the immune-inspired image processing platform
CIN. Segmenting the object of interest is the preliminary work for a visual
tracking system. The whole tracking model is to be discussed in the next section,
where the CIN platform is employed by a a neuro-immune inspired visual tracker.

3 Neuro-Immune Inspired Tracking Method

The immune and nervous systems were considered to be two independent sys-
tems until the second half of 20th century. Since then, biologists have found
significant evidence to show that these two systems interact at many levels us-
ing a variety of signalling materials [8]. From an immune system perspective,
T-cells secrete different kinds of cytokines which regulate the immune response
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and affect neural behaviours. From the neural perspective neurons secrete hor-
mones, neuropeptides and neurotransmitters to regulate the immune response.

Such interactions between the two systems did not attract a great deal of in-
terests from computer scientists or engineers until [9]. In that paper, the authors
describe each function of the immune, nervous and endocrine system and their
interactions and propose an artificial homeostasis system (AHS) which attempts
to maintain the system’s internal stability. However, in terms of implementation
the authors concentrate on the interactions of the neural and endocrine system:
that work has in part inspired work presented in this paper. Other influential
work for our system was proposed in [I0] where the authors develop a simple
innate artificial immune system integrated with a self organising map (neural
network). In our work, we make use of standard feedforward neural networks
and have taken inspiration from the adaptive (rather than the innate) compo-
nent of the immune system.

In this section we outline a novel tracking system inspired by immune and
nervous systems interactions. The immune-inspired system is to visually present
a object of interest using CIN, and the neural-inspired system is to track the
target and dynamically learn the hidden motion rules.
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Fig. 2. Neuro-immune inspired tracking system framework
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3.1 Immune-Neural Framework

Our framework is illustrated in Figure 2, and is composed of a CIN component
and a ANN component in dashed box. The ANN is a combination of an artificial
perceptron and a back propagation (BP) network. In figure 2] blocks represent
system elements and arrows show functions with one element acting on another.
Within the CIN block, there are elements responsible for T-cell concentration
Clel of a cellular unit: current T-cells concentration, T-cell proliferation function
f(-) and cytokine secretion matrix M, environment parameters input Env, and
high proliferation when Apc is activated. For instance, the T-cell block convolv-
ing by the cytokine secretion matrixz acts on the cytokine block and backwards
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is affected by through the T-cell proliferation function. These are graphical rep-
resentations of equation 2 H, and

In our tracking system there are four functional modules for robust segmen-
tation, fast segmentation, adaptive tracking and anti-interference, respectively.
The four modules are divided by their specific functions and each is composed
of several elements and functions.

Robust segmentation. In this module, the neural-inspired global information
analysis mechanism helps the immune-inspired local pixel processing platform,
CIN, to iteratively segment an object from the background. This is the first and
most important module in the visual tracking system. This module is composed
of 4 actions represented by arrows 2, 3, 4 and 7.

Arrow 2, from block “environment” to block “cytokine”, represents the effect
of environment parameters Env onto the Cyt values in equation[2l Env is defined
as the inverse of gradient value at each pixel. However the gradient information
is not always sufficient. If the image’s contrast is very low, the gradient values
will be very small and thus the environment parameters will not be small enough
to inhibit the recognised area.

With further consideration, it is known that the gradient information is the
local information, that only depends on a few continuous pixels’ intensities.
Besides the local information, analysing the global information from the whole
image is more helpful. The pixels’ intensities are the inputs of the perce